# ACS Medicinal Chemistry Letters

Letter

Subscriber access provided by UNIV OF CALIFORNIA SAN DIEGO LIBRARIES

### Development of Novel 1,2,3,4-Tetrahydroquinoline Scaffolds as Potent NF-#B Inhibitors and Cytotoxic Agents

Hyeju Jo, Minho Choi, Arepalli Sateesh Kumar, Yeongeun Jung, Sangeun Kim, Jieun Yun, Jong Soon Kang, Youngsoo Kim, Sang-bae Han, Jae-Kyung Jung, Jungsook Cho, Kiho Lee, Jae-Hwan Kwak, and Heesoon Lee ACS Med. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acsmedchemlett.6b00004 • Publication Date (Web): 16 Feb 2016 Downloaded from http://pubs.acs.org on February 18, 2016

#### Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.



ACS Medicinal Chemistry Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

## Development of Novel 1,2,3,4-Tetrahydroquinoline Scaffolds as Potent NF-κB Inhibitors and Cytotoxic Agents

Hyeju Jo<sup>†</sup>, Minho Choi<sup>†</sup>, Arepalli Sateesh Kumar<sup>†</sup>, Yeongeun Jung<sup>†</sup>, Sangeun Kim<sup>†</sup>, Jieun Yun<sup>‡</sup>, Jong-Soon Kang<sup>‡</sup>, Youngsoo Kim<sup>†</sup>, Sang-bae Han<sup>†</sup>, Jae-Kyung Jung<sup>†</sup>, Jungsook Cho<sup>∥</sup>, Kiho Lee<sup>¬</sup>, Jae-Hwan Kwak<sup>§</sup>, Heesoon Lee<sup>†</sup>\*

<sup>†</sup>Department of Pharmacy, Chungbuk National University, Chungbuk 362-763, Republic of Korea

<sup>‡</sup>Korea Research Institute of Bioscience and Biotechnology, Ochang, 363-883, Republic of Korea

<sup>\overline</sup>College of Pharmacy, Korea University, Sejong 339-700, Republic of Korea

College of Pharmacy, Dongguk University, Goyang 410-773, Republic of Korea

<sup>§</sup>College of Pharmacy, Kyungsung University, Busan 608-736, Republic of Korea

KEYWORDS: 1,2,3,4-Tetrahydroquinolines, NF-κB inactivation, In vitro cytotoxicity, human cancer cell lines.

**ABSTRACT:** 1,2,3,4-Tetrahydroquinolines have been identified as the most potent inhibitors of LPS-induced NF- $\kappa$ B transcriptional activity. To discover new molecules of this class with excellent activities, we designed and synthesized a series of novel derivatives of 1,2,3,4-tetrahydroquinolines (**4a-g**, **5a-h**, **6a-h**, and **7a-h**) and bio-evaluated their *in vitro* activity against human cancer cell lines (NCI-H23, ACHN, MDA-MB-231, PC-3, NUGC-3, and HCT 15). Among all synthesized scaffolds, **6g** exhibited the most potent inhibition (53 times that of a reference compound) of LPS-induced NF- $\kappa$ B transcriptional activity and the most potent cytotoxicity against all evaluated human cancer cell lines.

NF-kB is a lymphoid-specific protein that binds to the enhancer of kappa light chain in the nucleus of B cells; NF-KB was discovered by Sen and Baltimore.<sup>1</sup> NF-kB is involved in the regulation of many immune and inflammatory responses, cellular growth and apoptosis.<sup>2,3</sup> At present, NF-kB and its signalling is one of the most exciting and extensively studied research fields since NF-kB dysregulation is associated with many diseases such as cancer, AIDS, asthma, arthritis, diabetes, and inflammatory bowel disease.4-6 Several natural and synthetic compounds, including some drugs, have been tested for their potential to inhibit NF-KB, but very few of them are suitable for anticancer therapy .<sup>7,8</sup> Therefore, it has been suggested that the development of novel NF-kB inhibitors with antitumor and anti-inflammatory activities is most important. Our group has been involved in the development of novel potent NF- $\kappa$ B inhibitors<sup>9-11</sup> with anticancer activity.

Besides, quinolines and tetrahydroquinolines are important ubiquitous structural motifs in biologically active natural products and pharmacologically relevant therapeutic agents.<sup>12-</sup> <sup>16</sup> However, Khan *et al.*<sup>17</sup> demonstrated that tetrahydroquinolines can be used as NF- $\kappa$ B inhibitors as well as anti HIV agents and anti Parkinson's diseases etc. María José Abad *et al.*<sup>18</sup> were also tested quinoline-based compounds as modulators of HIV transcription through NF- $\kappa$ B and Sp1 inhibition. These distinct inhibitory activities have encouraged us to prepare such core motifs to test our hypothesis that their derivatives would act as most potent NF- $\kappa$ B inhibitors and have anticancer activity. We designed and synthesized different novel derivatives of 1,2,3,4-tetrahydroquinoline-2-carboxylic acid *N*-(substituted)phenyl amide and tested them as potential NF- $\kappa$ B inhibitors and also evaluated their cytotoxicities against six human cancer cell lines (NCI-H23, ACHN, MDA-MB-231, PC-3, NUGC-3 and HCT-15). Based on our previous reports,<sup>9-11</sup>we wish to maintain amide functionality to the core motifs and the effect of the synthesized molecules on NF- $\kappa$ B transcriptional activity was measured by using a reported procedure.<sup>19</sup> In vitro cytotoxicity assay was performed using the number of cells measured indirectly by the sulforhodamine B method according to the National Cancer Institute (USA) protocol.<sup>20</sup>

