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Figure 1. ORTEP drawing of [(Cdr,)(PPh,)Ir(l12-NCC$I,C1)] (2a). 
Hydrogen atoms have been omitted for clarity, and phenyl groups 
are depicted schematically. 

The stability of 2a and 2b and their mode of formation 
strongly support a product which would result from formal 
oxidative addition of an Ir(1) 16-electron fragment to the 
CN triple bond, thereby generating an Ir(II1) Ir-C=N 
metallacycle, rather than simple r-complexation of E. nitrile 
to a metal center. The nitrile ligands of 2a and 2b are not 
easily displaced. In contrast, the nitrile ligand of the 
side-bonded nitrile complex (PP~,) ,P~(T-CF,CN)~ is 
readily displaced by CO and diphenylacetylene at room 
temperature. The only side-bonded nitrile complexes 
comparable to 2a and 2b are molybdenocene nitrile com- 
plexes4 for which no crystallographic study is available to 
confirm their structure. 

An X-ray diffraction study was undertaken of compound 
2a,1° which established the nitrile ligand to be side-bonded 
to the Ir (Figure 1). The Ir-C(6) bond length is 2.11 (2) 
A, which is the expected length for an Ir(II1)-C bond;"J2 
the Ir-N bond distance is 2.17 (2) A which represents a 
long Ir-N single b ~ n d . ' ~ , ' ~  The C(6)-N bond distance is 
1.23 (3) A, which represents a lengthening of 0.08 A relative 
to that of the free nitrile. No structural information is 
available to compare this C-N bond distance with other 
side-bonded nitrile complexes; a number of acetylene 
v2-complexes have been structurally characterized and are 
observed to undergo large reductions in the C-C stretching 
frequencies and accompanying lengthening of the C--C 
bond.I4J5 The average increase in the C-C bond length 
on coordination is 0.08 A. The lengthening observed for 
the C-N distance of 2a is of the same magnitude, sug- 
gesting a similar reduction in the bond order. 

- 

(10) Crystal data for 2a: C80H24ClIrNP: M ,  657.1; yellow-brown 
parallelpiped; orthorhombic; space group Pcan (standard setting, P ~ c R ) ;  
a = 10.638 (2) A, b = 14.298 (3) A, c = 33.310 (5) A; V = 5066 A3; Z = 
8; D(calcd) = 1.72 g emd. A total of 4254 unique reflections were collected 
of which 2495 were considered observed (I > 3 4 )  and were used in 
subsequent calculations (Hliber diffractometer built by Professor C. E. 
Strouse of this department; Mo Ka radiation; graphite monochromator; 
h = 0.7107 A; 8-28 scan; 0 < 28 < 54O; p = 5.733 em-'). The structure was 
solved by the heavy-atom method using SHELX 76. In the final least- 
squares cycle, baaed on F, 307 parameters were refined including posi- 
tional and anisotropic thermal parameters for one Ir, 30 C, one C1, one 
N, and one P. Refinement is currently at R = 0.077 and R, = 0.086. The 
goodness of fit is 2.26. 

(11) Restivo, R. J.; Ferguson, G.; Kelly, L. T.; Senoff, C. V. J.  Orga- 
nomet. Chem. 1975,90, 101. 

(12) Diversi, P.; Ingrosso, G.; Lucberini, A.; Porzio, W.; Zocchi, M. J. 
Chem. SOC., Chem. Commun. 1977, 811. 

(13) Van Raar, J. F.; Meii, R.: Olie, K. Cryst. Struct. Cornrnun. 1974, 
3, 587. 

(14) Cobbledick, R. E.; Einstein, W. B.; Farrell, N.; Gilchrist, A. B.; 
Sutton, D. J. Chem. SOC., Dalton Trans. 1977, 373. 

(15) Fachinetti, G.; Floriani, C.; Marchetti, F.; Mellini, M. J. Chern. 
SOC., Dalton Trans. 1978, 1398. 

