of intramolecular electron transfer from the nitrogen center.

Experimental Section

The 2-aryl-3-benzoyl- and 2,3-dibenzoylaziridines employed in the present study were prepared through the reaction of appropriate amines with requisite α, β-dibromoketones. Procedures reported in the literature were followed. Melting points and references are as follows: $1\left(99-100^{\circ} \mathrm{C}\right) ; ;^{26,27} 2 \mathrm{a}\left(101-102^{\circ} \mathrm{C}\right) ;{ }^{26,27}$ 2b ($105-106^{\circ} \mathrm{C}$); ${ }^{27-29} 3\left(90-91{ }^{\circ} \mathrm{C}\right)$) ${ }^{30,31} 4$ ($122^{\circ} \mathrm{C}$) $;^{32} 5$ ($124-125$ $\left.{ }^{\circ} \mathrm{C}\right) ;^{32} \mathbf{6 a}\left(138-139{ }^{\circ} \mathrm{C}\right) ; ;^{27,33} \mathbf{6 b}\left(149-150{ }^{\circ} \mathrm{C}\right) ;{ }^{27,33}$ and $7(135-136$ ${ }^{\circ} \mathrm{C}$)..27,33 Stereochemical assignments of both cis and trans isomers were confirmed by ${ }^{1} \mathrm{H}$ NMR spectra ${ }^{33,34}$ recorded on a Nicolet NB-300 NMR spectrometer. The solvents employed were Aldrich Gold Label benzene, methanol, and acetonitrile. MN, DMHD, and DMAD, all from Aldrich, were vacuum-distilled. Trifluoroacetic acid (Aldrich) was used as received; paraquat (methylviologen, Aldrich) was precipitated from aqueous methanol by adding excess acetone.

The absorption spectra were recorded on a Cary 219 spectrophotometer ($1-\mathrm{nm}$ band pass). The low-temperature ylide spectra were measured in quartz cells (3-mm-path lengths) immersed in liquid nitrogen contained in a Dewar provided with flat-faced quartz windows. The steady-state irradiation was carried out at 366,335 , or 315 nm by using the output from a medium-pressure
(27) Kumar, C. V.; Ramaiah, D.; Das, P. K.; George, M. V. J. Org. Chem. 1985, 50, 2818-2825.
(28) Southwick, P. L.; Christman, D. R. J. Am. Chem. Soc. 1952, 74, 1886-1891.
(29) Bhat, V.; George, M. V. Tetrahetron Lett. 1977, 4133-4136.
(30) Cromwell, N. H.; Babson, R. D.; Harris, C. E. J. Am. Chem. Soc. 1943, 65, 312-315.
(31) Cromwell, N. H.; Barker, N. G.; Wankel, R. A.; Vanderhorst, P. J.; Olson, F. W.; Anglin, J. H., Jr. J. Am. Chem. Soc. 1951, 73, 1044-1051.
(32) Cromwell, N. H.; Bamburry, R. E.; Adelfang, J. L. J. Am. Chem. Soc. 1960, 82, 4241-4245.
(33) Cromwell, N. H.; Cahoy, R. P.; Franklin, W. E.; Mercer, G. D. J. Am. Chem. Soc. 1957, 79, 922-926.
(34) Matsumoto, K.; Nakamura, S. Heterocycles 1980, 14, 837-846.

Hg lamp (B \& L SP-200) coupled with a monochromater (B \& L 33-86-07).
For laser flash photolysis, pulse excitation was carried out mostly at $337.1 \mathrm{~nm}(2-3 \mathrm{~mJ}, \sim 8 \mathrm{~ns})$, employing a Molectron UV-400 nitrogen laser system. For some experiments, the output (third harmonic, $355 \mathrm{~nm}, 5-20 \mathrm{~mJ}, 6 \mathrm{~ns}$) from a Quanta-Ray Nd-YAG system was also used. The transient phenomena were observed in terms of absorption in $2-3-\mathrm{mm}$ quartz cells by using a kinetic spectrophotometer described in earlier papers. ${ }^{35}$ Unless oxygen effects were meant to be studied, the solutions were deoxygenated by purging with argon or nitrogen. In the experiments requiring a large number of laser shots (e.g., for wavelength-by-wavelength measurements of transient absorption spectra), a flow system was used in which the solution for photolysis was allowed to drain from a reservoir through the cell.
For pulse radiolysis, 5 -ns electron pulses from the Notre Dame $7-\mathrm{MeV}$ ARCO LP-7 linear accelerator was used at dose rates of $2 \times 10^{16} \mathrm{eV} / \mathrm{g}$ per pulse. The details of the computer-controlled spectrophotometric detection system are available elsewhere. ${ }^{36}$ Nitrogen-saturated benzene solutions were allowed to flow through a quartz cell ($1-\mathrm{cm}$-path length) that was irradiated with electron pulses in a right-angle geometry with respect to the analyzing light. The conventional lamp flash photolysis system is described elsewhere. ${ }^{37}$

Acknowledgment. We are thankful to Dr. G. Ferraudi for access to the lamp flash photolysis system and to Dr. S. Das for assistance in using it.
(35) Turner, A. B.; Heine, H. W.; Irving, J.; Bush, J. B., Jr. J. Am. Chem. Soc. 1965, 87, 1050-1055.
(36) Nagel, D. L.; Woller, P. B.; Cromwell, N. H. J. Org. Chem. 1971, 36, 3911-3917.
(37) (a) Das, P. K.; Encinas, M. V.; Small, R. D., Jr.; Scaiano, J. C. J. Am. Chem. Soc. 1979, 101, 6965-6970 and references therein. (b) Nagarajan, V.; Fessenden, R. W. J. Phys. Chem. 1985, 89, 2330-2335.
(38) (a) Patterson, L. K.; Lilie, J. Int. J. Radiat. Phys. Chem. 1974, 6, 129-141. (b) Schuler, R. H.; Buzzard, G. K. Int. J. Radiat. Phys. Chem. 1976, 8, 563-574. (c) Schuler, R. H. Chem. Educ., submitted.
(39) Prasad, D. R.; Ferraudi, G. Inorg. Chem. 1983, 22, 1672-1674.