We commenced our synthesis from commercially available quinoline-2-carboxylic acid, which underwent amidation reaction with various substituted aromatic amines in the presence of the coupling reagent 1,1'-carbonyldiimidazole (CDI) in tetrahydrofuran at room temperature. This reaction afforded the 3a-g series of N-(substituted)quinoline-2-carboxamides in good yields (Scheme 1). The 3a-g derivatives were also converted to 4a-g by Pd/C hydrogenation reaction (H<sub>2</sub> balloon) in ethanol solvent at room temperature. To obtain the 5a-h, 6a-h and 7a-h series, we performed acylation reaction in the presence of triethylamine in anhydrous tetrahydrofuran (Scheme 2). All newly synthesized derivatives (3a-g, 4a-g, 5a-h, 6a-h and **7a-h**) were confirmed by <sup>1</sup>H and <sup>13</sup>C NMR and mass spectra. In evaluation studies of inhibition of LPS-induced NF-кВ transcriptional activity, we compared all synthesized derivatives (4a-g, 5a-h, 6a-h, and 7a-h)

60

1





 $\begin{array}{l} R_1 = R_2 = R_3 = R_4 = H, \ \textbf{3a}, \ \textbf{80\%} \\ R_1 = OH; \ R_2 = R_3 = R_4 = H, \ \textbf{3b}, \ \textbf{57\%} \\ R_3 = OH; \ R_1 = R_2 = R_4 = H, \ \textbf{3c}, \ \textbf{30\%} \\ R_3 = OCH_3; \ R_1 = R_2 = R_4 = H, \ \textbf{3d}, \ \textbf{63\%} \\ R_1 = CF_3; \ R_2 = R_3 = R_4 = H, \ \textbf{3d}, \ \textbf{63\%} \\ R_3 = CF_3; \ R_1 = R_2 = R_4 = H, \ \textbf{3f}, \ \textbf{67\%} \\ R_3 = CF_3; \ R_1 = R_2 = H, \ \textbf{3f}, \ \textbf{67\%} \end{array}$ 



 $\begin{array}{l} R_1 = R_2 = R_3 = R_4 = H, \, \textbf{4a}, \, \textbf{49\%} \\ R_1 = OH; \; R_2 = R_3 = R_4 = H, \; \textbf{4b}, \; \textbf{36\%} \\ R_3 = OH; \; R_1 = R_2 = R_4 = H, \; \textbf{4c}, \; \textbf{23\%} \\ R_3 = OCH_3; \; R_1 = R_2 = R_4 = H, \; \textbf{4c}, \; \textbf{73\%} \\ R_1 = CF_3; \; R_2 = R_3 = R_4 = H, \; \textbf{4c}, \; \textbf{40\%} \\ R_3 = CF_3; \; R_1 = R_2 = R_4 = H, \; \textbf{4f}, \; \textbf{10\%} \\ R_2 = R_4 = CF_3; \; R_1 = R_2 = R_4 = H, \; \textbf{4f}, \; \textbf{10\%} \\ R_2 = R_4 = CF_3; \; R_1 = R_3 = H, \; \textbf{4g}, \; \textbf{35\%} \end{array}$ 

<sup>a</sup>Reagents and conditions: (a) CDI, anhydrous THF, RT, 1 h. (b) Pd/C, H<sub>2</sub> balloon, EtOH, RT, 24 h.

with the reference compound pyrrolidine dithiocarbamate (PDTC), which acts as an antioxidant and is a potent inhibitor of NF- $\kappa$ B activation,<sup>21-25</sup> and also with the lead compound KL-1156, which is an inhibitor of NF- $\kappa$ B translocation to the nucleus in LPS-stimulated RAW 264.7 macrophages.<sup>26</sup>

Scheme 2. Synthesis of 5a-h, 6a-h and 7a-h series of scaffolds  $^{\text{b}}$ 



<sup>b</sup>Reagents and conditions: (c) Triethylamine, anhydrous THF, 0 °C, 5-10 min, RT, 30-60 min.

Initially, we screened the 4a-g derivatives; they exhibited marginal inhibitory effects on NF-KB transcriptional activity (Table 1). After having the tetrahydroquinoline core motif was less potent, we next turned our attention mainly to the substitutions of R, R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> and R<sub>4</sub>, which resulted in 24 derivatives (5a-h, 6a-h, and 7a-h; Table 1). Among them, 5e, (IC<sub>50</sub>: 1.4 $\pm$ 0.71 µM), **6f**, (IC<sub>50</sub>: 0.90 $\pm$ 0.071 µM), **6g**, (IC<sub>50</sub>: 0.70±0.071 µM) and 6h, (IC<sub>50</sub>: 2.7±0.42 µM) exhibited outstanding inhibitory effects (Figure 1) on LPS- induced NF-KB transcriptional activity in comparison with remaining derivatives (Table 1). After having the initial experimental results, structure-activity relationship development was initiated for the tetrahydroguinoline scaffold. The 1.2.3.4tetrahydroquinoline-2-carboxamide motif was modified at two key positions interpreted as R and substitutions were performed at the aromatic system  $(R_1, R_2, R_3 \text{ and } R_4)$ . In the first set of compounds, we performed different substitutions at  $R_1$ ,