(16) Otsuka, S.; Nakamura, A. Adu. Organornet. Chem. 1976,14,245. 

From the intramolecular mode of formation of the nitrile 
complexes 2a and 2b, and their great chemical stability 
when compared to other side-bonded nitrile complexes, it 
appears that 2a and 2b are best described as formal Ir(II1) 
metallacycles. 
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Summary: Depending on the experimental conditions, 
reaction of [ Ph,P] [HFe(CO),] (1) with phenyldichloro- 
phosphine leads quantitatively either to the stable sec- 
ondary halophosphine complex PhP(H)CIFe(CO), (2b), or 
to the first nonhindered side-on and end-on diphosphene 
complex [Fe(CO),[p-Fe(CO),](PPh),] (5), or to the first 
trimetallic anionic diphosphane species [Ph,P] [Fe- 
(CO),] ,P,Ph,H] (7). X-ray diffraction study confirms the 
structure of 5. Addition of [Et,N][HW(CO)i] to the di- 
phosphene complex 5 affords another mixed trimetallic 
anionic diphosphane compound [Et,N] [ [Fe(CO),] ,W- 

Recently, a number of publications described the re- 
activity of carbonylmetalate dianions Na2[M2(CO)lo] (M 
= Cr, Mo, or W) or NazFe(CO)4 with RPC1, leading to a 
variety of phosphinidene, [ (C0)5M]2PR, or diphosphene 
complexes, [(CO),M],RP=PR (n = 1 or 2), depending on 
the experimental conditions and the steric hindrance of 
R.1'2 

To our knowledge, no similar work has been devoted to 
the reactivity of anionic hydridocarbonylmetalate 
[PPh,] [HFe(C0)4] (1) with dichlorophosphines. We have 
since begun to investigate this reaction, and in this paper 
we report (i) a simple one-step quantitative synthesis of 
stable secondary halophosphine complexes RP(H)ClFe- 

(CO),P,Ph,Hl (8). 

t Laboratoire de Chimie de Coordination. * Laboratoire de SynthBse. 
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Figure 1. ORTEP view of [Fe(C0)4[~-Fe(CO),](PPh), (5). Bond 
distances (A) and angles (deg) of interest: Fe(l)-P(l), 2.389 (1); 
Fe(l)-P(2), 2.354 (1); Fe(2)-P(2), 2.267 (1); P(l)-P(2), 2.139 (2); 
P(l)-Fe(l)-P(2), 53.60 (4); Fe(l)-P(l)-P(2), 62.36 (4), Fe(1)-P- 
(2)-Fe(2), 127.72 (5);  Fe(l)-P(2)-P(l), 64.05 (5), Fe(2)-P(2)-P(l), 
133.29 (7). 

(CO), (2), (ii) an original mode of formation of a new 
side-on and end-on nonhindered diphosphene complex 5 
which is fully characterized by spectroscopic and X-ray 
crystallographic studies, and (iii) the preparation of the 
first trimetallic anionic diphosphane species [Ph4P]- 
[ [ (C0)4Fe13P2Ph2Hl (7) and [Et4Nl [[(CO),Fe12W- 

When a solution of the hydride [Ph,P][HFe(CO),] (I) 
in dichloromethane and a solution of dichlorophosphine 
in dichloromethane are added simultaneously, drop by 
drop, a t  room temperature, stable complexes of secondary 
halophosphines Z3 are formed quantitatively. 
RPC12 + [Ph4P] [HFe(CO),] -P~,PCI- RP(H)ClFe(CO), 

a, R = N(i-Pr)2; b, R = Ph; c, R = t-Bu; d, R = Me 

The facile synthesis of these new complexes is in marked 
contrast to the few reactions previously described in the 
literature: formation of MeP(H)ClFe(CO), (2d) from 
MePC12 and of PhP(H)ClW(CO), (3) from PhPC12,5 both 
involve five steps, while that of 2a necessitates three steps! 

