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ABSTRACT - The reaction of several  carbohydrate-derived alkoxgaldehydes with 
methoxycarbonylmethylen~riphenglphosphorane' af fords ~,B -unsaturated esters  

• wi th  Z - s t e reos~ l ec t i v i t y .  The s t e r e o s ~ e c t i v i t y  depends on the  subs tra te  
s t ruc ture  and t h e  nature of the  solvent  used. 

a 1 As a par t  of our syn the t i c  s tudies  on na tura l ly  occurr ing ~B-unsa tu ra ted -6 -1ac tones  , the  s t e reose lec t ive  

synthes is  of Z - a , B - u n s a t u r a t e d  e s t e r s  was needed.  The a , B - u n s a t u r a t e d  es te r s  a re  useful  syn the t i c  i n t e r -  

media tes  as Michael accep to r s  2 and as precursors  of allylic alcohols 3 and the re  is a necess i ty  of obtaining 

them s te reose lec t ive ly .  Both the  Witt ig 4 and the  Wi t t ig -Horner  5 reac t ion  using a lkoxycarbonylphosphoranes  

or phosphonates  genera l ly  yield the  4 , B - u n s a t u r a t e d  e s t e r s  with E-conf igura t ion  and the re  a re  only a few 

methods  which af ford  the  Z - i somer .  The b is ( t r i f luoroethyl )phosphone  es te r  1 have been used to obta in  di-  

and t r i - s u h s t i t u t e d  a ,B - u n s a t u r a t e d  e s t e r s  with good s te reose lec t iv i ty  6 and ethyl  a - (d ime thy lphosphono)  

propionate (2) also gave pr imar i ly  the  Z - i somers  7. It has  been recent ly  shown using long-cha in  alkyl 

derivatives of t hese  phosphonocarboxyla tes  tha t  the  s t e reose lec t iv i ty  s t rongly  depends on the  na tu r e  of the  

subs t i tuen t  in the  a - p o s i t i o n  8. A four s tep  sequence  has  also been used 11c to prepare  a , B - u n s a t u r a t e d  

es te rs  with good Z- s t e r eose l ec t iv i ty ,  a l though the  overall yield is not encouraging.  We now report  on the  Z -  

s t e reose lec t iv i ty  of the  reac t ion  of ca rbohydra te -de r ived  alkoxyaldehydes with me thoxyca rbony lme thy l ene  

phosphorane 9 in methanol  at  room t e m p e r a t u r e .  The a , B - u n s a t u r a t e d  e s t e r s  thus  prepared  are  being used as 

precursors  of h igher -o rder  ca rbohydra tes  10. Methanol  has  been used occas ional ly  as a solvent in the  Witt ig 

rect ion of s tabi l ized ylides 11 but i ts  inf luence on the  reac t ion  s t e reose lec t iv i ty  has  not  been inves t iga ted .  

H R 0 _R(CH3 ) 
(CF3CH20) P ~ (CH302)P . 

C02CH3 C02CH2CH 3 

1 2 

RESULTS AND DISCUSSION 

The reac t ion  of the  a lkoxyaldehydes  4 with 3 molar equivalents  of m e t h o x y c a r b o n y l m e t h y l e n e -  

t r iphenylphosphorane (3) in methanol  a t  room t e m p e r a t u r e  gave the  corresponding %B - u n s a t u r a t e d  e s t e r s  in 
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good yield. Reaction times were generally short with the exception of aldehyde 4a probably due to the fact 

that this compound exists mainly in the hydrated form. (see S c h e m e ) .  The results are summarized in Table 1. 

SCHEME 

Ph3P =CH--CO2CH 3 4- R - C H O  

3 4 

CH3OH (solvent) 
> 

r,t. 

CO2CH 3 

H H 

(Z  and E isomers) 

Table 1. Reaction conditions for the Wittig condensation of aldehydes 19 4 and the phosphorane 3. 

Reaction Overall Ratio a 
Product time (hours) yield (%) Z/E R (Reference) 

7-0 
5a 24 77 11 : 1 o i (1) 

~CH2Ph 

5b I 70 7 : 1 (16) 

5e 0.75 82 4.3 : 1 (17) 

CH30 

5d 2.25 88 5 : 4 (21) 

5e 2 82 3.7 "- 1 PheH2~ (22) 
) , , .  