 $R_2$ ,  $R_3$  and  $R_4$ , which resulted in **4a-g** analogues. Subsequently  $R_1 = R_2 = R_3 = R_4 = H$  (4a, IC<sub>50</sub>: 60 µM) was prepared to study the effect of the core 1,2,3,4-tetrahydroquinoline-2-carboxamide motif. We also examined the electronic influence of different groups at R1, R2, R3 and R4, including electron-deficient (-CF3) and electron-rich groups (-OCH3 and -OH). Next, we introduced various acyl and aroyl groups at the 1-position of tetrahydroquinoline-2-carboxamides, which resulted in 5a-h, 6a-h and 7a-h analogues. Sizes of different aliphatic chains (-R) and substituents at the aromatic ring were then examined. The inhibitory effects of these compounds (4a-g, 5a-h, 6a-h and 7a-h) depended on the nature of the substitution at the Rposition and the substituents  $(R_1, R_2, R_3 \text{ and } R_4)$  on the Nphenyl ring of tetrahydroquinoline-2-carboxamides. For instance, with R = an alkyl group (methyl, ethyl, propyl or octyl), we did not notice any significant inhibitory effects, but with R = phenyl. The following compounds exhibited excellent inhibitory effects on LPS-induced NF-kB transcriptional activity (Figure 2): 5e (IC<sub>50</sub>: 1.4±0.071 µM, about 26 and 37 times more potent than PDTC and KL-1156, respectively), **6f** (IC<sub>50</sub>:  $0.90\pm0.071 \mu$ M, about 41 and 58 times more potent), 6g (IC<sub>50</sub>: 0.70±0.071 µM, about 53 and 75 times) and 6h (IC<sub>50</sub>: 2.7±0.42 µM, about 13 and 19 times). We also tested other substitutions

at the R-position and different substituents at the R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> and R<sub>4</sub> positions of the 1,2,3,4-tetrahydroquinoline core motif (Table 1). To explain the trend toward NF- $\kappa$ B inhibition interestingly, the electron-withdrawing group –CF<sub>3</sub> at the R<sub>1</sub> position resulted in outstanding inhibitory effects on LPS-induced NF- $\kappa$ B transcriptional activity in comparison with any electron-releasing group (for example, –OH). We also noticed that –I and +M effect groups (such as –Cl) at the 2<sup>nd</sup> and 3<sup>rd</sup> positions of the aryl group of R in combination with –CF<sub>3</sub> at the R<sub>1</sub> position also showed excellent inhibition of NF- $\kappa$ B transcriptional activity (**6g**, IC<sub>50</sub>: 0.70±0.071 µM; **6f**, IC<sub>50</sub>: 0.90±0.071 µM). Overall, most of the synthesized compounds (**4d**, **4e**, **4g**, **5f**, **5h**, **6d**, **7a**, a and **7a**–**b**) were more potent inhibitors of NF

**5f**, **5h**, **6d**, **7a-c** and **7e-h**) were more potent inhibitors of NFκB transcriptional activity than PDTC and KL-1156 (Figure 2). We next studied the *in vitro* cytotoxicity of the synthesized compounds and initially evaluated quinoline-2-carboxamide derivatives (**3a-g**) with the human lung cancer cell line (NCI-H23) and doxorubicin (ADR) as a reference compound.

| Та | ble 1. I | (nhibitory effect (       | on LPS-induce             | d NF-кВ                               |                 | $\mathbf{x}_{1} = \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4} $ | nal activity<br>$R^{+OH, R_2,R}$<br>$R_1=OH, R_2,R$<br>$R_1=OH, R_2,R$<br>$R_2=OH, R_2,R$<br>$R_2=OH, R_2,R$<br>$R_2=OH, R_2,R$<br>$R_2=OH, R_2,R$<br>$R_2=OH, R_2,R$<br>$R_2=OH, R_2,R$<br>$R_2=OH, R_2,R$<br>$R_2=OH, R_2,R$<br>$R_3=OH, R_3=OH, R_$ | $\begin{array}{c} & \text{for } 1,2,3,4-1 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ | tetrahyd                      | lroqı | uinolines.                |                                       |
|----|----------|---------------------------|---------------------------|---------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|---------------------------|---------------------------------------|
|    |          |                           | No                        | Sul                                   | ostituei        | tuents (R group) % inhibi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IC <sub>50</sub> <sup>c</sup> |       |                           |                                       |
|    |          |                           |                           | $R_1$                                 | $R_2$           | $R_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $R_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | at 100 µM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (µM)                          |       |                           |                                       |
|    |          |                           | PDTC                      |                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.2                          |       |                           |                                       |
|    |          |                           | KL-1156                   |                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53±15                         |       |                           |                                       |
|    |          |                           | <b>4</b> a                | Н                                     | Н               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60±10                         |       |                           |                                       |
|    |          |                           | 4b                        | OH                                    | Н               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 83±9.9                        |       |                           |                                       |
|    |          |                           | 4c                        | Н                                     | Н               | OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65±0.71                       |       |                           |                                       |
|    |          |                           | 4d                        | Н                                     | Н               | OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34±12                         |       |                           |                                       |
|    |          |                           | 4e                        | CF <sub>3</sub>                       | Н               | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26±5.0                        |       |                           |                                       |
|    |          |                           | 4f                        | Н                                     | Н               | $CF_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68±16                         |       |                           |                                       |
|    |          |                           | 4g                        | Н                                     | CF <sub>3</sub> | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CF <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26±1.4                        | _     |                           |                                       |
| -  | No.      | Substituents<br>(R group) | % inhibition<br>at 100 μM | IC <sub>50</sub> <sup>c</sup><br>(μM) | 1               | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % inhibition<br>at 100 µM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IC <sub>50</sub> <sup>c</sup> ( $\mu$ M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M) N                          | No.   | % inhibition<br>at 100 μM | IC <sub>50</sub> <sup>c</sup><br>(μM) |
|    | 5a       | methyl                    | 19                        | -                                     |                 | 6a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 7a    | 85                        | 23±0.0                                |
|    | 5b       | ethyl                     | 31                        | -                                     |                 | 6b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 7b    | 91                        | 20±0.71                               |
|    | 5c       | propyl                    | 41                        | -                                     |                 | 6c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 ,                           | 7c    | 88                        | 20±0.71                               |
|    | 5d       | octyl                     | 22                        | -                                     |                 | 6d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                             | 7d    | 58                        | 51±21                                 |
|    | 5e       | phenyl                    | >100                      | 1.4±0.07                              | 1               | 6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                             | 7e    | 66                        | 29±0.71                               |
|    | 5f       | 2-chlorophenyl            | 78                        | 20±0.71                               |                 | 6f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.90±0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71                            | 7f    | 90                        | 23±0.0                                |
|    | 5g       | 3-chlorophenyl            | 58                        | 78±2.1                                |                 | 6g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70±0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71                            | 7g    | 68                        | 27±0.71                               |
|    | 5h       | 4-chlorophenyl            | 82                        | 20±2.8                                |                 | 6h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.7±0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                             | 7h    | 92                        | 20±2.1                                |
| -  |          |                           |                           |                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |       |                           |                                       |