(CO)5P2Ph2Hl (8). 

1 2a-d 

(1) (a) Cowley, A. K.; Kilduff, J. E.; Lasch, J. G.; Norman, N. C.; 
Pakulski, M.; Ando, F.; Wright, T. C. J. Am. Chem. SOC. 1983,105,7751. 
(b) Flynn, K. M.; Hope, H.;Murray, B.; Olmstead, M. M.; Power, P. P. 
J. Am. Chem. SOC. 1983, 105, 7750. (e) Cowley, A. H.; Kilduff, J. E.; 
Lasch, J. G.; Norman, N. C.; Pakulski, M.; Ando, F.; Wright, T. C. Or- 
ganometallics 1984,3,1044. (d) Flynn, K. M.; Olmstead, M. M.; Power, 
P. P. J. Am. Chem. SOC. 1983,105,2085. (e) Flynn, K. M.; Murray, B. 
D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. SOC. 1983,105,7460. (0 
Norm, J.; Zsolnai, L.; Huttner, G. Angew. Chem. 1983,95,1018; Angew. 
Chem., Int. Ed. Engl. 1983,22,977. (9) Lang, K.; Orama, 0.; Huttner, 
G. J. Organornet. Chem. 1985,291,293 and references cited therein. (h) 
Flynn, K. M.; Bartlett, R. A.; Olmstead, M. M.; Power, P. P. Organo- 
metallics 1986,5,813. (i) Huttner, G.; Borm, J.; Zsolnai, L. J. Organornet. 
Chem. 1986,304,309. 

(2) Phosphmidene and diphosphene complexes were also obtained by 
other various methods. See, for example: Jones, R. A.; Seeberger, M. H.; 
Whittlesey, B. R. J. Am. Chem. Soc. 1985, 107, 6424 and references 
therein. 

(3) 2a: oil; 31P NMR (CH2C1,) 6 112.9 (dt, 'J~H = 448 Hz, 3 J p ~  = 14.8 
Hz); 'H NMR 6 0.90 (d, J = 14 Hz, CH3), 3.50 (mult, CHI, 7.97 (d, J. = 
447.7 Hz, PHI; IR u(C0) (hexane) 2073 (m), 1993 (m), 1965 (a), 1954 (a) 
ern-'. 2b: oil; 31P NMR (C,D,) 6 154.7 (d, 'J~H = 391 Hz); 'H NMR 
(CeDB) 6 6.63 and 7.07 (ph), 7.00 (d, JPH = 391 Hz); IR v(C0) (hexane) 
2063 (m), 1986 (m), 1952 (a), 1946 (e) ern-'. 20: oil; 31P NMR (CH,Cl,) 
6 156.3 (d of dec, 'JPH = 368 Hz, 3 J p ~  = 20 Hz); 'H NMR (C,De) 6 0.92 
(d, 3 J ~ p  = 20 Hz, t-Bu), 6.12 (d, 'Jw = 368 Hz, H); IR u(C0) (hexane) 
2065 (m), 1997 (m), 1968 (a), 1955 (e) em-'. 2d: oil; 31P NMR (CHZC1,) 

'JPH = 8.8 Hz, 'J" = 5.7 Hz, Me), 7.43 (d of q, 'JPH = 395 Hz, 3 J ~ ~  = 
5.7 Hz, H); IR v(C0) (hexane) 2068 (m), 2000 (m), 1968 (a), 1958 (8) em-'. 

(4) (a) Vahrenkamp, H. Philos. Trans. R. SOC. London A 1982, 308, 
17. (b) Miiller, M.; Vahrenkamp, H. Chem. Ber. 1983, 116, 2322. 

(5) (a) Marinetti, A.; Mathey, F. Organometallics 1982, 1, 1488. (b) 
Marinetti, A.; Mathey, F. Phosphorus Sulfur 1984,19, 311. 