Recurring Chains Following Addiltion of Atomic Hydrogen to Acetylene

Anthony B. Callear* and Geoffrey Benedict Smith
Physical Chemistry Department, University of Cambridge, Cambridge, U.K. (Received: October 8, 1985)

The $\mathrm{C}_{2} \mathrm{H}_{3}$ radical was prepared by attachment of H atoms to $\mathrm{C}_{2} \mathrm{H}_{2}$. Complex chain reactions ensue: $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$ $+\mathrm{H} ; \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{5} ; \mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{6}$ (1,3-butadiene) $+\mathrm{H} ; \mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}$ (cis addition) $; \mathrm{C}_{4} \mathrm{H}_{5}$ $+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{7}$ (trans addition); $\mathrm{C}_{6} \mathrm{H}_{7}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{8}$ (trans-1,3,5-hexatriene) $+\mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{C}_{8} \mathrm{H}_{9}$ (leading to higher members). Relative rate coefficients are derived from product ratios, and the system has been closely matched with a model scheme. The products of the mutual termination reaction of two $\mathrm{C}_{2} \mathrm{H}_{3}$ radicals have been investigated.

Introduction

The object of this research has been to characterize some reactions of the vinyl radical, $\mathrm{C}_{2} \mathrm{H}_{3}$, particularly those related to the gas chemistry in CO_{2} gas cooled nuclear reactors. ${ }^{1,2} \quad \mathrm{C}_{2} \mathrm{H}_{3}$ has been prepared by addition of H atoms to $\mathrm{C}_{2} \mathrm{H}_{2}$, which is known to be close to the high-pressure limit with a total pressure of ~ 500 Torr at ambient temperature. Under nearly all the conditions

[^0]chosen for this work, loss of H by reactions other than addition to $\mathrm{C}_{2} \mathrm{H}_{2}$ is negligible.

There has been considerable progress in understanding aspects of the gas chemistry of $\mathrm{C}_{2} \mathrm{H}_{3}$ during the past few years. It is known that with molecular oxygen CHO and $\mathrm{CH}_{2} \mathrm{O}$ are produced, ${ }^{3}$ and rate coefficients have been measured. ${ }^{4}$ Vibrationally excited products have been detected in the reactions of O and F atoms with $\mathrm{C}_{2} \mathrm{H}_{3} .{ }^{5}$ Infrared emission from $\mathrm{C}_{2} \mathrm{H}_{3}$ has been observed,

[^1]following formation of the excited radical in the photolysis of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} .{ }^{6}$ The discovery of an electronic system of $\mathrm{C}_{2} \mathrm{H}_{3}$ has been reported recently.?
However, it seem that there is little published data on reactions of $\mathrm{C}_{2} \mathrm{H}_{3}$ with $\mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$, and CO , one aspect of the present study. Nor does there appear to be any literature on $\mathrm{C}_{4} \mathrm{H}_{5}$ and $\mathrm{C}_{6} \mathrm{H}_{7}$ reactions in the gas phase.

A preliminary report on this work has already been published. ${ }^{8}$

Experimental Section

Mixtures of H_{2} and $\mathrm{C}_{2} \mathrm{H}_{2}$, in a cylindrical quartz reaction vessel of length 10 cm , were irradiated with 2537- \AA resonance radiation from a low-pressure mercury discharge lamp. The lamp was air-cooled and maintained at 313 K . A mercury reservoir on the reaction vessel was held at 293 K .

The products were identified by gas chromatographic separation, using flame ionization detection.

The standard procedure was to admit a sample of irradiated gas to an evacuated U-tube, from which it could be injected directly into the column. For the hexatriene separation, the resolution was improved by holding up the sample in a cold trap of small diameter, immediately before the column entrance.

Calibration of the detector with C_{2} and C_{4} gases showed that the sensitivity of detection of the products (area under the traces) was proportional to both the number of C atoms in the molecule and the number of moles injected.

All materials were of research grade purity. $\mathrm{C}_{2} \mathrm{H}_{2}$ was thoroughly degassed and was further purified by distilling from a trap at $130 \mathrm{~K} . \mathrm{H}_{2}$ and CO were stored over reduced copper at 560 K .

Results

Vinyl radicals were prepared by generating atomic hydrogen in the presence of small pressures of $\mathrm{C}_{2} \mathrm{H}_{2}$.

$$
\begin{gathered}
\mathrm{Hg}\left({ }^{3} \mathrm{P}_{1}\right)+\mathrm{H}_{2} \rightarrow 2 \mathrm{H} \text { (in part via } \mathrm{HgH} \text {) } \\
\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{M}
\end{gathered}
$$

The method has the advantage of allowing several of the variables to be changed independently.

The positions of the resonance lamp and reaction vessel were adjusted to achieve a low light input of 1.8×10^{14} quanta cm^{-2} s^{-1} which was measured by determining the rate of formation of n-butane in the H plus $\mathrm{C}_{2} \mathrm{H}_{4}$ reaction; the quantum yield is $\simeq 0.85$ with high pressures of H_{2}. With the low excitation rate, HgH is expected to undergo thermal dissociation much more rapidly than its rate of reaction with other intermediates.

