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SYNTHESIS OF THE RIGHT HAND FRAGMENT OF TYLONOLIDE 
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Abstract: The synthesis of the lactonic thioester 5, corresponding to the C(l)-C(9) 
fragment of tylonolide hemiacetal, via the bicyclic ester 5 , is described. 

1. 
Tylosin (L), isolated from fermentation broths of Streptomyces fradiae, 1s a representa- 

tive member of the well-known family of 16-membered polyoxomacrolide antibiotics. 
2 

Degradative 

studies on 1 
3 

_ 

of 1)g4 

and the efficient preparation of tylonolide hemiacetal (z), (the intact aglycone 

as well as the recent crystallographic analysis of protylonolide' establish the struc- 

'ture and stereochemistry of 1 and 2 as shown below. -- A successful partial synthesis of 2 is also - 
recorded: a seco-acid derivative (3) prepared from 2 undergoes ring closure to form a macro- - - 

cyclic lactone which is converted to 2. Thus, the construction of this highly chiral seco-acid _ 
framework has emerged as a major problem in the total synthesis. One approach in solving this 

problem is the use of an available monosaccharide from the "chiral ~001"~ as has been demon- 

strated in the successful synthesis of 2 
7 

_* We have adopted a different strategy. Taking advan- 

tage of the stereochemical similarity of 2 to methynolide (&), our synthetic scheme patterns _ 

after that of 4 and in fact begins with a key intermediate (5)8 used earlier. This letter des- - - 

tribes an efficient synthesis of the racemic C(l)-C(9) fragment (5) of 2. 

Thus, treatment of lactonic ester 5 with 2 equiv (CH3)3SiI for 1 l/4 h at 100' gives the - 

crystalline acid 7_, mp 162-162.5", in 90% yield."l' Homologation of 7 is accomplished via - 

the photolysis of the corresponding diazoketone (9:l THF:H20, 450W medium-pressure Hanovia lamp, 

Pyrex filter, 4 l/2 h) to yield crystalline 8, mp 148-149', quantitatively; subsequent reduc- 

tion via the mixed anhydride, using NaBH4(1.1 equiv NEt3, 1.1 equiv C1C02Et, THF, O', 30 min; 

4 equiv NaBH4, O", 1 h) gives rise to 2 (80%). 

The primary hydroxyl group of 9 is silylated [1.4 equiv t-G4Hg(C6H5)2SiC1, 
11 

- 2.8 equiv 

C3H4N2, DMF, RT, 8 h] to give 10 (84%) which is reduced to the diol 11 (2 equiv LiA1H4, Et20, - - 
-3O'+-20°, 20 min) in 87% yield. The diol 11 is monotosylated (TsCl, pyridine, 3", 24 h), and - 

the resulting hydroxytosylate 12 is immediately silylated with excess (CH3)3SiC1 in pyridine - 

to give 13 (80% from diol). - Reductive removal of the tosyl group (2 equiv LiA1H4, Et20, lo', 

12 h) provides 14 in 80% yield.12 - 

Under carefully controlled conditions (0.8 equiv KMn04, 30 equiv NaI04, 1 equiv K2C03, 

1:l t-BuOH:H20, RT, 65 h),13 _ 14 is transformed to the crystalline acid 15, mp 109.5-llO", in 

75% yield. 
14 

The conversion of 15 into the corresponding labile aldehyde 16 is effected in 90% - - 

yield through Rosenmund reduction [5% Pd-BaS04, (Me2N)2CS (0.05 mg/mmol), toluene, 70°, 1 h] of 

the acid chloride. 
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The final transformation of this sequence uses a boron-mediated aldol condensation: 15 

reaction of aldehyde 16 with enolate 17 in ether provides a 2:l mixture of 6 and its C(3)-epimer - - - 

in a combined yield of 64%. The 'H NMR (25OMHz) of a [7.65(m, 4H, Ar-TBDPSi), 7.43(m, 6H, Ar- 