(6) King, R. B.; Fu, W. K. J. Organomet. Chem. 1984, C33, 272. 

6 114.2 (d of q, ' JpH 395 Hz, 'JPH = 8.8 Hz); 'H NMR (Cas) 6 2.28 (dd, 
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Furthermore, the principle of the reaction seems to be 
extended to other hydride anion complexes since first 
experiments show that 3 is obtained when PhPCl, is re- 
acted with [Et4N][HW(CO)5] (4) in the same experiment 
conditions.' 

A dramatic change occurs when a solution of hydride 
1 in dichloromethane is slowly added to a solution of 
phenyldichlorophosphine (stoichiometry, 1:l) in di- 
chloromethane at  room temperature. After evaporation 
of the solvent. extraction with Dentane afford8 stable red 
crystals of [Fe(CO),[p-Fe(CO)4j(PPh)2] (5; mp 113 "C dec; 
vield 65% 
" The 31P NMR values (6 52.1, -34.5 (AB system, lJPp = 
415 Hz)) preclude an end-on bonded complex where each 
phosphorus atom behaves as a simple two-electron do- 
nor'ld-g and yet does not seem in agreement with those 
found for [Fe(CO),[p-Fe(CO),] (P-2,4,6-t-Bu3C6H20)2] (6; 
6(31P) 233.7,193.4 (AB system, lJPp = 532 Hz)), the first 
side-on and end-on diphosphene complex previously ob- 
tained by reacting the carbonylmetalate dianion Na2Fe- 
(CO), with the sterically hindered dichlorophosphine 

Therefore, the structure of 5 was determined by sin- 
gle-crystal X-ray diffraction9 and is illustrated in Figure 
1. Surprisingly, all the bond lengths and angle values are 
close to those obtained for 6 and suggest a side-on and 
end-on bonded complex structure. 5 is the first example 
of such a species stabilized without bulky substituents. 

The fascinating versatility of the reaction of 1 with di- 
chlorophosphines is illustrated once more when 1 equiv 
of phenyldichlorophosphine is added to 2 equiv of 1 in 
dichloromethane at  room temperature: the unexpected 
first anionic diphosphane complex 7 is formed as the 
unique product of the reaction. 7 is isolated as red-orange 
crystals (mp 92 OC dec; yield 55% after recrystallization).1° 

C12P (2,4,6-t-B~3C~HzO) .lb 

(7) 3 mp 55 OC; yield 30%. 3 was previously prepared by a five-step 
~ynthesis.~ 

(8) 5: 'H NMR (CD2C12) 6 5.83 and 6.09 (m, Ph); IR u(C0) (hexane) 
2108 (m), 2055 (sh), 2052 (a), 2047 (a), 2024 (m), 1982 (m), 1970 (ah), lqS2 
(m), 1960 (ah), 1940 (m) em-'; mass spectrum, m / e  522 w t h  successive 
loss of 8 COS. A single crystal of 5.0.5CHzC12 was grown from dichloro- 
methane/hexane a t  -20 "C. 

(9) A yellow crystal of 5.0.5CHzC12 (dimensions 0.3 X 0.3 X 0.12 mm) 
was selected Mo Ka radiation (A  = 0.71069 A); T = 293 K; triclinic PI, 
a = 9.919 (1) A, b = 10.916 (2) A, c 11.563 (2) A, a = 81.81 (I)', @ = 
88.66 ( l ) O ,  y = 71.18 (1)O; 2 = 2; fi  = 15.3 cm-I; 2069 unique data, 307 
parameters. The structure was solved by a combination of Multan, 
Patterson, and heavy-atom methods. No absorption correction wae made. 
"he f d  full-matrix least-squares refiiement converged to R = 0.032 and 
R, = 0.043. 