The following primary reaction products have been identified from their elution times through various columns: ethene, 1,3butadiene, benzene, and trans-1,3,5-hexatriene. Comparatively small traces of a second C_{4} species, possibly vinylacetylene, have been detected but not systematically investigated. Formation of $\mathrm{C}_{6} \mathrm{H}_{6}$ has been confirmed by mass spectrometry and NMR.
trans $-\mathrm{C}_{6} \mathrm{H}_{8}$ was identified by comparing elution times with a commercial sample which contained about 0.7 of the trans and 0.3 of the cis isomer. The trans form (bp $80-80.5^{\circ} \mathrm{C}$) appears first and can be almost completely separated from the cis isomer ($\mathrm{bp} 82-83^{\circ} \mathrm{C}$) on both squalane and diisodecyl phthalate. These observations are similar to those of Hwa et al., ${ }^{10}$ who have isolated

[^2]

Figure 1. Formation of $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{4} \mathrm{H}_{6}$ with time: (upper) $\left[\mathrm{H}_{2}\right]=200$ Torr, $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=20$ Torr; (lower) $\left[\mathrm{H}_{2}\right]=100$ Torr, $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=8$ Torr.
each of the $1,3,5$-hexatrienes. On oxydiproprionitrile, the $\mathrm{C}_{6} \mathrm{H}_{6}$ (bp $78{ }^{\circ} \mathrm{C}$) eluted last, so that each of the C_{6} products could be estimated. On squalane, $\mathrm{C}_{6} \mathrm{H}_{6}$ coincides with cis $-\mathrm{C}_{6} \mathrm{H}_{8}$. The product of the H plus $\mathrm{C}_{2} \mathrm{H}_{2}$ reaction, which has the same retention time as trans-1,3,5-hexatriene on both columns, is increased relative to $\mathrm{C}_{6} \mathrm{H}_{6}$ in proportion to $\left[\mathrm{H}_{2}\right]$; considering also the reaction scheme adduced later, there can be little doubt that in fact it is trans $-\mathrm{C}_{6} \mathrm{H}_{8}$. A reaction product with mass 80 has also been detected by mass spectrometry.

A minor product occurs, $\sim 1 / 5$ of the trans $-\mathrm{C}_{6} \mathrm{H}_{8}$, having the same retention time as cis $-\mathrm{C}_{6} \mathrm{H}_{8}$; the yield shows little variation with either $\left[\mathrm{H}_{2}\right]$ or $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$. We are unable to make a definite assignment in this case, though part of this component probably is cis- $\mathrm{C}_{6} \mathrm{H}_{8}$, present to the extent of about 5% of the $\mathrm{C}_{6} \mathrm{H}_{6}$.

The dependence of the trans- $\mathrm{C}_{6} \mathrm{H}_{8}$ yields on $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ indicated that the trans $-\mathrm{C}_{6} \mathrm{H}_{7}$ radical adds to $\mathrm{C}_{2} \mathrm{H}_{2}$ to form higher products; a search for higher members indicated that styrene is formed in low yield, though quantitative measurements have not been made.

In the first experiments, $\mathrm{C}_{2} \mathrm{H}_{4}$ and $1,3-\mathrm{C}_{4} \mathrm{H}_{6}$ products were identified with an alumina column, and Figure 1 shows the evolution with time. Evidently, there is an attenuation of the rates of formation with increasing exposure; it would appear that the $\mathrm{C}_{4} \mathrm{H}_{6}$ is very susceptible to secondary attack by the reaction intermediates and rapidly attains a stationary maximum. To avoid as much as possible secondary loss of primary products, nearly all experiments at 300 K were made with a 30 -s exposure, which was progressively reduced as the temperature was increased.

The initial observations seemed to indicate that these two products could result from combination and disproportionation of $\mathrm{C}_{2} \mathrm{H}_{3}$ radicals. However, examination of the effects of changing the main variables gave clear evidence of the occurrence of complex chain reactions.
(i) The $\mathrm{C}_{2} \mathrm{H}_{4}$ quantum yield is approximately proportional to $\left[\mathrm{H}_{2}\right]$ for fixed $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$.
(ii) All products exhibit a less than first-order dependence on light intensity, which could be varied with neutral filters. With high pressures of H_{2}, for each product the intensity exponents lie in the range $0.5-0.6$. Those for $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{4} \mathrm{H}_{6}$ were measured for various $\left[\mathrm{H}_{2}\right]$ and with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 10 Torr, both at 300 and 400 K . For both, the exponents increase to ~ 0.8 as the $\left[\mathrm{H}_{2}\right]$ is decreased from 700 to 50 Torr; these data are consistent with

Figure 2. Product quantum yields with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=4$ Torr (300 K).