PhCH2~ O 
5f 3 78 100 : I b (16) 

CH2CH 3 

5g 2 76 90 : 1 

5h 4 80 20 : 1 

PhCO/_?~t~ ( 16 ) 
CH2CH3 

° ~ . L _  (18) 
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Table I. (cont . )  

1 92 1 : 3.5 

5j 1.5 73 1 : 1.7 

o~° ° (~6) 
MeButs| CH2CH 3 

...... o (16) 
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a The i somers  ratio was de t e rmined  by isolat ion of the  products ,  except  in the  reac t ion  of a ldehyde  4b, 

which was de t e rmined  by 1H-NMR and 13C-NMR. In the  reac t ion  of 4g, the  E - i somer  of 5g was d e t e c t e d  

in a minor f rac t ion  of the  f lash  ch roma tog raphy  of the  reac t ion  crude,  along with the  Z - i s o m e L  The 

analysis  of the  1H-NMR spec t rum of this  f rac t ion  al lowed to e s t i m a t e  the  amoun t  of the  E - i somer  

fo rmed  in this  react ion.  
b 

The E- i somer  was not de t ec t ed  in this  react ion.  It was prepared  by the  reac t ion  of 4f  with 3 in to luene  

solution.  

The s t e t eose l ec t iv i ty  of the  process  s eems  to s t rongly  depend on the  s t r u c t u r e  of the  s t a r t i ng  

alkoxyaldehyde.  With acycl ic  a ldehydes  (4a-4e)  the  s t e reose lec t iv i ty  ranged from modera t e  to good. In the  

case  of hexopiranosides  0_Zs-subst i tuted relat ive to the  formyl  group (4f -4h)  the  se lec t iv i ty  was exce l len t .  

When the  alkoxy subs t i tuen t  was ~y tans -o r ien ta ted  relat ive to the  formyl  group (4i), t he  s t e reose lec t iv i ty  

was only modera t e  but reversed with respec t  to the  previous cases .  The reac t ion  of 4j, in which posi t ion 4 

is unsubs t i tu t ed ,  did not  show any s te reose lec t iv i ty ,  but  even in these  las t  two cases ,  t he re  were a clear  

depar ture  f rom the  E-s t e reose lec t iv i ty  expec ted  when working in an inert  solvent.  

The s te r ic  course  of the  reac t ion  also depends  on the  solvent,  as indica ted  by the  reac t ion  of 

a ldehyde 4f with 3 in to luene  at room t e m p e r a t u r e  to give a 1:1 mixture  of Z and E i somers  in 62% yield. 

The use of large volumes of methanol  and longer reac t ion  t imes  resul ted  in the  addit ion of methanol  to the  

double bond. Thus when a ldehyde (4h) (1 retool) was t r e a t e d  with th ree  molar equivalents  of 3 in methanol  

(10 mL) at room t e m p e r a t u r e  for 24 h, compound 6 (only one d ia s t e reomer ,  no s t e r e o c h e m i s t r y  ass igned)  

was obta ined in 60% yield. The use  of anhydrous  methanol  (4 mL per mmol of a ldehyde)  s eems  to be 

neces sa ry  to a t t a in  high yield and good s te reose lec t iv i ty  s ince  the  p resence  of smal l  a m o u n t s  of water  

resul ted  in the  lowering of both yield and s te reose lec t iv i ty .  The e f f ec t  of e thanol  and isopropanol as solvents 

and the  inf luence  of the  t e m p e r a t u r e ,  

Table  2. Conditions for the  reac t ion  of 4h and 3 were also inves t iga ted  in the  reac t ion  

of the  a ldehyde 4h with 3, and the  

r e su l t s  a re  summar ized  in Table 2. All 

Solvent t e m p e r a t u r e  yield (%) Z/E ratio these  expe r imen t s  were car r ied  out  for 

24 h, the  conversion being prac t ica l ly  

Isopropanol 25QC 56 10 : 1 quant i ta t ive  (1H-NMR evidence)  and both 

Ethanol  25°C 48 22 :1  yield and isomer  rat io were de t e rmined  

Methanol  0gC 60 35 : 1 by g.l.c. Apparent ly ,  isopropanol and 

Methanol  -8~C 68 > 100 : I e thanol  are not as convenient  as 

methanol ,  t he  reac t ion  ra te  being slower 

and the  yield lower when using t he se  

solvents.  The s t e reose lec t iv i ty  in e thanol  

is s imilar  to tha t  in methanol .  As expec ted ,  the  s t e reose lec t iv i ty  in methanol  inc reased  as t e m p e r a t u r e  

dec reased  but the  reac t ion  t i me  was much  longer.  In one case  (4e) the  reac t ion  has  been car r ied  out  in 

th ree  d i f fe ren t  solvents (se.e T~zb£e 3J;  the  h ighes t  yield of Z - i s o m e r  was obta ined  in methanol  as expec ted .  

