Studies on Chemotherapeutics III. Synthesis and Cyclisation of 5-Substituted-4-oxo-1,4-dihydro-3-pyridinecarbonyl-semicarbazide and thiosemicarbazide

Mária Balogh, István Hermecz*, Zoltán Mészáros and Levente Pusztay

CHINOIN Pharmaceutical and Chemical Works, Budapest, Hungary Received July 20, 1979

1,4-Disubstituted-semicarbazide and thiosemicarbazide derivatives were synthetized from 5-substituted-4-oxo-1,4-dihydro-3-pyridinecarbohydrazides and cyclized to 3-mercapto-4*H*-1,2,4-triazoles. The obtained compounds could be S-methylated with methyl iodide in methanol. The new compounds were tested for antibacterial and antifungal activities.

J. Heterocyclic Chem., 17, 175 (1980).

In our earlier papers the synthesis and antimicrobial testing of 1-alkyl-5-substituted-4-oxo-1,4-dihydro-3-pyrid-inecarboxylic acids (1), further of the corresponding carbohydrazides and their condensation products (2) had been described. In the present paper we report on the synthesis of γ -pyridone derivatives wearing a 1,2,4-triazolyl group in position 3 via semicarbazide and thiosemicarbazide derivatives.

4-Oxo-1,4-dihydro-3-pyridinecarbohydrazides (1a-c) (2) react with isocyanates and isothiocyanates (2) in dioxane under mild conditions to afford 1,4-disubstituted semicarbazide and thiosemicarbazide derivatives (3a-g) in 80-90% yields.

The reaction of the carbohydrazides (1a,1d) with potassium cyanate (4) in aqueous acetic acid at room temperature leads to 1-substituted semicarbazides (5a-b) with excellent yields.

R CONHNH₂ + KNCO
$$\frac{H_2O}{A_cOH}$$
 R CONHNH-C-NH.

R₁ 25°C.3 hours $\frac{O}{R_1}$

As it is known from the literature, 1-acyl-4-substituted thiosemicarbazides can be cyclized with base-catalysts to give 3-mercapto-4H-1,2,4-triazoles (3).

The 4-substituted-1-/5-substituted-4-oxo-1,4-dihydro-3-pyridinecarbonyl/-thiosemicarbazides (3c,3f,3g) were transformed into compounds 6a-c by heating with dilute sodium hydroxide solution at 90-95° for 2 hours. In all cases the yield was 80-90%.

The 5-R-3-(4-R₂-3-mercapto-4H-1,2,4-triazol-5-yl)-4-oxo-1,4-dihydropyridines (**6a-c**) could be S-methylated with methyl iodide in methanol, in the presence of anhydrous potassium carbonate.

The S-methylation is confirmed by the singlet at $\delta = 2.66$ ppm in the nmr spectra of compounds **7a-c**.

The tautomerism of compounds **6a-c** can be studied by spectroscopic methods. In solid state compounds **6a** and **6b** exist predominantly in the thioxo form as it is shown by the ν C=S band at 1250 cm⁻¹ in the ir spectra of these compounds. As for 5-heptyl-3-(3-mercapto-4-methyl-4H-1,2,4-triazol-5-yl)-4-oxo-1,4-dihydropyridine (**6c**) the thiol form is present even in solid state (ν SH = 2605 cm⁻¹).

In 96% ethanolic solutions all the three compounds (6a-c) can be characterized by the thiol form, their uv spectra resemble to those of the S-methyl derivatives (7a-c).

1-(5-Butyl-4-oxo-1,4-dihydro-3-pyridinecarbonyl)-semicarbazide (5a) was cyclized by heating with a 10% sodium hydroxide solution for 10 hours to 5-butyl-4-oxo-3-(5-oxo-4,5-dihydro-1*H*-1,2,4-triazol-3-yl)-1,4-dihydropyridine (8) with 85.5% yield.

