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Abstract: Chlorothiolation of terminal alkynes with sulfenyl
chlorides yields anti-adducts without transition-metal cata-
lysts. In sharp contrast, transition-metal-catalyzed chloro-
thiolation has not been developed to date, possibly because
organosulfur compounds can poison catalyst. Herein, the
regio- and stereoselective palladium-catalyzed chlorothiola-
tion of terminal alkynes with sulfenyl chlorides is described.
syn-Chlorothiolation offers a complementary synthetic route
to chloroalkenyl sulfides. 2-Chloroalkenyl sulfides can easily
be transformed into various sulfur-containing products, most
of which are often found in natural products and pharma-
ceuticals.

Addition of organosulfur compounds to alkynes is
a straightforward synthetic approach to highly functional-
ized alkenyl sulfides that are a valuable and important class
of compounds in organic synthesis.[1] Among them, success-
ful additions of various carbon–sulfur bonds to alkynes (car-
bothiolation) have been developed with palladium, plati-
num, and rhodium catalysts in the past two decades.[2] Chlor-
othiolation of alkynes has also been studied for many
years[3] because the chlorothiolation adducts, 2-chloroalkenyl
sulfides, are versatile alternatives to the carbothiolation ad-
ducts, which can be converted into various complex alkenyl
sulfides by further transformations. However, it is still diffi-
cult to control regio- and stereoselectivities of chlorothiola-
tion. In principle, chlorothiolation of sulfenyl chlorides 2
across terminal alkynes 1 could give four regio- and stereo-
isomers, that is, (E)/(Z)-3 and (E)/(Z)-4 (Scheme 1). Al-
though anti-addition can proceed without any transition-
metal catalysts and gives (E)-2-chloroalkenyl sulfides (E)-4
as sole products (path a)[3] and the formed adduct (E)-4 pre-

pared was reported to isomerize to (Z)-3 in the presence of
a catalytic amount of 2 (path e),[3d] only 3,3-dimethyl-1-
butyne could be used in this reaction, and long isomeriza-
tion time (1–3 days) is required. Therefore, a complementary,
and more practical synthetic approach to other chlorothiola-
tion adducts (E)/(Z)-3 and (Z)-4 (paths b–d) under mild
conditions has been highly desirable. Meanwhile, as another
example of the addition of chlorine–sulfur bonds to alkynes,
transition-metal-catalyzed chlorosulfonylation of alkynes
has been known to provide the corresponding adducts with
high regio- and stereoselectivities. More recently, Nakamura
and co-workers have investigated the iron-catalyzed chloro-
sulfonylation that delivers anti-addition via a radical path-
way (path b).[4,5] In addition, the copper-catalyzed chlorosul-
fonylation has been communicated to afford syn-adducts
(path c).[6] These examples prompted us to investigate the
transition-metal-catalyzed chlorothiolation of alkynes, be-
cause it is difficult to prepare the resulting (Z)-3 by reduc-
tion of the corresponding alkenyl sulfones synthesized by
the copper-catalyzed chlorosulfonylation.[7] Herein, we
report the highly regio- and stereoselective addition of sulfe-
nyl chlorides 2 to terminal alkynes 1 under palladium cataly-
sis to yield (Z)-2-chloroalkenyl sulfides (Z)-3 with a high ef-
ficiency, according to path c.

We found that phenylacetylene (1 a) reacted with benze-
nesulfenyl chloride (2 a) in the presence of 10 mol % of Pd-ACHTUNGTRENNUNG(tfa)2 (tfa= trifluoroacetate) in toluene at 25 8C to give (Z)-
2-chloro-2-phenylethenyl phenyl sulfide ((Z)-3 a) in 84 %
yield, as determined by NMR spectroscopy, with high regio-
and stereoselectivities (Table 1, entry 1). The reaction was
completed within 2 h, while a prolonged reaction time of
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Scheme 1. Chlorothiolation of alkynes.
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12 h did not improve the yield of (Z)-3 a (Table 1, entry 2).
By contrast, in the absence of the palladium catalyst, the
anti-adduct (E)-4 a was obtained as a sole product in 13 %
yield under identical conditions (Table 1, entry 3). We
assume that without the palladium catalyst compound (E)-
4 a was formed through the formation of thiirenium inter-
mediate and the subsequent nucleophilic attack of the coun-
ter chloride ion at the less hindered carbon, as proposed in
the literature.[3] It is found that palladium-catalyzed syn-
chlorothiolation was much faster than anti-addition, and
indeed 61 % of the palladium-catalyzed product (Z)-3 a was
formed after 5 min.[8] Although anti-chlorothiolation of an
alkyne in polar ethyl acetate was known to proceed quanti-
tatively at room temperature,[3d] it took 12 h to obtain (E)-
4 a in 67 % yield in toluene even at reflux (Table 1, entry 4).
Pd ACHTUNGTRENNUNG(OAc)2, Pd ACHTUNGTRENNUNG(dba)2 (dba =dibenzylideneacetone), and
PdCl2 were found to perform poorly (entries 5–7). It is note-
worthy that the palladium catalysts suppress the formation
of (E)-4 a, probably due to a strong coordination of palladi-
um to 1 (Table 1, entry 3 vs. entries 1, 5–7). Although
copper salts CuCl and CuCl2 are known to catalyze the
chlorosulfonylation of alkynes,[4] they proved ineffective cat-
alysts for chlorothiolation (Table 1, entries 8 and 9).[9] The
addition of phosphine ligands (PPh3, PCy3, or dppf; dppf =