(10) 7: 31P(iH} NMR (CDZCl,) 6(Pd 91.15 (d), ~ ( P B )  42.71 (d, 'Jpp E 

234.8 Hz, AB system), 6(Pc) 22.01; NMR (CD2C12)  PA) 91.15 (d), 
342 Hz, 'Jpp = 234.8 Hz), ~(Pc)  22.01 

(m). 'H NMR (CD,Cl,) 6 4.38 (d, 'JPH = 342 Hz, H), 5.94,6.34 (m, Ph); 
IR ;(Co) (CH2C12) 2050 (w), 2033 (m), 2020 (m), t937 (9, br) em". 
Products 5,7, and 8 gave satisfadory elemental analysis data. 2a-d were 
characterized by mass spectroscopy. 

b(PB) 46.32 and 39.10 (d of d, 'JpH 
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Compound 7 is also quantitatively obtained when the 
hydride 1 is reacted with the side-on and end-on bonded 
complex 5. The formation of 7 could be explained by a 
1:l addition of 1 on phosphorus PB of 5. This is corrob- 
orated by the following experiment: reaction of the hy- 
dride 4 [Et4N][HW(CO),] with 5 leads to the formation 
of another anionic diphosphane complex, 8 (mp 116 "C dec; 
yield 62%). 31P and 'H NMR spectra clearly show that 
the phosphorus atom PB is bonded to a proton and to 
W(C0)S: 31P(1H) NMR (CDSCN) 6(P,) 74.85 (d), 8(PB) 
-6.64 (d), J p  p 220 HZ (J31p-183~  = 208.5 Hz); 31P NMR 
(CD3CN) S(fi,J 74.85 (d), ~ ( P B )  -4.49, -8.42 (dd, ' J p H  = 
324.4 Hz, JpApB = 220 Hz, J3lp-Ia3w) = 208.5 Hz); 'H NMR 
(CD3CN; except N(C2H5)4 resonances) 6 6.75 (dd, 'JpH = 
324.4 Hz, 2 J p H  = 7.92 hZ, JIH-ISW = 22.7 Hz), 7.35 and 7.66 
(m, Ph); IR v(C0) (CH2C12) 2072 (w), 2040 (m), 2022 (m), 
1940 (s), 1915 (sh) cm-'. 

These results summarized in Scheme I provide a new 
field of investigations for the synthesis of other unknown 
mono- or polymetallic complexes of phosphorus derivatives 
and demonstrated the potential utility of the HFe(CO), 
anion. The extension of this work to other anionic hy- 
dridocarbonylmetalates and a variety of group 15 chlorides 
is in progress. 
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Summary: The first X-ray crystal structure of a boron- 
stabilized carbanion is described; the title compound, 
made by treatment of B(2,4,6-Me3C,H2), with n-BuLi in 
THF, was crystallized as a crown ether salt. The major 
structural features of the carbanion suggest that stabili- 
zation is achieved by extensive delocalization rather than 
steric effects. A significantly shortened B-C bond, 1.522 
(10) A, was also observed, suggesting substantial "boron 
ylide" character. 

Recently we showed that 12-crown-4 could be used to 
crystallize the lithium salts of the free carbanions [CPh3]- 
and [CHPhJ.' At  the same time we reported that we 
could isolate a yellow microcrystalline substance which 
probably contained the next member of the series 
[CH2Ph]- as a free ion. Unfortunately we were unable to 
grow crystals of this material, suitable for X-ray crystal- 
lography, due to its high reactivity toward ether solvents. 
In our search for ways of reducing the powerful nucleo- 
philic character of the benzyl carbanion [CH,Ph]-, we were 

(1) Olmstead, M. M.; Power, P. P. J .  Am. Chem. SOC. 1985,107,2174. 
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Figure 1. Important bond distances and angles for the anion 
of 1. 

drawn to the report2 of Ramsey and Isabelle, who showed 
(NMR) that by treating BMes3 (Mes = mesityl, 2,4,6- 
Me3C6H,) with n-BuLi, they could obtain the anion 
[CHzC6H2(3,5-Me2)(4-B{2,4,6-Me3C6HZ),)]- (1) in THF or 
Me,SO solution. This anion arose by the deprotonation 
of one of the para methyl groups of BMes3 and has a 
benzyl-like environment a t  the deprotonated carbon. As 
part of our interest in carbanion structures, we decided to 
investigate the structural effects of a boron-centered sta- 
bilizing group on a carbanion. 