 ${}^c\mathrm{IC}_{50}$  values are means of the concentration (  $\mu\,M)$  exhibiting 50% inhibition of LPS-induced NF-  $\kappa\,B$  transcriptional activity.





**ACS Paragon Plus Environment** 

| NO. | $R_1$           | $R_2$           | $R_3$            | $R_4$           | $GI_{50}\left( \boldsymbol{\mu M}\right) ^{d}$ |
|-----|-----------------|-----------------|------------------|-----------------|------------------------------------------------|
| ADR |                 |                 |                  |                 | 0.101±0.00602                                  |
| 3a  | Н               | Н               | Н                | Н               | $108 \pm 8.74$                                 |
| 3b  | OH              | Н               | Н                | Н               | 87.5±9.77                                      |
| 3c  | Н               | Н               | OH               | Н               | 102±11.4                                       |
| 3d  | Н               | Н               | $\mathrm{OCH}_3$ | Н               | 7.65±1.93                                      |
| 3e  | CF <sub>3</sub> | Н               | Н                | Н               | >90                                            |
| 3f  | Н               | Н               | CF <sub>3</sub>  | Н               | >90                                            |
| 3g  | Н               | CF <sub>3</sub> | Н                | CF <sub>3</sub> | 1.44±0.463                                     |

 ${}^{d}GI_{50}$  values are taken as a mean from three experiments and correspond to the agent's concentration causing a 50% decrease in net cell growth.

As shown in Table 2, electron-withdrawing substituents such as  $-CF_3$  at the  $R_2$  and  $R_4$  positions of the phenyl ring (**3g**; GI<sub>50</sub>: 1.44±0.463 µM) resulted in most potent cytotoxicity. The series 4a-g, 5a-h, 6a-h and 7a-h were also evaluated for in vitro cytotoxicity against six human cancer cells: NCI-H23, ACHN (renal), MDA-MB-231 (breast), PC-3 (prostate), NUGC-3 (gastric) and HCT15 (colon) (Figure 3). Any substitution on the phenyl ring was not beneficial and only 4b (GI<sub>50</sub>: 2.23 $\pm$ 0.455  $\mu$ M) exhibited better cytotoxic activities against all tested cell lines than other analogues of the 4a-g series (Figure 3). To further confirm that the tetrahydroquinoline motif is beneficial for cytotoxicity, we executed acylation reaction with triethyl amine in tetrahydrofuran with 4b, 4e and 4g; introduction of electron-rich or electronwithdrawing substituents at the R<sub>1</sub> position afforded **5a-h**, 6a-h and 7a-h analogues. As expected, these analogues had improved cytotoxicity against all tested cell lines (Figure 2), suggesting that substitutions at the  $R_1$  position and the first position of the tetrahydroquinoline motif are most important (Table 3). Compound 5e exhibited the highest cytotoxicity (Figure 3) against all evaluated cell lines (NCI-H23, GI<sub>50</sub>: 3.49±0.999 µM; NUGC-3, GI<sub>50</sub>: 3.78±0.618 µM; HCT 15, GI<sub>50</sub>: 3.83±0.994 µM). The importance of an electronwithdrawing group was also confirmed by 6g and 6h derivatives, which have -CF<sub>3</sub> and -Cl on both phenyl rings and exhibited outstanding cytotoxicity (6g, GI<sub>50</sub>: 0.292±0.111 - $0.797 \pm 0.173 \ \mu\text{M}$ ; **6h**, GI<sub>50</sub>:  $0.307 \pm 0.0.0941 - 0.839 \pm 0.0610$  $\mu$ M) against all tested cell lines (Figure 2, Table 3). The – CF3 group at the  $R_2$  and  $R_4$  positions of the phenyl ring in 7g also resulted in potent cytotoxicity against all tested cell lines (0.420–1.19 µM; Table 3). Compound 7h also exhibited potent cytotoxicity against lung (NCI-H23, (GI<sub>50</sub>: 0.889±0.102 µM) and gastric (NUGC-3, GI<sub>50</sub>: 1.66±0.406 µM) cancer cell lines and moderate cytotoxicity against the other four cell lines (Table 3).