Figure 3. Product quantum yields with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=10$ Torr (300 K). computation from the model reaction which is detailed later.
(iii) Formation of C_{6} and higher species obviously requires a chain mechanism.
(iv) The rates of formation of all products increase approximately exponentially with increasing temperature.
The H plus $\mathrm{C}_{2} \mathrm{H}_{2}$ system is in contrast to addition of H to $\mathrm{C}_{2} \mathrm{H}_{4}$, which at low light intensities and at 300 K results solely in combination and disproportionation of $\mathrm{C}_{2} \mathrm{H}_{3}$. We have reexamined these reactions and confirm that the $n-\mathrm{C}_{4} \mathrm{H}_{10}$ yield shows little variation with $\left[\mathrm{H}_{2}\right]$ and is only slightly increased, $\sim 5 \%$, when the temperature is increased from 300 to 400 K . By addition of $\mathrm{C}_{2} \mathrm{H}_{2}$ to the $\mathrm{C}_{2} \mathrm{H}_{4} / \mathrm{H}_{2}$ mixtures, it has also been demonstrated that no significantly addition of $\mathrm{C}_{2} \mathrm{H}_{5}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$ occurs at 300 K ,

Figure 4. Product quantum yields with $\left[\mathrm{H}_{2}\right]=500$ Torr $(300 \mathrm{~K})$.

Figure 5. Product quantum yields with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=10$ Torr (400 K).
the yield of $\mathrm{C}_{4} \mathrm{H}_{10}$ being unaffected by the $\mathrm{C}_{2} \mathrm{H}_{2}$ addition up to 30% of the $\mathrm{C}_{2} \mathrm{H}_{4}$.

Quantum yields for the H plus $\mathrm{C}_{2} \mathrm{H}_{2}$ reactions at 300 and 400 K are given in Figure 2-7, from both experiment and the model. Most of the quantum yields were determined for $\mathrm{C}_{2} \mathrm{H}_{4}$ formation, though a few measurements were also made for $\mathrm{C}_{4} \mathrm{H}_{6}$. The most reliable approach with regard to the results of Figure 2-7 has been to establish first the variation of $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]$ with both $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$, for fixed exposure. Next, product ratios were measured, first $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right] /\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ on alumina and second $\left[\mathrm{C}_{4} \mathrm{H}_{6}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]$ and $\left[\mathrm{C}_{6} \mathrm{H}_{6}\right] /\left[\right.$ trans $\left.-\mathrm{C}_{6} \mathrm{H}_{8}\right]$ on diisodecyl phthalate. The quantum yields of $\mathrm{C}_{4} \mathrm{H}_{6}$ were obtained from the smoothed curve through the $\mathrm{C}_{2} \mathrm{H}_{4}$ data, and similarly the $\mathrm{C}_{6} \mathrm{H}_{6}$ yields were obtained from the smoothed $\mathrm{C}_{4} \mathrm{H}_{6}$ data.
We note the following features from the results.
(i) To within the error limits, the $\mathrm{C}_{2} \mathrm{H}_{4}$ yield, for fixed $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$, is a linear function of $\left[\mathrm{H}_{2}\right]$ at 300 K . However, this is not the case at 400 K , the $\mathrm{C}_{2} \mathrm{H}_{4}$ showing a slightly higher than first order dependence on $\left[\mathrm{H}_{2}\right]$. The difference appears to result because a significant fraction of the $\mathrm{C}_{2} \mathrm{H}_{4}$ is formed in non chain reactions at 300 K . At the higher temperature, formation by termination is negligible, and division of the $\mathrm{C}_{2} \mathrm{H}_{4}$ yields by $\left[\mathrm{H}_{2}\right]$ then gives a measure of the relative $\mathrm{C}_{2} \mathrm{H}_{3}$ concentrations.

Figure 6. Product quantum yields with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=25 \operatorname{Torr}(400 \mathrm{~K})$.

Figure 7. Product quantum yields with $\left[\mathrm{H}_{2}\right]=500$ Torr (400 K).
(ii) The $\mathrm{C}_{4} \mathrm{H}_{6}$ increases with $\left[\mathrm{H}_{2}\right]$, tending toward a limit which increases with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$.
(iii) For fixed $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right], \mathrm{C}_{6} \mathrm{H}_{6}$ increases with decreasing $\left[\mathrm{H}_{2}\right]$, but for fixed $\left[\mathrm{H}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{6}$ increases monotonically with increasing $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$.
(iv) For fixed $\left[\mathrm{H}_{2}\right]$, trans $-\mathrm{C}_{6} \mathrm{H}_{8}$ first increases with increasing [$\mathrm{C}_{2} \mathrm{H}_{2}$], reaching a maximum for ~ 35 Torr, and decreases with further increase of $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$. The trans- $\mathrm{C}_{6} \mathrm{H}_{8}$ quantum yields are small, and the measurements are not as reliable or as reproducible as those for the main products. It is expected to be highly reactive with respect to radical intermediates and may suffer some degree of thermal decomposition at the elevated temperatures.

Experiments have been undertaken with added N_{2}. With fixed [$\mathrm{C}_{2} \mathrm{H}_{2}$] and various [H_{2}], addition of N_{2} to maintain the total pressure constant resulted in the same $\mathrm{C}_{2} \mathrm{H}_{4}$ quantum yields obtained without the N_{2} addition. Similar experiments were carried out at 300 K to determine any total pressure dependence of the $\mathrm{C}_{6} \mathrm{H}_{6} /$ trans $-\mathrm{C}_{6} \mathrm{H}_{8}$ ratios; no significant change of the ratios was observed on addition of excess N_{2}.
Considering Figures 4 and 7, the falloff of the $\mathrm{C}_{2} \mathrm{H}_{4}$ yield below about 3 Torr of $\mathrm{C}_{2} \mathrm{H}_{2}$ is probably due to the $\mathrm{C}_{2} \mathrm{H}_{3}$ plus H reaction, which regenerates $\mathrm{C}_{2} \mathrm{H}_{2}$. Four measurements of the high-pressure rate coefficient for addition of atomic hydrogen to acetylene have been reported; three groups agree on $1.5 \times 10^{-13} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$ s^{-1} at $300 \mathrm{~K},{ }^{11-14}$ and the other reports $3.8 \times 10^{-13} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$