In general ,  the re  are  two main fac tors  which can inf luence  the  final resul t  of the  Wittig 

react ion;  the  na tu re  of the  ylide (stabil ized or nonstabi l ized) and the  solvent,  in nonpolar  aprot ic  solvents ,  

s tabi l ized ylides s t e reose lec t ive ly  yield the  E-olef in ,  while nonstabi l ized ylides yield the  Z-olef in .  The 

in t e rmed iacy  of be ta ines ,  oxaphosphe tanes  and zwi t te r ious  has  been proposed 12. The p resence  of o x a -  
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Table  3. Conditions for the  reac t ion  of 40 and 3 

Solvent t e m p e r a t u r e  yield (%) Z/E ratio 

Methanol  r . t .  82 3.7 : 1 

Toluene  r.t .  81 1 : 1 

Dich lo romethane  r.t .  80 1 : 2 

phosphe tanes ,  in the  case  of nonstabi l ized ylides,  has  been 

recent ly  proved by NMR spec t roscopy  12, and zwit ter ious  has  been 

pos tu la ted  13 as i n t e r m e d i a t e s  tha t  would explain the  high E -  

s t e reose lec t iv i ty  observed for stabil ized ylides. 

C H 3 0  ~ R 

6 R = C 0 2 C H  3 

7 R ----. C H 2 0 H  

As indica ted  previously,  the  Witt ig reac t ion  of stabil ized ylides in methanol  as solvent 11 has  been 

occasional ly  carr ied  out.  In all the  repor ted cases  it is observed a depar ture  of the  s t a t ed  rule which would 

predic t  high E - s t e r eose | e c t i v i t y  of the  olefin f o r m e d , a n d  considerable  amoun t s  of Z-o le f in  has  always been 

obta ined.  

F u r t h e r m o r e ,  the  prevailing s te reose lec t iv i ty  is Z when, besides  using methanol  as solvent ,  the re  is 

an alkoxy group at the  carbon a tom I~ to the  carbonyl  group. Apparent ly  both fac to r s  con t r ibu te  to increase  

the  Z - s t e r eose l ec t i v i t y  of the  reac t ion  (.see 4 f -4h) .  

To explain those  resul ts  we a s sume  tha t ,  in the  Wit t ig  condensa t ion  of stabil ized ylides in methanol  

as solvent,  the  " a n t / "  be ta ine  is par t ia l ly  stabil ized through solvation; confo rmers  such as "A"  can be 

H 

Ph3~ ! ~C02Et 
A 

.@ 
_o. /°..._o,'~ ~ 

pos tu la ted  l l d ' 2 0  and these  would undergoe  syn-elimination to a f ford  c.Ls-olefins such as it is exper imenta l ly  

exper imen ta l ly  observed. 

The p resence  of a B-alkoxy subs t i t uen t  can enhance  this  mechan i sm through the  par t ic ipa t ion  of 

the  alkoxy group in the  solvation phenomena ,  as indica ted  in "B" for the  case  of I~-a lkoxy-hexenopyranosi -  

des.  

EXPERIMENTAL 

Column ch roma tog raphy  was pe r fo rmed  on si l ica gel 60, 70-230 mesh  (Merck) .  T.l .c .  was carr ied 

out on p la tes  of si l ica gel 60F254 (Merck).  1H- and 13C-NMR spec t r a  were measu red  for CDCI 3 solutions 

with a Varian XL-300 (300 MHz) and a Brficker WP-80 (20 MHz) s p e c t r o m e t e r ,  respect ively.  M.p.s. were 

de t e rmined  on a Kofler  h o t - s t a g e  appara tus  and are  uncor rec ted .  Optical  rota t ions  were de t e rmined  with a 

Perk in-Elmer  141 po la r imete r .  