1,1’-bis(diphenylphosphino)ferrocene) decreased the yields
of (Z)-3 a. Toluene proved to be the best solvent, whereas
1,4-dioxane, benzene, ethyl acetate, dichloromethane, and
hexane were inferior (Table 1, entries 10–14). At higher con-
centrations, decomposition of 2 a occurred and substantial
amounts of diphenyl disulfide were detected.

To confirm the configuration of the adduct (Z)-3 a unam-
biguously, the liquid (Z)-3 a was oxidized with mCPBA (m-
chloroperoxybenzoic acid) to the corresponding crystalline
sulfoxide 5 (Scheme 2). X-ray crystallographic analysis re-
vealed that sulfoxide 5 was in the (Z)-configuration
(Figure 1).[10]

With the optimized reaction conditions in hand, we then
introduced a range of terminal alkynes 1 into the reactions
with sulfenyl chlorides 2. Chlorothiolation of various aro-
matic alkynes gave the corresponding syn-adducts (Z)-3 a–
3 f in moderate to good yields with high regio- and stereose-
lectivities (Table 2, entries 1–6). The reactions of electron-
rich alkynes gave higher yields than those of electron-defi-
cient alkynes, suggesting that a stronger coordination of 1 to
palladium facilitates the migratory insertion step (see

Table 1. Chlorothiolation of phenylacetylene (1 a) with benzenesulfenyl
chloride (2a).[a]

Entry Catalyst Solvent Yield [%][b]

(Z)-3 a (E)-4a

1 Pd ACHTUNGTRENNUNG(tfa)2 toluene 84 (79) 3
2[c] Pd ACHTUNGTRENNUNG(tfa)2 toluene 73 4
3 none toluene 0 13
4[d] none toluene 0 67
5 Pd ACHTUNGTRENNUNG(OAc)2 toluene 58 <1
6 Pd ACHTUNGTRENNUNG(dba)2 toluene 36 <1
7 PdCl2 toluene 10 5
8 CuCl toluene 0 7
9 CuCl2 toluene 0 11
10 Pd ACHTUNGTRENNUNG(tfa)2 1,4-dioxane 67 0
11 Pd ACHTUNGTRENNUNG(tfa)2 benzene 63 2
12 Pd ACHTUNGTRENNUNG(tfa)2 EtOAc 63 2
13 Pd ACHTUNGTRENNUNG(tfa)2 CH2Cl2 39 27
14 Pd ACHTUNGTRENNUNG(tfa)2 hexane 5 5

[a] Conditions: 1 a (0.2 mmol), 2a (0.24 mmol), catalyst (10 mol %), tolu-
ene (2.4 mL). [b] Yields were determined by the 1H NMR spectroscopic
analysis of a crude mixture using dibenzyl ether as an internal standard.
An isolated yield based on 1 a after silica gel column chromatography is
shown in parenthesis. [c] Performed for 12 h. [d] Performed at 110 8C for
12 h.

Scheme 2. Oxidation of (Z)-3 a.

Figure 1. ORTEP drawing of 5 with thermal ellipsoids at the 50 % proba-
bility level. Hydrogen atoms, except for that on C1, are omitted for clari-
ty.