Table 1 1,4-Disubstituted-Semicarbazide and Thiosemicarbazide Derivatives and their Uv and Ir Data

				1	;	α .	% [10]) 2	Annestance	Formula		Analysis	ysis		λ max nm log ε Ir (Potassium bromide) cm⁻¹	n log e	Ir (Pc	tassium	oromide)	E
Starting Materia	Starting RNCO or RNCS Material	Product	œ	×Ϊ	~	r,	ev mair		Solvent of Recrystallization	M.W.	ပ	Calcd./F	Calcd./Found % H N	S			v C=0 amide ri	ν C=O ν C=O ν C=O ν C=S amide ring NHCONH	" C≘(
<u>, </u>	C.H.NCO	e.	c,H,	Ħ	0	C,H,	95.9	236-237	white	C1, H 20 N 4 O3	62.18	6.14	17.07		284	241	1700 i	1635	1660 i	
<u>۔</u>	C H.NCO	æ	C,H,	Ħ	0	C,H,	89.2	218	DMF white	526.575 C ₁₅ H ₂₄ N ₄ O ₃	58.42	28.7	18.17		286	25.	1200		1640	
2 ا	C.H.NCS	ä	C,H,	ж	S	С,Н,	91.5		Ethanol white	308.383 C ₁₇ H ₂₀ N ₄ O ₂ S	59.28	5.85	16.27	9.31	9.50		1695	1635		
	CH,NCS	R	C,H,	Ħ	S	CH,	95.7	dec. 190-191	Ethanol white Ethanol	344.43/ C ₁₂ H ₁₄ N ₄ O ₂ S 282.366	51.05 51.03	6.43 6.33	19.84	11.35	3.85		1680	1650		
	H3CO COCH3	೫	°H*)	н	o,	13CO CH3	76.5	195-196	white Ethanol	C ₂₁ H ₃₀ N ₄ O ₄ S 432.546	58.31 58.25	6.52	12.95 12.87	7.41	281 3.97	250	1680	1645		
41	CH2CH2NCS	ž	C,H,13	ж	S	сн ₂ сн ₂ С .н.	9.08	222-224	white	C1,4H2,N40,5	61.27	6.49	15.04	8.61 8.62		257	0291	1650 i		
ગ	CH,NCS	æ,	C,H,15	Ħ	S	сн,	0.96	193 dec	pale yellow Frhanol	C ₁₅ H ₂₄ N ₄ O ₂ S 324,447	55.53	7.46	17.27	9.88	3.85	245 4.24	1680	1650		
	KNCO	ស្ដ	C,H,	Ħ	0	æ	78.2	230-231	white Water	C ₁₁ H ₁₆ N ₄ O ₃ 252.275	52.37	6.39	22.21		3.79	254 3.93	1680	1650 i	1670	
PI	KNCO	ક્ક	H,NCONH.	H,NCONH. CH,=CH.CH,	0	* #	97.9	283 dec.	white	C ₁₂ H ₁₅ N ₇ O ₅	42.73 42.64	4.48	29.07 29.17		(a)	~	1700		1650	

i = inflexion. (a) 5b insoluble in Ethanol.