In summary, we identified a new class of 1,2,3,4-tetrahydroquinolines as the most potent NF- $\kappa$ B



Figure 2. In *vitro* efficacy of 4a-g, 5a-h, 6a-h and 7a-h analogues in inhibiting growth of human cancer cell lines.

inhibitors and potent cytotoxic agents against human cancer cell lines.

Table 3. Cytotoxicity against NCI-H23, ACHN, MDA-MB-231, PC-3 NUGC-3 and HCT-15 Cancer cell lines



| $\overbrace{\qquad \qquad }^{R_{1}} \underset{R_{2}}{\overset{R_{1}}{\longrightarrow}} \underset{R_{3}}{\overset{R_{1}}{\longrightarrow}} \underset{R_{3}}{\overset{R_{2}}{\longrightarrow}} $ |                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| <b>4a-g</b> R <sub>4</sub>                                                                                                                                                                     | R <sub>4</sub><br>R <sub>1</sub> =OH, R <sub>2</sub> ,R <sub>3</sub> ,R <sub>4</sub> =H <b>: 5a - 5h</b> |
|                                                                                                                                                                                                | R <sub>1</sub> =CF <sub>3</sub> , R <sub>2</sub> ,R <sub>3</sub> ,R <sub>4</sub> =H <b>: 6a - 6h</b>     |
|                                                                                                                                                                                                | $R_1, R_3 = H, R_2, R_4 = CF_3 : 7a - 7h$                                                                |

|     | $\mathrm{GI}_{50}\left(\mu\mathrm{M} ight)^{\mathrm{d}}$ |                |        |                  |                 |                      |                      |                    |               |                    |                |  |  |
|-----|----------------------------------------------------------|----------------|--------|------------------|-----------------|----------------------|----------------------|--------------------|---------------|--------------------|----------------|--|--|
| No. | R                                                        | $\mathbf{R}_1$ | $R_2$  | $R_3$            | $R_4$           | NCI-H23              | ACHN                 | MDA-MB-231         | PC-3          | NUGC-3             | HCT 15         |  |  |
| ADR |                                                          | Ref            |        |                  |                 | $0.0726 \pm 0.00940$ | $0.0995 \pm 0.00848$ | $0.112 \pm 0.0132$ | 0.0923±0.0103 | $0.125 \pm 0.0104$ | 0.0854±0.00329 |  |  |
| 4a  | -                                                        | Н              | Н      | Н                | Н               | 97.1±15.3            | 72.9±11.4            | 108±17.8           | 110±15.6      | 59.0±9.88          | 109±15.0       |  |  |
| 4b  | -                                                        | OH             | Н      | Н                | Н               | 2.23±0.455           | 3.99±1.33            | 5.26±1.77          | 4.31±1.34     | 2.68±0.824         | 5.61±1.31      |  |  |
| 4c  | -                                                        | Н              | Н      | OH               | Н               | >100                 | >100                 | >100               | >100          | >100               | >100           |  |  |
| 4d  | -                                                        | Н              | Н      | $\mathrm{OCH}_3$ | Н               | 55.7±9.80            | 38.0±11.7            | 51.4±11.2          | 56.9±17.6     | 51.9±11.0          | 50.2±8.10      |  |  |
| 4e  | -                                                        | $CF_3$         | Н      | Н                | Н               | 56.8±11.4            | 57.6±11.7            | 45.5±13.1          | 53.3±9.65     | 39.3±8.58          | 40.4±4.68      |  |  |
| 4f  | -                                                        | Н              | Н      | CF <sub>3</sub>  | Н               | 25.8±4.12            | 25.0±8.17            | 24.2±5.10          | 20.3±7.35     | 18.6±5.76          | 17.6±3.45      |  |  |
| 4g  | -                                                        | Η              | $CF_3$ | Н                | CF <sub>3</sub> | 8.41±1.01            | 8.19±3.78            | 8.27±2.74          | 8.12±5.09     | 8.76±1.36          | 8.70±3.02      |  |  |