[^3]

Figure 8. Arrhenius plots for the reaction of $\mathrm{C}_{2} \mathrm{H}_{3}$ with H_{2} : (upper set) $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=6.6 \times 10^{16},\left[\mathrm{H}_{2}\right]=2 \times 10^{19} ;$ (middle set) $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=2.6 \times 10^{17}$, $\left[\mathrm{H}_{2}\right]=2 \times 10^{19}$; (lower set) $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=2.6 \times 10^{17},\left[\mathrm{H}_{2}\right]=3.3 \times 10^{18}$ (concentrations in molecules cm^{-3}).
s^{-1} at the same temperature. ${ }^{15,16}$ With the smaller coefficient and with $\mathrm{C}_{2} \mathrm{H}_{2}$ at 1 Torr, the mean lifetime of H is $2 \times 10^{-4} \mathrm{~s}$. We later show that the mean concentration of radicals in our experiments is $\simeq 10^{12}$ molecules cm^{-3}. Thus, if it is supposed that the rate coefficient for loss of H by reaction with $\mathrm{C}_{2} \mathrm{H}_{3}$ is $2 \times$ $10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$, a 10% drop in the $\mathrm{C}_{2} \mathrm{H}_{4}$ yield would result with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 1 Torr.
It is now convenient to state what is considered to be the reaction mechanism, as follows.

$$
\begin{gather*}
\mathrm{Hg}\left({ }^{1} \mathrm{~S}_{0}\right)+h \nu \rightarrow \mathrm{Hg}\left({ }^{3} \mathrm{P}_{1}\right) \\
\mathrm{Hg}\left({ }^{3} \mathrm{P}_{1}\right)+\mathrm{H}_{2} \rightarrow \mathrm{Hg}\left({ }^{1} \mathrm{~S}_{0}\right)+2 \mathrm{H} \\
\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{M} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{M} \\
\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \xrightarrow{k_{1}} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} \tag{1}\\
\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{k_{2}} \mathrm{C}_{4} \mathrm{H}_{5} \tag{2}\\
\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{H}_{2} \xrightarrow{k_{3}} \mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H} \tag{3}\\
\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{k_{4}} \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H} \tag{4}\\
\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{k_{5}} \text { trans- } \mathrm{C}_{6} \mathrm{H}_{7} \tag{5}\\
\text { trans- } \mathrm{C}_{6} \mathrm{H}_{7}+\mathrm{H}_{2} \xrightarrow{k_{6}} \text { trans- } \mathrm{C}_{6} \mathrm{H}_{8}+\mathrm{H} \tag{6}
\end{gather*}
$$

trans $-\mathrm{C}_{6} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{k_{7}} \mathrm{C}_{8} \mathrm{H}_{9}$ (leading to higher products)

$$
\begin{equation*}
\mathrm{R}_{i}+\mathrm{R}_{j} \rightarrow \text { termination } \tag{7}
\end{equation*}
$$

The $\mathrm{C}_{4} \mathrm{H}_{5}$ intermediate is expected to have the structure $\mathrm{H}_{2} \mathrm{CCHCHCH}$; the secondary radical would propagate branched hydrocarbon chains, which is not found; furthermore, the sec-

[^4]TABLE I: Experimental Relative Rate Coefficients and Further Details for the Model Reaction

```
\(\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \xrightarrow{k_{1}} \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}\)
\(k_{1} \simeq 2.5 \times 10^{-17} \mathrm{~cm}^{3}\) molecule \({ }^{-1} \mathrm{~s}^{-1}\) at 300 K
\(\epsilon_{1}=23( \pm 1.0) \mathrm{kJ} \mathrm{mol}^{-1}\)
\(\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{k_{2}} \mathrm{C}_{4} \mathrm{H}_{5}\)
\(k_{2} / k_{1}=30(300 \mathrm{~K}) ; \quad k_{2} / k_{1}=24(400 \mathrm{~K})\)
\(\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{H}_{2} \xrightarrow{k_{3}} \mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H}\)
\(\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{k_{4}} \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}\)
\(\mathrm{C}_{4} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{k_{5}}\) trans- \(\mathrm{C}_{6} \mathrm{H}_{7}\)
\(k_{4} / k_{3}=10.4(300 \mathrm{~K}) ; \quad k_{4} / k_{3}=9.2(400 \mathrm{~K})\)
\(k_{5} / k_{3}=11.6(300 \mathrm{~K}) ; \quad k_{5} / k_{3}=12.8(400 \mathrm{~K})\)
trans \(-\mathrm{C}_{6} \mathrm{H}_{7}+\mathrm{H}_{2} \xrightarrow{k_{6}}\) trans \(-\mathrm{C}_{6} \mathrm{H}_{8}+\mathrm{H}\)
trans \(-\mathrm{C}_{6} \mathrm{H}_{7}+\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow{\mathrm{k}_{7}} \mathrm{C}_{8} \mathrm{H}_{9}\)
\(k_{7} / k_{6}=50(\) at 300 and 400 K )
```


Data for the Model

```
\(k_{3}=6 k_{1} ; \quad k_{6}=k_{1}\) (at 300 and 400 K )
\(T / k_{1}=5.17 \times 10^{18}\) molecules \(\mathrm{cm}^{-3}(300 \mathrm{~K})\)
\(T / k_{1}=5.15 \times 10^{17}\) molecules \(\mathrm{cm}^{-3}(400 \mathrm{~K})\)
feedback of H from reaction 7:
\(\gamma=0(300 \mathrm{~K}) ; \quad \gamma=0.78(400 \mathrm{~K})\)
```

ondary radical, $\mathrm{H}_{2} \mathrm{CCHCCH}_{2}$, has a substantially lower enthalpy of formation than the primary species and would presumably not have the role of a chain carrier in this system at ambient temperatures. It would appear, therefore, that reaction 2 produces the primary 1,3 -butadienyl radical with insufficient excess energy for isomerization to the secondary structure.