TBDPSi), 4.25(dd, J=11.06, 1.5, H-S), 4.12(m, H-3), 3.78(dt, J=lO.S, 5.2, H-6"a), 3.69(m, H-6"b), 

3.12(d, J=3.0, OF), 2.74(d, J=6.2, H-2), 2.25(m, H-8), 1.50-2.10(m, H-4,6,7), 1.46(s, t-C4tl+S), 

l.ll-1.28(m, H-6'), 1.20(d, J=7.0, H-8'), 1.06(s, t-C4H+Si), 0.96(d, J=7.7, H-4')] is very simi- 

lar to that of the corresponding methyl ester (6a) [(27OMHz) 7.70(m, 4H, Ar-TBDPSi), 7.44(m, 6~, - 

Ar-TBDFSi), 4.31(dd, J=10.54, 1.50, H-S), 4.17(m, H-3), 3.84(dt, J=lO.S, 5.1, H-6"a), 3.76(s, 

C02CE3), 3.73(m, H-6"b), 3.24(d, J=2.8, OH), 2.64(d, J=6.4, H-2), 2.32(m, H-8); 1.67-2.1S(m, H- 

4,6,7), 1.17-1.39(m, H-6'), 1.2S(d, J=7.15, H-8'), l.ll(s, t-C,H+Si), l.O2(d, J=7.15, H-4') ] 

derived from tylonolide (z) (see below) except for the signals due to the methoxyl and t-butyl- 

thio groups. The C(3)-epimer of 6 [(25OMH$ 7.6Qn,4H,Ar-TBDPSi), 7.43(m,6H,Ar-TBDPSi), 4.56( - 

dd, J=11.03, 1.01, H-S), 4.12(m, H-3), 3.78(dt, J=10.9, 5.2, H-6"a), 3.69(m, H-6"b), 3.19(d, J= 

4.6, OH), 2.83(dd, J=15.5, 3.0, H-2a), 2.53(dd, J=15.5, 9.0, H-2b), 2.25(m, H-8), 1.50-2.10(m, 

H-4,6,7), 1.48(s,t-C4H$G), l.ll-1.28(m, H-6'), 1.21(d, J=7.0, H-8'), 1.06(s, t-C4H+Si), 0.85(d, 

J=7.7, H-4') ] and 6 are clearly discernible in the coupling pattern of their spectra. Since - 

the stereochemistry at C(4), C(S), C(6), and C(8) of 6 is secured from the mode of its synthesis, - 

we conclude that 6 should be formulated as shown. 

Compound 6a has been prepared from the B-hydroxycarboxylic acid 18, a degradation product - 

of tylonolide (L).4 Thus, DDQ (2,3-dichloro-5,6-dicyanobenzoquinone) oxidation of 18 (in&$H$H, 

30", 3 h), and subsequent methyl ester formation (CH2N2, ether) followed by triethylsilyl pro- 

tection of the diol-ester (Et3SiC1, C3H4N2, DMF, RT, 5 l/2 h) produces 19 (70% from 18). Le- - - 

mieux-Rudloff oxidation of 19 (KMn04-NaI04, RT, 24 h) provides the half-acid ester 20 in 76% - - 

yield. A sequence of reactions, (1) esterification (CH2N2, ether), (2) acid hydrolysis (70% 

HOAc/H20, 80°, 20 min), (3) reduction (NaBH4 in i-PrOH, RT, l/2 h), and finally (4) silylation 

[l.l equiv t-C4H9(C6Hs),,Si.C1, 2.2 equiv C3H4N2, DMF, RT, 2 h) furnishes the lactonic ester 6a - & 
in modest yields. 