|     |                |       |       |       |       |            | $\mathrm{GI}_{50}\left(\mu\mathrm{M}\right)^{\mathrm{d}}$ |            |           |            |            |  |  |
|-----|----------------|-------|-------|-------|-------|------------|-----------------------------------------------------------|------------|-----------|------------|------------|--|--|
| No. | R              | $R_1$ | $R_2$ | $R_3$ | $R_4$ | NCI-H23    | ACHN                                                      | MDA-MB-231 | PC-3      | NUGC-3     | HCT 15     |  |  |
| 5a  | methyl         | OH    | Н     | Н     | Н     | 65.7±8.84  | 50.7±6.32                                                 | 89.6±9.29  | 70.7±14.6 | 49.7±10.9  | 54.5±7.60  |  |  |
| 5b  | ethyl          | OH    | Н     | Н     | Н     | >90        | >90                                                       | >90        | >90       | >90        | >90        |  |  |
| 5c  | propyl         | OH    | Н     | Н     | Н     | 43.1±6.24  | 50.6±11.2                                                 | 38.0±3.55  | 72.5±9.36 | 35.4±7.10  | 58.3±9.89  |  |  |
| 5d  | octyl          | OH    | Н     | Н     | Н     | 55.8±8.08  | 65.0±6.13                                                 | 54.3±10.0  | 45.2±7.03 | 31.1±5.10  | 38.4±6.27  |  |  |
| 5e  | phenyl         | OH    | Н     | Н     | Н     | 3.49±0.999 | 4.26±1.21                                                 | 4.21±0.892 | 5.69±1.21 | 3.78±0.618 | 3.83±0.994 |  |  |
| 5f  | 2-chlorophenyl | OH    | Н     | Н     | Н     | 46.9±2.99  | 44.2±9.55                                                 | 47.4±5.04  | 60.0±14.3 | 36.8±6.41  | 44.9±8.04  |  |  |
| 5g  | 3-chlorophenyl | OH    | Н     | Н     | Н     | 11.6±2.75  | 17.2±3.54                                                 | 10.6±1.60  | 23.3±4.39 | 11.0±2.34  | 23.1±5.28  |  |  |
| 5h  | 4-chlorophenyl | OH    | Н     | Н     | Н     | 19.2±3.77  | 19.6±5.06                                                 | 19.6±3.54  | 25.1±4.62 | 13.4±2.20  | 20.2±2.97  |  |  |

|     |                |                 |       |       |       | $GI_{50} (\mu M)^d$ |                    |                    |                    |             |              |  |  |  |  |
|-----|----------------|-----------------|-------|-------|-------|---------------------|--------------------|--------------------|--------------------|-------------|--------------|--|--|--|--|
| No. | R              | $R_1$           | $R_2$ | $R_3$ | $R_4$ | NCI-H23             | ACHN               | MDA-MB-231         | PC-3               | NUGC-3      | HCT 15       |  |  |  |  |
| 6a  | methyl         | CF <sub>3</sub> | Н     | Η     | Н     | >80                 | >80                | >80                | >80                | >80         | >80          |  |  |  |  |
| 6b  | ethyl          | CF <sub>3</sub> | Н     | Н     | Н     | >80                 | >80                | >80                | >80                | >80         | >80          |  |  |  |  |
| 6c  | propyl         | CF <sub>3</sub> | Н     | Н     | Н     | >70                 | >70                | >70                | >70                | >70         | >70          |  |  |  |  |
| 6d  | octyl          | CF <sub>3</sub> | Н     | Н     | Н     | 4.22±1.26           | 8.33±3.09          | 3.35±0.482         | 4.32±1.04          | 6.18±1.30   | 7.70±1.11    |  |  |  |  |
| 6e  | phenyl         | CF <sub>3</sub> | Н     | Н     | Н     | 6.34±2.52           | 8.09±1.68          | 5.29±0.846         | 5.56±0.990         | 8.12±1.44   | 6.50±1.14    |  |  |  |  |
| 6f  | 2-chlorophenyl | $CF_3$          | Н     | Н     | Н     | 2.15±0.680          | $3.90 \pm 0.946$   | 2.53±0.625         | 5.14±1.02          | 2.73±0.554  | 4.22±0.303   |  |  |  |  |
| 6g  | 3-chlorophenyl | $CF_3$          | Н     | Н     | Н     | 0.292±0.111         | 0.526±0.178        | 0.288±0.0992       | 0.729±0.131        | 0.754±0.129 | 0.797±0.173  |  |  |  |  |
| 6h  | 4-chlorophenyl | CF <sub>3</sub> | Н     | Н     | Н     | 0.307±0.0941        | $0.824 \pm 0.0708$ | $0.533 \pm 0.0824$ | $0.786 \pm 0.0996$ | 0.551±0.126 | 0.839±0.0610 |  |  |  |  |

| -   |                |       |                 |       |                 | $GI_{50}(\mu M)^d$ |                  |                  |                  |                  |              |  |  |  |
|-----|----------------|-------|-----------------|-------|-----------------|--------------------|------------------|------------------|------------------|------------------|--------------|--|--|--|
| No. | R              | $R_1$ | $R_2$           | $R_3$ | $R_4$           | NCI-H23            | ACHN             | MDA-MB-231       | PC-3             | NUGC-3           | HCT 15       |  |  |  |
| 7a  | methyl         | Н     | CF <sub>3</sub> | Н     | CF <sub>3</sub> | >70                | >70              | >70              | >70              | >70              | >70          |  |  |  |
| 7b  | ethyl          | Н     | CF <sub>3</sub> | Н     | CF <sub>3</sub> | 7.82±1.62          | 7.72±2.40        | 7.28±0.965       | 8.54±1.99        | 7.22±1.35        | 7.62±0.902   |  |  |  |
| 7c  | propyl         | Н     | CF <sub>3</sub> | Н     | $CF_3$          | 15.0±2.67          | 13.9±4.03        | 15.2±2.44        | 18.6±2.87        | 14.4±3.49        | 21.9±3.11    |  |  |  |
| 7d  | octyl          | Н     | CF <sub>3</sub> | Н     | $CF_3$          | 3.23±0.397         | 4.52±1.13        | 7.53±1.69        | 7.43±1.89        | 2.23±0.579       | 4.97±1.09    |  |  |  |
| 7e  | phenyl         | Н     | CF <sub>3</sub> | Н     | $CF_3$          | 2.13±0.638         | $2.92 \pm 0.640$ | 2.43±0.632       | $3.50{\pm}0.630$ | $1.68 \pm 0.238$ | 3.54±1.20    |  |  |  |
| 7f  | 2-chlorophenyl | Н     | CF <sub>3</sub> | Н     | CF <sub>3</sub> | $2.08 \pm 0.482$   | 4.70±0.733       | 5.25±1.08        | 8.04±2.55        | 1.93±0.404       | 4.05±0.820   |  |  |  |
| 7g  | 3-chlorophenyl | Н     | CF <sub>3</sub> | Н     | $CF_3$          | $0.420 \pm 0.0607$ | 0.813±0.271      | 1.19±0.313       | 1.05±0.254       | 0.560±0.189      | 0.625±0.0674 |  |  |  |
| 7h  | 4-chlorophenyl | Н     | CF <sub>3</sub> | Н     | CF <sub>3</sub> | $0.889 \pm 0.102$  | 2.57±0.981       | $2.00 \pm 0.683$ | 4.23±1.67        | $1.66 \pm 0.406$ | 2.22±0.216   |  |  |  |