In the regime where $\left[\mathrm{H}_{2}\right] \gg\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$, the $\mathrm{C}_{2} \mathrm{H}_{3}$ radical is the principal intermediate, and $\mathrm{C}_{2} \mathrm{H}_{4}$ is the main product; we have attempted to obtain the activation energy of reaction 1 , by measuring the $\mathrm{C}_{2} \mathrm{H}_{4}$ quantum yields, Φ, up to 500 K , with $\left[\mathrm{H}_{2}\right.$] constant at 2×10^{19} molecules cm^{-3}. As the $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ is reduced, the slopes of the $\ln \Phi$ vs. T^{-1} plots tend to a constant value, as shown in Figure 8. The derived activation energy for reaction 1 is $23(\pm 1.0) \mathrm{kJ} \mathrm{mol}^{-1}$, listed in Table I.

Relative rate coefficients can be obtained from the experimental results by application of the stationary-state equations for the three intermediates. The rate of radical loss, T, by radical-radical termination steps will be taken to be constant for a fixed light input.

$$
\begin{align*}
& 2 \Delta I+k_{3}\left[\mathrm{C}_{4} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2}\right]+k_{6}\left[\text { trans }-\mathrm{C}_{6} \mathrm{H}_{7}\right]\left[\mathrm{H}_{2}\right]+ \\
& k_{7}\left[\text { trans }-\mathrm{C}_{6} \mathrm{H}_{7}\right]\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] \\
&=\left[\mathrm{C}_{2} \mathrm{H}_{3}\right]\left(k_{2}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]+T\right) \tag{i}\\
& k_{2}\left[\mathrm{C}_{2} \mathrm{H}_{3}\right]\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=\left[\mathrm{C}_{4} \mathrm{H}_{5}\right]\left(k_{3}\left[\mathrm{H}_{2}\right]+\left(k_{4}+k_{5}\right)\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]+T\right) \tag{ii}
\end{align*}
$$

$$
\begin{equation*}
k_{5}\left[\mathrm{C}_{4} \mathrm{H}_{5}\right]\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=\left[\text { trans }-\mathrm{C}_{6} \mathrm{H}_{7}\right]\left(k_{6}\left[\mathrm{H}_{2}\right]+k_{7}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]+T\right) \tag{iii}
\end{equation*}
$$

ΔI is the rate of light absorption per unit volume, which is treated in the model at the centroid of the radical concentration.

From (ii)

$$
\begin{equation*}
\frac{\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]}{\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]}=\frac{k_{1}\left(k_{4}+k_{5}\right)}{k_{2} k_{3}}+\frac{k_{1}\left[\mathrm{H}_{2}\right]}{k_{2}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}+\frac{k_{1} T}{k_{2} k_{3}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]} \tag{iv}
\end{equation*}
$$

and plots of $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right] /\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ are linear with $\left[\mathrm{H}_{2}\right]$ for fixed $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$, shown in Figure 9.

At 400 K the interpretation is reasonably straightforward, the slopes yielding $k_{2} / k_{1}=24(\pm 2.5)$. A least-squares analysis yields an intercept of 0.86 for [$\mathrm{C}_{2} \mathrm{H}_{2}$] at 10 Torr and 0.99 for [$\mathrm{C}_{2} \mathrm{H}_{2}$] at 25 Torr. Because the $\mathrm{C}_{4} \mathrm{H}_{6}$ measurements are more reliable with the lower $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$-the peaks occur well up on the $\mathrm{C}_{2} \mathrm{H}_{2}$ tail-we have settled for 0.90 . The termination term is small at the high temperature, and thus we obtain $\left(k_{4}+k_{5}\right) / k_{3}=22$.

At 300 K , a small fraction of the $\mathrm{C}_{2} \mathrm{H}_{4}$ results from disproportionation of two $\mathrm{C}_{2} \mathrm{H}_{3}$ in one of the termination steps. By applying the model, one can subtract the nonchain part due to termination with satisfactory accuracy; the residual chain part

Figure 9. The $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right] /\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ ratios.
then shows a greater than first order dependence on $\left[\mathrm{H}_{2}\right]$, as found directly at 400 K . And this has to be the case because, considering Figures 2, 3,5, and 6, the vinyl radical concentration has to decrease as the $\left[\mathrm{H}_{2}\right]$ is reduced. But although the termination correction can be applied to the $\mathrm{C}_{2} \mathrm{H}_{4}$, we cannot determine the total $\mathrm{C}_{4} \mathrm{H}_{6}$ which is formed by the various termination steps. We therefore take the uncorrected slopes of Figure 9 as a first approximation to k_{2} / k_{1} at 300 K . The values so obtained are 35 with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 10 Torr and 38 with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 4 Torr (mean 36.5). However, the system is best modeled with a slightly lower value, $k_{2} / k_{1} \simeq 30$, also listed in Table I.