Table 2

Nmr Data for 1,4- Disubstituted Semicarbazide and Thiosemicarbazide Derivatives

Compound							
No.	Solvent	C ₂ -H	C ₆ -H	C_5 -(CH ₂) ₃ -CH ₃	C_s - CH_2 (CH_2) ₂ - CH	3	δ ppm
3a	Trifluoroacetic acid	9.21 s	8.43 s	0.80-1.25 m	1.25-2.10 m	C_s - CH_2 - $(CH_2)_2$ - CH_3 - NH - C_cH_s	2.65-3.20 m 7.41 s
3b	Trifluoroacetic acid	9.28 s	8.51 s	0.80-1.17 m	1.20-2.00 m	-NH-(CH ₂) ₃ -CH ₃ -NH-CH ₂ -(CH ₂) ₂ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₂ -CH ₃	0.80-1.17 m 1.20-2.00 m 2.60-3.10 m
3 c	DMSO-d ₆	8.59 d J = 2 Hz	7.20-7.90 m	0.80-1.20 m	1.20-1.90 m	-NH-CH ₂ (CH ₂) ₂ -CH ₃ C ₅ -CH ₂ (CH ₂) ₂ -CH ₃ CSNHC ₆ H ₅ CSNHC ₆ H ₅ CONHNHCS	3.20-3.65 m 2.30-2.80 m 3.20-3.70 bs 7.20-7.90 m
3d	Trifluoroacetic acid	9.30 s	8.50 s	0.75-1.15	1.25-2.00	CONHNHCS C ₅ -CH ₂ -(CH ₂) ₂ -CH ₃	12.85 s 2.88 t $J = 7 Hz$
3e	DMSO-d ₆	8.53 bs	7.84 bs	m 0.75-1.10 m	m 1.20-1.80 m	-NH-CH ₃ C ₅ -CH ₂ -(CH ₂) ₂ -CH ₃ -NH-CH ₂ -CH ₃	3.30 s } 2.30-3.10 m
						3,4-(CH ₃ O) ₂ -C ₆ H ₃ 3,4-(CH ₃ O) ₂ -C ₆ H ₃ CSN <i>H</i> -CH ₂ -CH ₂ - CONH <i>NHC</i> S CO <i>NH</i> NHCS	3.77 s 3.80 s 6.89 s 8.05 bs 9.68 bs 12.22 bs
3f	Trifluoroacetic acid	9.32 s	8.48 s			C ₅ -(CH ₂) ₅ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₄ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₄ -CH ₃ -NH-C ₆ H ₅	0.70-1.10 m 1.20-2.10 m 2.70-3.30 m 7.30-7.80 m
3g	DMSO-d₅	8.48 bs	7.80 bs			C ₅ -(CH ₂) ₆ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₅ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₅ -CH ₃ -NH-CH ₃ CSNHCH ₃ CONHNHCS CONHNHCS	0.70-1.05 m 1.10-2.70 m 2.33-2.60 m 2.92 d J = 5 Hz 7.99 d J = 5 Hz 9.45 bs 12.35 s
5a	Trifluoroacetic acid	9.30 bs	8.52 bs			C ₅ -(CH ₂) ₃ -CH ₃ C ₅ -CH ₂ (CH ₂) ₂ -CH ₃ C ₅ -CH ₂ (CH ₂) ₂ -CH ₃	0.80-1.16 m 1.25-2.00 m 2.91 t J = 7 Hz
5Ь	Trifluoroacetic acid	9.01 s (a)				O_3 - O_{12} - O_{13} - O_{13} - O_{13} - O_{14} - O_{15} - O_{1	4.75-5.05 m 5.30-5.80 m 5.80-6.45 m

s = singlet, bs = broad singlet, d = doublet, t = triplet, m = multiplet. (a) C2-H and C6-H appears at the same chemical shift.

The obtained new compounds (3a-g, 5a-b, 6a-c, 7a-c, 8) were tested for antibacterial and antifungal activities. Only compounds 5a and 8 exhibited a weak activity against microspores, while the rest of the compounds showed no significant activity.

EXPERIMENTAL

All melting points are uncorrected. The uv spectra were taken in ethanol with a Unicam SP 800 spectrophotometer, the ir spectra were recorded on a Zeiss UR 20 spectrophotometer, nmr spectra were measured with a Perkin-Elmer R-12 spectrometer using tetramethyl silane as an internal standard.

 $Table \ 3$ $5\cdot R\cdot 3\cdot (4\cdot R_{1}\cdot 3\cdot SR_{1}\cdot 4H\cdot 1,2,4\cdot triazol\cdot 5\cdot yl)\cdot 4\cdot oxo-1,4\cdot dihydropyridines \ and \ their \ Uv \ and \ Ir \ Data$

Starting Material	Product	R	R,	R ₂	Yield %	M.p. °C	Appearance, Solvent of	Formula M.W.			lysis ound %		λ max nm log ϵ	Ir (Potass ν C=O		ide) cm ⁻¹
							Recrystallization		С	H	N	S		ring		
3c	6a	$C_{\bullet}H_{\circ}$	Н	C_6H_5	89.9	315	white	$C_{17}H_{18}N_{4}OS$	62.55	5.56	17.16	9.82	261	1650	1250	
							DMF	326.422	62.36	5.79	17.25	10.04	4.23			
3f	6b	C_6H_{13}	H	C ₆ H ₅	90.5	315 dec.	white	C19H22NOS	64.38	6.26	15.81	9.04	260	1650	1250	
							Methanol	354.477	63.96	6.01	15.75	8.96	4.23			
3g	6c	C_7H_{18}	Н	CH ₃	82.8	264	white	C ₁₅ H ₂₂ N ₄ OS	58.80	7.24	18.28	10.46	254	1660		2605
							Methanol	306.432	59.02	7.35	18.33	10.59	3.31			
6a	7a	C₄H,	CH,	C ₆ H ₅	70.3	114-115	white	C18H20NOS+H2O	60.31	6.19	15.63	8.94	260	1660		
							Ethanol-water	358.465	60.28	6.25	15.48	8.85	4.00			
6b	7b	C_6H_{13}	CH,	C ₆ H ₅	7 9.7	164	white	C ₂₀ H ₂₄ N ₄ OS	65.19	6.56	15.20	8.70	260	1655		
							Benzene-ethyl	368.504	65.42	6.80	15.22	8.58	4.02			
							acetate									
6c	7e	C,H15	CH ₃	CH ₃	50.1	125	white	C, H, N, OS	59.97	7.55	17.48	10.01	264	1660		
							Ethyl acetate	320.459	59.70	7.75	17.09	9.82	3.99			