Table 2. Palladium-catalyzed chlorothiolation of terminal alkynes 1 with
sulfenyl chlorides 2.[a]

Entry R R’ Product Yield [%][b]

1 Ph Ph (2 a) (Z)-3 a 79
2 4-MeC6H4 Ph (2 a) (Z)-3 b 79
3 4-MeOC6H4 Ph (2 a) (Z)-3 c 62
4 4-ClC6H4 Ph (2 a) (Z)-3 d 53
5 4-F3CC6H4 Ph (2 a) (Z)-3 e 41
6 4-NCC6H4 Ph (2 a) (Z)-3 f 36
7 tBu Ph (2 a) (Z)-3 g 55
8 Me3Si Ph (2 a) (Z)-3 h 39
9 Ph (1 a) 4-MeC6H4 (2b) (Z)-3 i 80
10 Ph (1 a) 4-MeOC6H4 (2c) (Z)-3 j 64
11 Ph (1 a) 4-BrC6H4 (2 d) (Z)-3 k 37
12 Ph (1 a) 4-F3CC6H4 (2 e) (Z)-3 l 42
13 Ph (1 a) 2-MeC6H4 (2 f) (Z)-3 m 66

[a] Conditions: 1 (0.5 mmol), 2 (0.6 mmol), Pd ACHTUNGTRENNUNG(tfa)2 (10 mol %), toluene
(6 mL). Small amounts of (E)-4 (1–9 %) were present as minor products.
[b] Isolated yields based on 1 after silica gel column chromatography.
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below). The reaction of aliphatic terminal alkynes such as 1-
octyne and propargylbenzene gave a mixture of the isomers
(Z)-3 and (E)-4 with poor selectivity, whereas the sterically
hindered terminal alkynes such as 3,3-dimethyl-1-butyne
and trimethylsilylacetylene underwent the selective reaction
to yield the corresponding adducts (Z)-3 g and (Z)-3 h, re-
spectively (Table 2, entries 7 and 8). This selectivity can be
rationalized by considering that the electron-rich aliphatic
alkynes would accelerate non-catalyzed anti-addition, but
that the steric bulkiness of the substituents would avoid the
nucleophilic attack of the chloride counterion after the for-
mation of the thiirenium species in the uncatalyzed pathway.
On the other hand, internal alkynes such as 4-octyne and di-
phenylacetylene did not give the desired products (Z)-3
under optimized reaction conditions and instead gave anti-
products (E)-4 in 78 % and 3 %, respectively. These results
imply that two substituents of internal alkyne would sup-
press a coordination of palladium to the alkynes and conse-
quently lead to an acceleration of the non-catalyzed anti-ad-
dition.

Next, a variety of sulfenyl chlorides 2 were examined for
the chlorothiolation of 1 a. Electron-rich aromatic sulfenyl
chlorides 2 b and 2 c reacted smoothly (Table 2, entries 9 and
10). The reaction of the brominated substrate 2 d occurred
to provide the corresponding adduct (Z)-3 k, and left the
bromo substituent intact (Table 2, entry 11). Electron-defi-
cient 2 e also participated in the reaction, albeit in low yield
(Table 2, entry 12). A substituent at the ortho-position did
not retard the reaction to afford (Z)-3 m in 66 % yield
(entry 13).

Although the reaction mechanism of the present chloro-
thiolation is not clear at this stage, one of the possible reac-
tion mechanisms is a Pd0/PdII pathway initiated by oxidative
addition of the sulfenyl chlorides 2 to Pd0, which has prece-
dent in the transition-metal-catalyzed addition of thiocya-
nates[11] and disulfides[12] to alkynes. Therein, oxidative addi-
tion of 2 to Pd0 would afford a chloropalladium(II) arene-
thiolate complex.[13] The subsequent chloropalladation of
terminal alkynes 1 in a syn-fashion affords 2-chloro-1-alke-
nylpalladium species.[14] Sequential reductive elimination de-
livers 3 and regenerates the initial Pd0 catalyst. We believe
that high regioselectivity can be attributed to a steric control
as the relatively bulky palladium moiety adds to the termi-
nal carbon of the alkynes. Reported examples of the inser-
tion of alkynes into a chlorine–palladium bond[15,16] are sug-
gestive of this mechanism, although the other pathways
through thiopalladation cannot be ruled out.[17,18] While it
was reported anti-adduct (E)-4 can isomerize into syn-
adduct (Z)-3 with a slight excess of sulfenyl chloride,[3d] no
isomerization was observed under our reaction conditions.[19]

Homolytic cleavage of the chlorine–sulfur bond in 2 could
occur,[4a–c,5,20] and so the reaction has the possibility to pro-
ceed via a radical pathway. Single-electron transfer (SET)
from Pd0 to sulfenyl chloride generates PdICl and a sulfenyl
radical. The subsequent radical addition at the less hindered
position of terminal alkyne gives the corresponding alkenyl
radical species. Recombination of PdICl with carbon-cen-

tered radical forms divalent palladium species, in which co-
ordination of sulfur to palladium controls the regioselectivi-
ty to form the (Z)-alkenylpalladium species. Finally, reduc-
tive elimination affords the adducts and regenerates Pd0. We
then investigated the reaction of 1 a with 2 a in the presence
of a radical scavenger (Scheme 3). Consequently, we deter-

mined that even in the presence of TEMPO (2,2,6,6-tetra-
methylpiperidine 1-oxyl) or garvinoxyl the chlorothiolation
proceeded smoothly to form (Z)-3 a in 60 % and 68 % yields,
respectively. We also did not observe any adduct of radical
scavengers in both reactions. These results strongly rule out
a radical process.