The variation of the $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right] /\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ ratios with $\left[\mathrm{H}_{2}\right]$ is similar at 300 K to that at 400 K ; zero $\left[\mathrm{H}_{2}\right]$ intercepts are both close to unity, indicating that the termination term

$$
\frac{k_{1} T}{k_{2} k_{3}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}
$$

is small and that $k_{2} / k_{1} \simeq\left(k_{4}+k_{5}\right) / k_{3}$ at both temperatures. In order that the termination term be sufficiently small at 300 K , we have to propose that $\mathrm{C}_{4} \mathrm{H}_{5}$ is even more reactive than $\mathrm{C}_{2} \mathrm{H}_{3}$, and in the model $k_{3}=6 k_{1}$ is used. On this basis, $\left(k_{4}+k_{5}\right) / k_{3}$ $=22$, which is included in Table I. It means simply that because $\mathrm{C}_{4} \mathrm{H}_{5}$ is very reactive, only a minor fraction of its removal is by radical-radical termination.

Experimental $\left[\mathrm{C}_{4} \mathrm{H}_{6}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]$ ratios allow k_{4} / k_{3} to be measured. According to the mechanism

$$
\frac{k_{3}}{k_{4}}=\frac{\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]\left[\mathrm{H}_{2}\right]}
$$

should be independent of both $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$.
These quantities are plotted against $\left[\mathrm{H}_{2}\right]$ in Figure 10. At 300 K , the data with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 4 Torr lie significantly below those at 10 Torr. This may be due either to systematic experimental error or to partial failure of the proposed mechanism. The yields of $\mathrm{C}_{6} \mathrm{H}_{6}$ are small with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 4 Torr, and the 10 -Torr data have been accepted as the better approximation, yielding k_{4} / k_{3} $=10.4$. Within each set there is no significant change with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] /\left[\mathrm{H}_{2}\right]$, which emcompasses a 17 -fold variation. Considering also that the yields of cis-1,3,5-C $\mathrm{C}_{6} \mathrm{H}_{8}$ are very small, it would appear that the cis radical, resulting from addition of $\mathrm{C}_{4} \mathrm{H}_{5}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$, ring-closes to generate $\mathrm{C}_{6} \mathrm{H}_{6}$ plus H sufficiently rapidly to forbid the occurrence of any alternative pathway. Considering the ratio of k_{4} to ($k_{4}+k_{5}$), evidently about half of the addition is cis. Schemes in which the initially formed cis- $\mathrm{C}_{6} \mathrm{H}_{7}$ may either ring-close or undergo collisional stabilization lead to more complex behavior than that illustrated in Figure 10.

Figure 10. The quantities $\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]\left[\mathrm{H}_{2}\right]$.

Figure 11. Variation of $\left[\mathrm{C}_{6} \mathrm{H}_{6}\right] /\left[\right.$ trans $\left.-\mathrm{C}_{6} \mathrm{H}_{8}\right]$ with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] .\left[\mathrm{H}_{2}\right]=500$ Torr (300 K).

Similar plots for the 400 K results show that the two sets of $\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] /\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]\left[\mathrm{H}_{2}\right]$ correspond well, giving $k_{4} / k_{3} \simeq 9.2$. However, the data may possibly indicate a drift to higher values with increasing $\left[\mathrm{H}_{2}\right]$, which could arise if the trans $-\mathrm{C}_{6} \mathrm{H}_{7}$ undergoes some degree of thermal isomerization to the cis isomer, and hence to additional $\mathrm{C}_{6} \mathrm{H}_{6}$ formation, at the higher temperature. It may be possible to achieve high conversions to $\mathrm{C}_{6} \mathrm{H}_{6}$ at even higher temperatures, if the rate of the trans-to-cis isomerization is increased.

The trans- $\mathrm{C}_{6} \mathrm{H}_{8}$ yields showed satisfactory reproducibility at 300 K . According to the proposed mechanism, using eq iii we should find

$$
\begin{equation*}
\frac{\left[\mathrm{C}_{6} \mathrm{H}_{6}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{8}\right]}=\frac{k_{4}}{k_{5}}\left(1+\frac{k_{7}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}{k_{6}\left[\mathrm{H}_{2}\right]}+\frac{T}{k_{6}\left[\mathrm{H}_{2}\right]}\right) \tag{v}
\end{equation*}
$$

The product ratios plotted vs. $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$, with $\left[\mathrm{H}_{2}\right]$ at 500 Torr, are given in Figure 11. We later show from the model that $\mathrm{T} / k_{6}\left[\mathrm{H}_{2}\right]$ $\simeq 0.3$, which, together with $k_{4} / k_{5}=0.91$, predicts a zero $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$

Figure 12. Time evolution of $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$. The product ratio dependence on $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]$ is shown in the inset. The concentration units are arbitrary (543 K).
pressure intercept of ~ 1.2. The slopes gives $k_{7} / k_{6}=50(\pm 5)$ at 300 K . The same experimental data are compared to the model in Figure 4.
The trans $-\mathrm{C}_{6} \mathrm{H}_{8}$ results at 400 K are included in Figure 7 and are compared to the model by using $k_{7} / k_{6}=50$.
At ambient temperature the yield of $\mathrm{C}_{2} \mathrm{H}_{6}$ in the reaction is negligible with exposures up to 160 s . However, at high temperatures significant yields of $\mathrm{C}_{2} \mathrm{H}_{6}$ occur even after 10 -s exposure.