 $\label{thm:condition} Table~4$ Nmr Data for 5-R-3-(4-R2-3-SR1-4H-1,2,4-triazol-5-yl)-4-oxo-1,4-dihydropyridines

Compound No.	l Solvent	C ₂ -H	C ₆ -H	N-C ₆ H ₅	N-CH ₃	S-CH ₃		δ ppm
6а	Trifluoroacetic acid	8.40 bs		7.40-8.00 (a) m	_	_	C_5 -(CH ₂) ₃ -CH ₃ C_5 -CH ₂ -(CH ₂) ₂ -CH ₃	0.80-1.20 m 1.20-2.00 m
7a	Deuteriochloroform	7.78 s		7.25-7.65 (a) m		2.66 s	C ₅ -CH ₂ -(CH ₂) ₂ -CH ₃ C ₅ -(CH ₂) ₃ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₂ -CH ₃ C ₆ -CH ₆ -(CH ₉) ₂ -CH ₄	0.70-1.05 m
6b	DMSO-d ₆	8.05 s	7.61 s	7.46 s	_	_	C ₅ ·CH ₂ ·CH ₂) ₂ ·CH ₃ C ₅ ·CH ₂) ₅ ·CH ₃ C ₅ ·CH ₂ ·(CH ₂) ₄ ·CH ₃ C ₅ ·CH ₃ ·(CH ₂) ₄ ·CH ₃	2.50-2.70 m 0.75-1.05 m 1.05-1.45 m 2.00-2.40 m
7 b	Deuteriochloroform	7.81 s		7.25-7.70 (a) m	_	2.66 s	C ₅ -CH ₂ (CH ₂) ₅ -CH ₃ C ₅ -CH ₂ (CH ₂) ₄ -CH ₃ C ₅ -CH ₂ (CH ₂) ₄ -CH ₃ ring-NH	0.70-1.04 m 1.10-1.65 m 2.15-2.65 m 10.95 bs
6c	DMSO-d ₆	$\begin{array}{l} 8.10 \ \mathrm{d} \\ \mathrm{J} \ = \ 2.7 \ \mathrm{Hz} \end{array}$	7.82 s	_	3.40 s	_	C ₅ -(CH ₂) ₆ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₅ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₅ -CH ₃	0.75-1.10 m 1.15-1.75 m 2.48 t J = 7.5 Hz
7e	Deuteriochloroform	7.93 s	7.59 s	_	3.57 s	2.64 s	C ₅ -(CH ₂) ₆ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₅ -CH ₃ C ₅ -CH ₂ -(CH ₂) ₅ -CH ₃ ring-NH	0.65-1.05 m 1.10-1.80 m 2.30-2.80 m 8.82 s

⁽a) The C₆-H and N-C₆H₅ protons appear together.

General Procedure for the Synthesis of 1(5-Alkyl-4-oxo-1,4-dihydro-3-pyridinecarbonyl)-4-substituted-semicarbazides and Thiosemicarbazides (3a-g).

To a suspension of the 5-alkyl-4-oxo-1,4-dihydro-3-pyridinecarbohydrazide (1a-c) (2) (0.01 mole in dioxane (50 ml.)) the appropriate isocyanate or isothiocyanate (0.01 mole) was added at 80°. The reaction mixture was stirred at 80° for one hour (after a few minutes crystals began to separate) and then at 25° for one hour. After a few hours the separated crystals were filtered off, and washed with dioxane and ethanol. For the yields, m.p., solvents used for recrystallization and analytical data of compounds 3a-g see Table 1, and for their spectroscopic characteristics Tables 1 and 2.

General Procedure for the Synthesis of 1-(5-Butyl-4-oxo-1,4-dihydro-3-pyridinecarbonyl)-semicarbazide (5a) and 1,1'-(1-Allyl-4-oxo-1,4-dihydro-3,5-pyridinedicarbonyl)-disemicarbazide (5b).