The utility of the chlorothiolation adducts (Z)-3 is illus-
trated in Scheme 4. The adduct (Z)-3 a was treated with
mCPBA to afford the corresponding sulfone 6, which was
then treated with a thiol to give the vic-difunctionalized
alkene 7[21] bearing two different arylthio groups. Dithioal-
kene 7 is a potent ligand for transition-metal-catalyzed allyl-
ic substitution reactions,[22] which cannot be prepared from
anti-adduct (E)-4.

Since the in situ synthesis of 2 from the corresponding
thiols and N-chlorosuccinimide (NCS) has been widely uti-
lized,[23] a more practical sequence with chlorination of thiol
and subsequent chlorothiolation of 1 a was envisaged. Thus,
the in situ prepared 2 a, derived from chlorination of benze-
nethiol with NCS, was treated with 1 a and Pd ACHTUNGTRENNUNG(tfa)2 to give
(Z)-3 a in 83 % overall yield (Scheme 5 a). Encouraged by
the success of this one-pot synthesis of (Z)-3 a, we thus in-
vestigated chlorothiolation with aliphatic sulfenyl chlorides.
Since methanesulfenyl chloride (2 g) was found to be unsta-
ble and to decompose easily on the bench top, we per-
formed the one-pot reaction of phenylacetylene (1 a), start-
ing from dimethyl disulfide. To our delight, chlorothiolation
proceeded to give the corresponding product (Z)-3 n in 36 %

Scheme 3. Reactions in the presence of radical scavengers.

Scheme 4. Transformation of (Z)-3a.
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yield (Scheme 5 b). These results suggest that various sulfe-
nyl chlorides, even those that are difficult to isolate, could
be utilized directly in the present reaction, which in turn
would expand the generality of the chlorothiolation reac-
tion.

In summary, we have developed the first regio- and ste-
reoselective addition of sulfenyl chlorides to terminal al-
kynes catalyzed by a palladium complex under mild condi-
tions. This synthetic approach can provide stereodefined al-
kenyl sulfides in a facile and straightforward manner. Stud-
ies on the detailed reaction mechanism and the application
of this reaction to the synthesis of sulfur-containing complex
molecules are currently in progress.

Experimental Section

A typical procedure for palladium-catalyzed addition of sulfenyl chlor-
ides to terminal alkynes: Under an argon atmosphere, palladium trifluor-
oacetate (6.6 mg, 0.02 mmol) was placed in a 20 mL Schlenk tube. Tolu-
ene (0.80 mL) was then added at room temperature. The resulting sus-
pension was stirred for 5 min, and benzenesulfenyl chloride (2 a, 34.7 mg,
0.24 mmol) was added. Phenylacetylene (1a, 20.4 mg, 0.20 mmol) in tolu-
ene (1.6 mL) was added dropwise to the reaction mixture. The mixture
was stirred at room temperature for 2 h. Saturated sodium thiosulfate so-
lution (5 mL) was added to quench the reaction. The mixture was ex-
tracted with ethyl acetate (3 � 5 mL). The combined organic layers were
dried over anhydrous magnesium sulfate and concentrated under reduced
pressure. The resulting residue was purified by silica gel column chroma-
tography (hexane) to give (Z)-2-chloro-2-phenylethenyl phenyl sulfide
((Z)-3 a) (38.9 mg, 0.158 mmol, 79%).
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Palladium-Catalyzed Regio- and Ste-
reoselective Chlorothiolation of
Terminal Alkynes with Sulfenyl Chlor-
ides

Pick and choose : The first chlorothio-
lation of alkynes in a syn-fashion is
achieved by cleavage of the chlorine–
sulfur bond in sulfenyl chlorides. Treat-
ment of terminal alkynes with sulfenyl

chlorides in the presence of palladium
catalyst at ambient temperature leads
to (Z)-2-chloroalkenyl sulfides with
high regio- and stereoselectivities.
tfa= trifluoroacetate.
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