Wittig reaction of alkoxyaldehydes 4 with methoxycarbonylm~hylenetriphenylphosphorane (5). General 

procedure. 

The alkoxyaldehyde 4 (1 retool) in anhydrous  methanol  (4 mL) was t r e a t e d  with me thoxycarbony l -  

methy lene t r iphenylphosphorane  (3 equivalents)  and the  mix ture  s t i r r ed  at  room t e m p e r a t u r e  for the  t ime 

indica ted  in Table 1. The solvent  was then  evapora ted  under vacuum and the  residue was dissolved in the 
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minimum amount of methylene chloride and directly transformed to the head of a flash-chromatography 

column 12. The column was eluted with hexane:ethyl  acetate mixtures in the proportions required to place 

the fastest moving product at Rf 0.25 in an analytical t.l.c, plate; in all cases the two isomers (Z and E) 

were easily separated, except compounds 5b (see below). The configuration of the olefinic double bond 
was assigned based on 1H-NMR spectral data. 

Compounds 5a.- From 4a and ]. Z-Isomer (thick oil), 1a[20+32-0 (e 0.9, 1H-NMR chloroform). 

data: 6 1.35 (3H, s), 1.42 (3H, s), 3.70 (3H, s), 3.95 (2H, d, J 5 Hz), 4.27 (1H, m), 4.48 (1H, d, J 12 Hz), 

4.67 (1H, d, .1 12 Hz), 5.19 (1H, dd, J 8 Hz, 4 Hz), 5.90 (1H, d, J 11 Hz), 6.20 (1H, dd, J 11 Hz, 4 Hz), 
7.30 (5H, s). 13C-NMR data: 6 25.6, 26.2, 51.5 (q each), 65.3 (t), 71.5 (t), 74.4 (d), 77.7 (d), 109.8 (s), 

123.1, 127.6, 127.8,128.3 (d each), 138.1 (s), 146.2 (d), 166.1 (s). (Found: C, 67.02; H, 7.29. Calcd. for 

C17H2205: C, 66.67; H, 7.19). 
E-Isomer: M.p. 48-50-0C (hexane), l a l~  ° +28 °- (e 1.3, chloroform). 1H-NMR data: 6 1.30, 1.35, 

3.72 (3H, s each), 3.80-4.70 (6H, m), 6.10 (1H, d, J 15 Hz), 6.85 (1H, dd, J 15 Hz, 6 Hz), 7.30 (5H, s). 

13C-NMR data: 6 25.1, 26.3, 51.7, (q each), 65.3 (t), 71.5 ( t) ,  76.7 (d). 78.2 (d), 109.8 (s), 124.0, 127.8, 

127.9, 128.5, 137.6, 143.8 (d), 166.2 (s). (Found: C, 66.59; H, 7.28). 

Compounds 5b.- From 4b and 3. The Z- and E-isomers could not be separated and the isomers 

ratio was determined by 1H- and 13C-NMR spectroscopy. Z-Isomer, 1H-NMR data: 6 5.90 (d, J 11 Hz), 

6.05 (d, J 11 Hz). E-Isomer, 1H-NMR data: 6 6.20 (dd, J 15, 2 Hz), 6.85 (dd, J 15, 6 Hz). 

Compound 5e.- From 4e and 3. Z-Isomer (thick oil), [al2D0 +103-0 (e 0.3, chloroform), 1H-NMR 

data: 6 1.33 (6H, s), 1.48 (3H, s), 1.50 (3H, s), 3.56 (2H, s), 3.78 (3H, s), 4.06 (1H, dd, J 7.8, 1 Hz), 4.32 

(1H, dd, J 4.9, 2.6 Hz), 4.55 (2H, m), 5.59 (1H, d, J 4.9 Hz), 5.86 (1H, d, J 4.9 Hz), 6.04 (1H, dd, J 11.5, 

3 Hz), 6.10 (1H, dd, J 11.5, 3 Hz). (Found: C, 57.55; H, 7.00. Calcd. for C17H2408: C, 57.30; H, 6.79). 
E-Isomer, (thick oil), la[2o ° -31 °- (e 0.3, chloroform). 1H-NMR data: 6 1.25, 1.34, 1.46, 1.49 

(3H, s each), 3.50 (1H, m), 3.70 (1H, m), 3.75 (3H, s), 3.81 (1H, m), 4.05 (1H, dd, J 7.9), 1.4 Hz), 4.33 

(1H, dd, J 5, 2.6 Hz), 4.58 (1H, dd, J 7.9, 2.6 Hz), 5.59 (1H, d, J 5 Hz), 6.24 (1H, dd, J 15.5, 1.1 Hz), 

6.89 (1H, dd, J 15.5, 5.5 Hz). (Found: C, 57.41; H, 6.81). 