A solution of potassium cyanate (0.022 mole) in water (10 ml.) was added dropwise, within 15 minutes, under stirring, at 0° to a solution of the carbohydrazide (1a,1d) (0.02 mole) in a mixture of acetic acid (40 ml.) and water (40 ml.). After about 10 minutes white crystals began to separate from the solution. The reaction mixture was stirred at 20-25° for 3 hours, chilled and the precipitate was filtered off, and washed with water and ethanol.

For the physical data and analytical results of the semicarbazides 5a and 5b see Table 1, for their spectroscopic data Tables 1 and 2.

Cyclization of the Thiosemicarbazide Derivatives in Alkaline Medium. Preparation of 5-Alkyl-3-(4-substituted-3-mercapto-4H-1,2,4-triazol-5-yl)-4-oxo-1,4-dihydropyridines (6a-c).

A solution of 1-(5-alkyl-4-oxo-1,4-dihydro-3-pyridinecarbonyl)-4-substituted thiosemicarbazide (3c,3f,3g) (0.01 mole) and sodium hydroxide (0.012 mole) in water (50 ml.) was stirred at 90-95° for two hours, then the light yellow solution was filtered and acidified with 1:1 hydrochloric acid to pH=4-5. After chilling the separated white crystalline material was filtered and washed with water.

For the physical data of the obtained compounds (6a-c) see Table 3, for their spectroscopic data Tables 3 and 4.

Preparation of 5-Alkyl-3-(4-substituted-3-methylmercapto-4H-1,2,4-triazol-5-yl)-4-oxo-1,4-dihydropyridines (7a-c).

A mixture of 5-alkyl-3-(4-substituted-3-mercapto-4H-1,2,4-triazol-5-yl)-4-oxo-1,4-dihydropyridine (6a-c) (0.01 mole), methyl iodide (0.011 mole),

anhydrous potassium carbonate (0.011 mole) and methanol (100 ml.) was stirred on a steam bath for two hours. The solution was filtered and evaporated to dryness under vacuum. The residue was dissolved in water (100 ml.), and extracted with three 50 ml. portions of methylene chloride. The organic extracts were dried over sodium sulfate, and evaporated. The viscous, resinous, colourless residue was crystallized from the solvent given in Table 3. For the yields, m.p. and analytical data of the S-methyl derivatives (7a-c) see Table 4.

The results of the uv, ir and nmr studies are summarized in Tables 5 and 6.

Preparation of 5-Butyl-4-oxo-3-(5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)-1,4-dihydropyridine (8).

A mixture of 1-(5-butyl-4-oxo-1,4-dihydro-3-pyridinecarbonyl)-semicarbazide (5a) (0.01 mole) and 10% sodium hydroxide solution (40 ml.) was stirred at 90-95° for 10 hours. The yellow solution was filtered and acidified with 1:1 hydrochloric acid under cooling to pH=3. After dilution with water (60 ml.) the mixture was allowed to stand at 4° overnight, then the separated yellow crystals were filtered off and washed with water. In this manner 2.0 g. (yield, 85.5%) of the cyclized product (8) melting above 300° was obtained, and recrystallized from dimethyl formamide; uv (96% ethanol): λ max ($\log \epsilon$) 303 (3.89) 231 (4.02); ir (potassium bromide): ν C=0 (ring) 1750, 1655 cm⁻¹; nmr (trifluoroacetic acid): 9.13 (C₂-H, bs), 8.54 (C₆-H, bs), 0.75-1.20 (C₅-CH₂(CH₂)₃-CH₃, m), 1.25-2.05 (C₅-CH₂(CH₂)₂-CH₃, m), 2.95 (C₅-CH₂(CH₂)₂-CH₃, t, J = 7.5 Hz). Anal. Calcd. for C₁₁H₁₄N₄O₂ (234.259): C, 56.40; H, 6.02; N, 23.92. Found: C, 56.25; H, 5.98; N, 23.73.

Acknowledgements.

We are indebted to István Remport and his co-workers for the elemental analyses and to Dr. Gábor Kulcsár and his team for the antimicrobial testing.

REFERENCES AND NOTES

- (1) M. Balogh, I. Hermecz, Z. Mészáros, K. Simon, L. Pusztay, G. Horváth and P. Dvortsák, in press.
- (2) M. Balogh, I. Hermecz, Z. Mészáros, and K. Horváth, P. Dvortsák, in press.
- (3) G. Griss, H. Machleidt, R. Engelborn and S. Püschmann, German Offen. 1,620,505: Derwent System 00578 R-B.