 ${}^{d}GI_{50}$  values are taken as a mean from three experiments and correspond to the agent's concentration causing a 50% decrease in net cell growth

The first round of screening starting from the initial lead scaffold **4a** led to the discovery of **6f**, **6g** and **6h** analogues. These new lead analogues inhibited LPS-induced NF- $\kappa$ B transcriptional activity 41, 53 and 13 times more potently, respectively, than the reference compound PDTC. Analogues **6f**, **6g** and **6h** have also shown the most potent in vitro cytotoxicity against

all evaluated human cancer cell lines. Thus, **6f**, **6g**, **6h** and related analogues provide new chemical tools for development of pathway-selective NF- $\kappa$ B inhibitors with anticancer activity. Work on the enhancement of potency and pharmacological profiles of these probe molecules are underway.

#### ASSOCIATED CONTENT

**Supporting Information**. Synthetic Procedures, characterization of final products, biological assay protocols and data and pharmacology profiles. This material is available free of charge via the Internet at http://pubs.acs.org.

#### AUTHOR INFORMATION

#### Corresponding Author

\* Tel.: +82 43 261 2811; fax: +82 43 268 2732.

E-mail addresses: medchem@chungbuk.ac.kr (H. Lee).

#### ACKNOWLEDGMENT

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2009381), and Medical Research Center Program (2008-0062275).

#### **ABBREVIATIONS**

LPS, Lipopolysaccharide; NF- $\kappa$ B, nuclear factor kappa-lightchain-enhancer of activated B cells.

#### REFERENCES

- 1. Sen, R.; Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. *Cell* **1986**, *46*, 705-716.
- Hayden, M. S.; Ghosh, S. NF-κB, the first quarter-century: Remarkable progress and outstanding questions. *Genes Dev.* 2012, 26, 203-234
- Siebenlist, U.; Franzoso, G.; Brown, K. Structure, regulation and function of NF-κB. *Annu. Rev. Cell Biol.* 1994, *10*, 405-455
- Kumar, A.; Takada, Y.; Boriek, A. M.; Aggarwal, B. B. Nuclear factor-κB: Its role in health and disease. *J. Mol. Med.* 2004, *82*, 434-448
- Arepalli, S. K.; Choi, M.; Jung, J. K.; Lee, H. Novel NF-κB inhibitors: A patent review (2011-2014). *Expert Opin. Ther. Pat.* 2015, 25, 319-334
- Kwak, J. H.; Jung, J. K.; Lee, H. Nuclear factor-kappa B inhibitors; A patent review (2006 - 2010). *Expert Opin. Ther. Pat.* 2011, 21, 1897-1910.
- Srinivasan, B.; Johnson, T. E.; Lad, R.; Xing, C. Structure -Activity relationship studies of chalcone leading to 3hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor κ B inhibitors and their anticancer
  - activities. J. Med. Chem. 2009, 52, 7228-7235. Chen, H.; Yang, Z.; Ding, C.; Chu, L.; Zhang, Y.; Terry, K.;
- 8. Chen, H.; Yang, Z.; Ding, C.; Chu, L.; Zhang, Y.; Terry, K.; Liu, H.; Shen, Q.; Zhou, J. Discovery of O-alkylamino-

tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. *ACS Med. Chem. Lett.* **2013**, *4*, 180-185.