Compound 5(I.- From 4(I and 3. Z-Isomer, (thick oil), [a[2D0 -37 -0 (e 0.2, chloroform). 1H-NMR 

data: 6 1.30 (6H, s), 1.45 (3H, s), 1.51 (3H, s), 3.05 (2H, m), 3.45 (3H, s), 3.80 (3H, s), 3.80 (2H, m), 

4.25 (2H, m), 4.55 (1H, dd, J 7.5, 1.0 Hz), 5.60 (1H, d, J 4.5 Hz), 5.75 (1H, dt,J 10.5, 1.0 Hz), 6.40 (1H, 

m). (Found: C, 58.93; H, 7.73. Caled. for C19H3008: C, 59.05; H, 7.82). 
E-Isomer, (thick oil), 1~I2D ° -61 ° (e 0.2, chloroform). 1H-NMR data: 6 1.30 (6H, s), 1.43 (3H, s), 

1.49 (3H, s), 2.55 (2H, m), 3.45 (3H, s), 3.70 (3H, s), 3.70 (2H, m), 4.25 (2H, m), 4.60 (1H, dd, J 7.5, 

1.0 Hz), 5.60 (1H, J 4.5 Hz), 5.93 (dt, J 15.0, 1.0 Hz), 7.06 (1H, m). (Found: C, 59.00; H, 7.91). 

Compound 5e.- From 4e and 3. Z-Isomer, (oil), [a[2D 0 +36 -0 (e 0.6, chloroform), 1H-NMR data: 6 

1.33 (3H, d, J 6.0 Hz), 3.70 (3H, s), 4.46 (2H, s), 5.15 (1H, m), 5.80 (1H, d, J 12.6 Hz), 6.20 (1H, dd, J 
12.0, 8.0 Hz), 7.30 (5H, s). 

E-Isomer, (oil), I~1~ -44 -0 (e 0.2, chloroform). 1H-NMR data: 6 1.30 (3H, d, J 6.0 Hz), 3.75 

(3H, s), 4.10 (1H, m), 4.50 (2H, q, J 12 Hz), 6.00 (1H, d, J 15.0 Hz), 6.90 (1H, dd, J 15.0, 5.0 Hz). 

Compound 5f.- From 4f and 3. Z-Isomer, (thick oil), [c~] 20 -255 -0 (c 0.2, chloroform). 1H-NMR 
D 

data: 6 1.22 (3H, t, J 6 Hz), 3.53 (1H, m), 3.70 (3H, s), 3.77 (1H, m), 4.05 (1H, dd, J 5.2, 2.8 Hz), 4.51 

(1H, d, J 12.1 Hz), 4.58 (1H, d, J 12.1 Hz), 5.08 (1H, dd, .] 3.1, 0.8 Hz), 5.49 (1H, m), 5.93 (1H, dd, 

J 12, 1.6 Hz), 5.98 (1H, dd, J 10, 3.1 Hz), 6.11 (1H, ddd, J 10, 5.2 Hz), 6.44 (1H, dd, J 12, 7 Hz), 7.29 
(SH, s). 13C-NMR data: 615.2 (q), 51.3 (q), 63.8 (t), 68.5 (d), 68.9 (d), 71.2 (t), 93.9 (d), 120.0, 127.1, 

127.7, 127.9, 128.3, 129.3 (d), 138.5 (s), 147.3 (d), 166.0 (s) ppm. (Found: C, 68.09; H, 7.02. Calcd. for 

C18H2205: C, 67.91; H, 6.97). 