The anion 1 was crystallized as its [Li(l2-cro~n-4)~]+ 
salt by the addition of 2 equiv of 12-crown-43 to a solution 
of a lithium salt of 1. The resultant red crystals were 
isolated in 35% yield. Important bond distances and an- 
gles of 1 arising from the X-ray data are illustrated in 
Figure 1. Crystal data at 140 K: C47H740J3Li, M, 800.86, 
monoclinic, space group P2,/n, a = 15.187 (7) A, b = 11.791 
(4) A, c = 26.031 (11) A, p = 105.12 (3)", U = 4500 (3) A3, 
Dcalcd = 1.18 g cmw3 for 2 = 4, X = 0.71069 A, p = 0.76 cm-', 
2580 data with I > 4a (I), R = 0.069%. The structure 
confirms the removal of one of the para methyl protons 
by n-BuLi. The compound is clearly a boron-stabilized 
carbanion, and 1 is the first X-ray structural proof of this 
type of stabilization. The growing interest in this class of 
compound originated with the work of Rathke and KO& 
although boron-stabilized carbanions had been proposed 
as intermediates much earlier., The spectroscopically 
characterized boron-stabilized carbanions for the most part 
involve deprotonation of an a-carbon atom, for example, 
in B-methyl-9-boradicyclononane: 4-EhB-fluorene,G or the 
versatile reagent Mes2BMe developed by Wilson, Pelter, 
and co-worker~.~,~ The latter have shown that anions 
produced by the deprotonation of organoboranes undergo 
many of the same reactions as ylides; hence their desig- 
nation as Boron-Wittig reagents. 

The most interesting aspect of 1 concerns the core B- 

(2) Ramsey, B. G.; Isabelle, L. M. J. Org. Chem. 1981, 46, 179. 
(3) 12-Crown-4 has been used by us to coordinate Li+ in several other 

systems: Hope, H.; Olmstead, M. M.; Power, P. P.; Xu, J.  Am. Chem. 
SOC. 1983,106,819. Power, P. P.; Xu, X. J. Chem. SOC., Chem. Commun. 
1984,358. Hope, H.; Olmstead, M. M.; Power, P. P.; Sandell, J.; Xu, X. 
J. Am. Chem. SOC. 1985,4337. Olmstead, M. M.; Power, P. P. J. Am. 
Chem. SOC. 1986,108,4235. 

(4) Rathke, M. W.; Kow, R. J.  Am. Chem. SOC. 1972,94,6854; 1973, 
95, 2715. 

(5) Zweifel, G.; Arzoumanian, H. Tetrahedron Lett. 1966, 2535. 
Matteson, D. S. Synthesis 1975, 147. Brown, H. C.; Zweifel, G. J.  Am. 
Chpm. Sor. 1961. 83. 3x34. - . - - - - - - - -, -. , - - - . 

(6) Paetzold, P.; Boeke, B. Chem. Ber. 1976, 109, 1011. 
(7) Wilson, J. W. J. Organornet. Chem. 1980,186,297. Brown, N. M. 

D.; Davidson, F.; Wilson, J. W. J.  Organornet. Chem. 1980, 185, 277. 
(8) Pelter, A.; Singaram, B.; Williams, L.; Wilson, J. W. Tetrahedron 

Lett. 1983,24,621. Pelter, A.; Briaden, G.; Roesser, R. Tetrahedron Lett. 
1985, 26, 5097 (part 8 of a series, see references therein). 
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