Significant 1H NMR Data of New Compounds: 

7: (9OMHz) 8.56(br., COzH), 5.82(m, H-l), S.SO(m, H-2), 4.80(d, J=2.93, H-4), 3.08(m, H-3, 
5,7), 2.43(ddd, J=8.55, 3:42, 0.92, H-6), 1.12(d, J=7.33, H-9). 8: (9OMHz) 2.59(s, H-10). 
9: (9OMHz) 3.70(t, J=6.15, H-11), 1.73(m, H-10). 10: (25OMHz) 7.65,7.42(m, 4H; m, 6H, 
Ar-TBDPSi), 1.07(s, 9H, t-C&-Si). 11: (25OMHz) r62(m, H-1,2), 3.81(m, H-lla), 3.71(m, 
H-llb), 3.54(d, J=6.3, H-8). 12: (9mz) 7.71,7.37(m, 6H; m, 8H, Ar-Ts & Ar-TBDPSi), 3.87 
(d, J=6.6, H-8), 2.43(s, Ts-Ctj2. 13: (250MHz) 7.78(d, J=8.5, Ar-Ts), 7.66, 7.39(m, 4H; 
m, 6H, Ar-TBDPSi), 7.31(d, J=8.09, z-Ts), 3.82(d, J=7.0, H-8), 0.03(s, (CE3)sSi). 14: 
(25OMHz) 7.68,7.40(m, 4H; m, 6H, Ar-TBDPSi), 3.71(m, H-4,11), 1.00,0.99(2 pr. d, J=73, 7.0, 
H-8,9). 15: (25OMHz) 7.65,7.42(m, 4H; m, 6H, Ar-TBDPSi), 4.65(dd, J=10.67, 1.83, H-4), 
3.76(m, Hyl), 2.74(dq, J=6.99, 1.47, H-7), 2.30(m, H-3), 1.50-2.11(m, H-5,6), 1.26-1.4l(m, 
H-lo), 1.22(d, J=6.99, H-9), l.l7(d, J=6.99, H-8), 1.07(s, t-C+s-Si). 16: (25OMHz) 9.69 
(s, CEO), 4_67(dd, J=11.03, 1.84, H-4), 2.49(dq, J=6.99, 1.84, H-7), 2.3um, H-3), 1.22(d, 
J=6.99, H-8), l.l7(d, J=6.98, H-9). 19: (250MHz) 7.31(dd, J=15.8, 3.1, H-11), 6.2O(d, J= 
15.8, H-lo), 6.06,6.05(2d, lH, J=9.5,-.9, H-13), 4.93(m, H-6"), 4.55(m, CIj-THP), 4.13(m, 
H-3,15), 3.84(m, H-5,14'), 3.69(s, COzCE3), 3.34,3.32(2~, 3H, OCHa), 3.SO(m, THP-e), 2.85 
(m, H-8), 2.54(d, J=6.6, H-2), 0.95(m, (CH&Hz)3Si, 
l.lS(d, J=6.7, H-8'). 20: 

H-4,15",THP-E), 0.60(m, (CHzCHz)sSi), 

(s, OCl&), 2.53(m, H-2,8), 
(25OMHz) 4.95(m, H-6"), 4.14(m, H-3,5), 3.67(s, co2c~3), 3.33 

1.24(d, J=7.0, H-8'), 0.90(m, (Cfi3CHz)3Si, H-4'), 0.55(m, 

(CHsCHz)sSi). 
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CH3b 

5: R=CH3 - 6 : R = S(t-C4H9) - 

1 
7: R=H 

3 

& $<Jc+ 2;; 

bh !'h 

8: R=CO~H 
15: R = OH - - 11: R' = R" = OH - 

2: R = CH20H 12: R' = OTs, R" = OH 16: R=H OG - - = 
( 

10. R = CH20Si(C6H5)2- 
13: R' = OTS, R" = OSi(CH ) 
- 33 

S-)_ 
-* 17 

(t-C4H9) 
14: R' = H, R" = OSi(a3)3 - 

18: - R1 = R2 = R4 = H, 

R3 = H, OH 

19: R1 = CH - 

R 
2 
= R 

43' 
R3 = 0, 

= Si(C2H5)3 

20 - 

21: - R = CH20.#-& 

22: R=CH+ - 

23 - 
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