E-Isomer, (thick oil), [a]2D0 -161-0 (e 0.5, chloroform). 1H-NMR data: 6 1.18 (3H, t, J 6 Hz), 
3.27-3.60 (3H, m), 3.70 (3H, s), 4.47 (2H, s), 4.70 (1H, m), 5.07 (1H, d, J 2 Hz), 5.99 (2H, m), 6.20 (1H, 
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dd, J 16, 3 Hz, 7.00 (1H, dd, J 16, 5 Hz), 7.27 (5H, s). 13C-NMR data: 6 15.3 (q), 51.6 (q), 64.0 (t), 68.5 

(d),69.8 (d), 70.8 (t), 94.1 (d), 121.6, 126.8, 127.8, 127.9, 128.5,129.8, 144.7 (d), 166.8 (s) ppm. (Found: C, 

68.16; H, 7.21). 

Compound 5g.- From 4g and 3. Z-Isomer, m.p. 80-82-°C (hexane), [a I2D 0 -300-o (e 0.3, chloro- 

form): 1H-NMR data: 6 1.20 (3H, t, J 6 Hz), 3.70 (3H,s), 3.45-3.90 (2H, m), 5.08 (1H, d, J 2 Hz), 5.30 

(4H, m), 5.89 (1H, dd, J 11.8, 1.6 Hz), 6.34 (1H, dd, J 11.8, 7 Hz). 13C-NMR data: 6 15.2 (q), 51.5 (q), 

64.0 (t), 65.2 (d), 66.9 (d), 93.8 (d), 121.1, 125.6, 128.3, 129.7, 130.0, 130.5, 133.0, 145, 165.7 ppm. (Found: 

C, 65.02; H, 6.11. Calcd. for C18H2006: C, 65.05; H, 6.07. 
The E-isomer could not be purified. 

2 0  o Compound 5h.-, ,20 From 4h and 3. Z-Isomer, I [131 -136- (c 0.5, chloroform), lit. 15 [al2D 0 -135.7 -0 . 
5 la 120 o E-Isomer: l a l~ .  -140-o (e 0.6, chloroform), lit. 135.7-. D 

20 Compound 5i.- From 4i and 3. Z-Isomer, (thick oil), I I D +80-0 (c 0.7, chloroform). 1H-NMR 

data: 6 0.10 (6H, s), 0.90 (9H, s), 1.28 (3H, t, J 6 Hz), 3.51 (1H, m), 3.73 (3H, s), 3.86 (1H, m), 4.03 (1H, 

m), 4.98 (1H, d, J 1.3 Hz), 5.39 (1H, m), 5.72 (1H, ddd, J 10.2, 5.6, 2.5 Hz), 5.89 (1H, ddd, J 10.2, 2.7, 

1.3 Hz), 6.00 (1H, d, J 11 Hz), 6.05 (1H,dd, J 11, 7 Hz). 13C-NMR data:6-4.6,-4.4, 15.2 (q each), 17.9 (s), 

25.6 (2C, q), 25.7 (q), 51.4 (q), 63.8 (t), 67.1 (d), 68.2 Ca), 93.9 (d), 123,9 (d), 125.7 (d), 139.1 (d), 143.4 

(d), 168.0 (s) ppm. (Found: C, 59.70; H, 8.62. Calcd. for C17H3005Si: C, 59.61; H, 8.83). 
(thick oil), I c~[20 +43 -o (e 0 2, chloroform). 1H-NMR data: 6 0.10 (6H, s), 0.93 (9H, E-Isomer 

s), 1.25 (3H, t, J 6 Hz), 3.52 (1H, m), 3.78 (3H, s), 3.76-3.99 (1H, m), 4.01 (1H, m), 4.34 (1H, 

(1H, d, J 2.4 Hz), 5.74 (1H, ddd, J 10.1, 4.6, 2.4 Hz), 5.89 (1H, ddd, J 10.1, 2.5, 1.2 Hz), 6.17 

J 15.8, 2 Hz), 7.13 (IH, dd, J 15.8, 4.3 Hz). 13C-NMR data: 6-4.7, -4.4, 15.4 (q each), 18.0 (s), 

q), 51.5 (q), 64.2 (t), 68.3 (d), 70.4 (d), 94.4 (d), 121.0 (d), 125.9 (d), 134.2 (d), 145.4 (d), 166.8 

(Found: C, 59.70; H, 8.62). 

m), 5.04 

(1H, dd, 

25.7 (3C, 

(s) ppm. 