- Choi, M.; Hwang, Y. S.; Kumar, A. S.; Jo, H.; Jeong, Y.; Oh, Y.; Lee, J.; Yun, J.; Kim, Y.; Han, S. B.; Jung, J. K.; Cho, J.; Lee, H. Design and synthesis of 3,4-dihydro-2Hbenzo[h]chromene derivatives as potential NF-κB inhibitors. *Bioorg. Med. Chem. Lett.* 2014, 24, 2404-2407.
- Choi, M.; Jo, H.; Park, H. J.; Sateesh Kumar, A.; Lee, J.; Yun, J.; Kim, Y.; Han, S. B.; Jung, J. K.; Cho, J.; Lee, K.; Kwak, J. H.; Lee, H. Design, synthesis, and biological evaluation of benzofuran- and 2,3-dihydrobenzofuran-2-carboxylic acid N-(substituted)phenylamide derivatives as anticancer agents and inhibitors of NF-κB. *Bioorg. Med. Chem. Lett.* **2015**, *25*, 2545-2549.
- Kwak, J. H.; Kim, Y.; Park, H.; Jang, J. Y.; Lee, K. K.; Yi, W.; Kwak, J. A.; Park, S. G.; Kim, H.; Lee, K.; Kang, J. S.; Han, S. B.; Hwang, B. Y.; Hong, J. T.; Jung, J. K.; Kim, Y.; Cho, J.; Lee, H. Structure-activity relationship of indoline-2carboxylic acid N-(substituted)phenylamide derivatives. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 4620-4623.
- Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Advances in the chemistry of tetrahydroquinolines. *Chem. Rev.* 2011, *111*, 7157-7259.
- Katritzky, A. R.; Rachwal, S.; Rachwal, B. Recent progress in the synthesis of 1,2,3,4-tetrahydroquinolines. *Tetrahedron* 1996, *52*, 15031
- Asolkar, K. N.; Schröder, D.; Heckman, R.; Lang, S.; Wagner-Döbler, I.; Laatsch, H. Helquinoline, a new tetrahydroquinoline antibiotic from Janibacter limosus Hel 1. *J. Antibiot.* 2004, *57*, 17-23.
- Pitta, M. G. R.; Pitta, M. G. R.; Rêgo, M. J. B. M.; Galdino, S. L. The evolution of drugs on schistosoma treatment: Looking to the past to improve the future. *Mini-Rev. Med. Chem.* 2013, 13, 493-508.
- Leeson, P. D.; Carling, R. W.; Moore, K. W.; Moseley, A. M.; Smith, J. D.; Stevenson, G.; Chan, T.; Baker, R.; Foster, A. C.; Grimwood, S.; Kemp, J. A.; Marshall, G. R.; Hoogsteen, K. 4-Amido-2-carboxytetrahydroquinolines. Structure-activity relationships for antagonism at the glycine site of the NMDA receptor. J. Med. Chem. 1992, 35, 1954-1968.
- Khan, P. M., R. G. Correa, D. B. Divlianska, S. Peddibhotla, E. H. Sessions, G. Magnuson, B. Brown, E. Suyama, H. Yuan, A. Mangravita-Novo, M. Vicchiarelli, Y. Su, S. Vasile, L. H. Smith, P. W. Diaz, J. C. Reed, and G. P. Roth. 2011. Identification of inhibitors of NOD1-induced nuclear factorkB activation. ACS Med. Chem. Lett. 2011, 2, 780-785.
- Bedoya, L. M., M. J. Abad, E. Calonge, L. A. Saavedra, M. Gutierrez C, V. V. Kouznetsov, J. Alcami, and P. Bermejo. 2010. Quinoline-based compounds as modulators of HIV transcription through NF-κB and Sp1 inhibition. *Antiviral Research* 2010, *87*, 338-344.
- Moon, K. Y.; Hahn, B. S.; Lee, J.; Kim, Y. S. A cell-based assay system for monitoring NF-κB activity in human HaCaT transfectant cells. *Anal. Biochem.* 2001, 292, 17-21.
- Greten, F. R.; Eckmann, L.; Greten, T. F.; Park, J. M.; Li, Z. W.; Egan, L. J.; Kagnoff, M. F.; Karin, M. IKKβ links inflammation and tumorigenesis in a mouse model of colitisassociated cancer. *Cell* **2004**, *118*, 285-296.
- 21. Pyrrolidine dithiocarbamate inhibits translocation of nuclear factor kappa-B in neurons and protects against brain ischaemia with a wide therapeutic time window. J. Neurochem. 2004, 91, 755-765.
- 22. Hayakawa, M.; Miyashita, H.; Sakamoto, I.; Kitagawa, M.; Tanaka, H.; Yasuda, H.; Karin, M.; Kikugawa, K. Evidence

1 2

3

 that reactive oxygen species do not mediate NF- $\kappa$ B activation. *EMBO J.* **2003**, *22*, 3356-3366.

- Liu, S. F.; Ye, X.; Malik, A. B. In Vivo Inhibition of Nuclear Factor-κB Activation Prevents Inducible Nitric Oxide Synthase Expression and Systemic Hypotension in a Rat Model of Septic Shock. J. Immunol. 1997, 159, 3976-3983.
- Ziegler-Heitbrock, H. W. L.; Sternsdorf, T.; Liese, J.; Belohradsky, B.; Weber, C.; Wedel, A.; Schreck, R.; Bäuerle, P.; Ströbel, M. Pyrrolidine dithiocarbamate inhibits NF-κB mobilization and TNF production in human monocytes. J. Immunol. 1993, 151, 6986-6993.
- Schreck, R.; Meier, B.; Männel, D. N.; Dröge, W.; Baeuerle, P. A. Dithiocarbamates as potent inhibitors of nuclear factor κB activation in intact cells. *J. Exp. Med.* **1992**, *175*, 1181-1194.
- Kim, B. H.; Reddy, A. M.; Lee, K. H.; Chung, E. Y.; Cho, S. M.; Lee, H.; Min, K. R.; Kim, Y. Inhibitory mechanism of chroman compound on LPS-induced nitric oxide production and nuclear factor-kB activation. *Biochem. Biophys. Res. Commun.* 2004, 325, 223-228.

**TOC Graphics** 