Compound 5j.- From 4j and 3. Z-lsomer, (thick oil), [a[20 +11Q (c 0.7, chloroform). 1H-NMR 

data: 6 6.02 (1H, d, J 12.2 Hz), 5.89 (1H, d, J 12.2 Hz), 5.54 (1H, d, J 3.1 Hz),5.26 (1H, dd, J 5.2 1 Hz),4.36 

(1H, broad s), 4.23 (1H, m), 3.77 (3H, s), 1.62 (1H, broad s), 1.46 (3H, s). (Found: C, 56.64; H, 6.24. 

Calcd. for C12H606: C, 56.24; H, 6.29). 
E-Isomer, (thick oil), 1~I2D 0 +27-o (¢ 0.2, chloroform). 1H-NMR data: 6 1.42 (3H, s), 1.43 (3H, 

s), 3.77 (3H, s), 4.28 (1H, m), 4.45 (1H, broad s), 4.80 (1H, dd, J 5.4, 1.4 Hz), 5.64 (1H, d, J 3.1 Hz), 

6.35 (1H, d, .I 15.4 Hz), 6.98 (1H, d, J 12.2 Hz). 13C-NMR data: 6 24.5, 25.0, 26.0 (2C), (q each), 36.1 ( t ) ,  

51.5 (q), 59.2 (q), 64.7 (d), 70.6 (d), 71.0 (2C, d), 77.7 (d), 96.6 (d), 108.6 (s), 109.3 (s), 171.8 (s). 

(Found: C, 56.42; H, 6.04). 

Compound 6.- Treatment of 4f (1 mmol) with 3 (3 mol equiv.) in methanol (10 mL) at room 

temperature for 24 h, gave 6, 460%). 1H-NMR data: 6 1.34, 1.36, 1.48, 1.57 (3H, each, s), 2.61 (1H, dd, 

J 16, 6 Hz), 2.80 (1H, dd, J 16, 3Hz), 3.53 (3H, s), 3.74 (3H, s), 3.87 (1H, ddd, J 7.8, 6, 3 Hz), 3.93 (1H, 

dd, J 7.5, 2.1 Hz), 4.27 (1H, dd, J 7.9, 2.1 Hz), 4.30 (1H, dd, J 5.1, 2.1 Hz), 4.58 (1H, dd, J 7.5, 2.1 Hz), 

5.60 (1H, d, J 5.1 Hz). 13C-NMR data: 6 24.5 (q),25.0 (q),26.0 (2C, q), 36.1 (t), 51.5 (q), 59.2 (q), 69.7 

(d), 70.6 (d), 71.0 (2C, d), 77.7 (d), 96.6 (d), 108.6 (s), 109.3 (s), 171.8 (s) ppm. (Found: C, 55.17; H, 7.51. 

Calcd. for C16H2608: C, 55.48; H, 7.57. 

Compound 4d.- The ester 6 (397 rag, 1.1 retool) in THF (8 mL) was treated with LiAIH 4 (195rag, 

5.0 retool) in THF (10 mL) with stirring and under argon at 0°C. The mixture was allowed to reach room 

temperature. After 4 hours the reaction was cooled again to 0°C and a saturated solution of Na2SO 4 in 

water was added. The solids formed were eliminated by filtration through celite and the filtrates were 

extracted with CH2CI2/MeOH. Evaporation of this solvent left a residue which was subjected to short colum 

chromatography. Compound 7 (362 rag, 99% yield) was isolated. Compound 7 was a thick oil, [~1 22 -80 ° 

(c 0.5, chloroform). 1H-NMR data: 6 1.30 (6H, s), 1.40 (3H, s), 1.50 (3H, s), 1.90 (2H, m), 3.48 (3H, s), 

3.75 (3H, m), 4.10 (1H, m), 4.25 (1H, m), 4.55 (1H, dd, ] 6 Hz, 1.0 Hz), 5.53 (1H, d, J 5.0 Hz). 
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Without further characterization this alcohol was subjected to PCC oxidation in the presence of 

4 ~  molecular sieves to afford compound 4d (83% yield). Compound 4d was a thick oil, l al2D 2 -82g (c 0.4, 

chloroform). 1H-NMR data: 6 1.28 (6H, s), 1.42 (3H, s), 1.50 (3H, s), 2.73 (2H, m), 3.40 (3H, s), 3.93 (1H, 

m), 4.27 (2H, m), 4.57 (1H, dd, J 6 Hz, 1 Hz), 5.54 (1H, d, J 5.0 Hz). 
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