Formation of $\mathrm{C}_{2} \mathrm{H}_{6}$ could result from addition of H_{2} to $\mathrm{C}_{2} \mathrm{H}_{3}$ to form $\mathrm{C}_{2} \mathrm{H}_{5}$ and its disproportionation. Experiments were carried out to examine the time evolution of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ at 543 K , and results are shown in figure 12. Even after 5 s , the rate of formation of $\mathrm{C}_{2} \mathrm{H}_{4}$ declines, while the yield of $\mathrm{C}_{2} \mathrm{H}_{6}$ exhibits a greater than first order dependence on exposure time. The $\left[\mathrm{C}_{2} \mathrm{H}_{6}\right] /\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]$ ratios, given in the inset, indicates that only a very small fraction, if any, of the $\mathrm{C}_{2} \mathrm{H}_{6}$ results from addition of $\mathrm{C}_{2} \mathrm{H}_{3}$ to H_{2}. It is presumably produced via $\mathrm{C}_{2} \mathrm{H}_{5}$ radicals resulting from secondary addition of H to $\mathrm{C}_{2} \mathrm{H}_{4}$.

Benzene is formed in significant yield when $\mathrm{C}_{2} \mathrm{H}_{2}$ alone is subject to Hg photosensitization. We have not carried out a systematic study, and the results so far have been poorly reproducible, as if very high purity is crucial. The deactivation of $\mathrm{Hg}\left({ }^{3} \mathrm{P}_{1}\right)$ by $\mathrm{C}_{2} \mathrm{H}_{2}$ is known to excite the $\mathrm{C}_{2} \mathrm{H}_{2}$ to its first triplet state. ${ }^{17}$

These comments provide a review of experiments conducted with $\mathrm{H}_{2} / \mathrm{C}_{2} \mathrm{H}_{2}$ mixtures, except for attempts to detect $\mathrm{C}_{2} \mathrm{H}_{3}$ termination products; the latter are deferred to the discussion because the interpretation has to be guided with a model.
One further group of experiments have been carried out to examine the behavior of the system with added CO , to determine whether or not attachment to $\mathrm{C}_{2} \mathrm{H}_{3}$ occurs. Experiments were conducted with $\left[\mathrm{H}_{2}\right] /\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ high, so that $\mathrm{C}_{2} \mathrm{H}_{3}$ is the predominant intermediate. We have shown that addition of CO does inhibit the rate of $\mathrm{C}_{2} \mathrm{H}_{4}$ formation over a range of temperatures. The data have been provisionally interpreted by supposing that $\mathrm{C}_{2} \mathrm{H}_{3}$
(17) C. S. Burton and H. E. Hunziker, J. Chem. Phys., 57, 339 (1972); H. E. Hunziker, H. Kneppe, A. D. McLean, P. Seigbahn, and H. R. Wendt, Can. J. Chem. 61, 993 (1983).

Figure 13. Temperature variation of the equilibrium constant for the reaction $\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CO} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}$.
forms an adduct with CO and that the reaction rapidly attains equilibrium.

$$
\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{CO} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}
$$

Even at 300 K , addition of as little as 1 Torr of CO substantially decreases the $\mathrm{C}_{2} \mathrm{H}_{4}$ yields. To find the order of magnitude of the equilibrium constants, K, it is assumed that CO addition does not change the total radical concentration. Then

$$
\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]_{0} /\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]=1+K[\mathrm{CO}]
$$

where $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]_{0}$ is the rate of $\mathrm{C}_{2} \mathrm{H}_{4}$ formation without CO addition. Such behavior was found at all temperatures, i.e., $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]^{-1}$ linear with [CO]; derived equilibrium constants are shown in Figure 13. The initial slow change of the equilibrium constants as the temperature is raised above 300 K suggests that in the low-temperature regime the attachment is partly rate-controlled, in which case the values obtained are lower limits. There was no significant attachment of H to CO with the conditions of these experiments.

The Model Reactions

None of the reactions described has been investigated previously, and obviously no rate coefficients are known. Hence, the model that we develop can only be a sketched outline at this stage. Nevertheless, it has proved to be of considerable interpretative and predictive value and gives unity to the various aspects.

There are two assumptions. First, it is supposed that the total radical concentration is independent of gas composition, which is equivalent to supposing that the rate coefficient for radicalradical termination is the same for all species; second, we take an exponential model for the light absorption. Neither proposition is extreme, and it has been shown already that in several applications the termination term is relatively small, so that changes in the termination rates would barely be significant. The model does not require that a numerical choice be made either of the decay constant for the exponential light absorption or for any of the rate coefficients.

The light intensity, I, after penetration to a distance x into the reaction vessel is

$$
I=I_{0} \exp (-\alpha x)
$$

where $I_{0}=1.8 \times 10^{14}$ quanta $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$.
The rate of the H atom formation per unit volume at x is balanced by the termination rate.

$$
2 I_{0} \alpha \exp (-\alpha x)=k_{\mathrm{t}}\left[R_{x}\right]^{2}
$$

The termination coefficient is defined in terms of the radical removal rate. $\left[\mathrm{R}_{x}\right]$ is the total concentration at x. Therefore

$$
\left[\mathrm{R}_{x}\right]=\left(\frac{2 I_{0} \alpha}{k_{\mathrm{t}}}\right)^{1 / 2} \exp (-\alpha x / 2)
$$

Upon integration it is found that

$$
(\mathrm{R})_{\text {total }}=\left(\frac{8 I_{0}}{\alpha k_{\mathrm{t}}}\right)^{1 / 2}
$$

while at the centroid of the radical concentration

$$
[\mathrm{R}]_{\mathrm{cent}}=\left(\frac{I_{0} \alpha}{2 k_{\mathrm{t}}}\right)^{1 / 2}
$$

The mean radical removal rate, T, is given by

$$
T=k_{\mathrm{t}}[\mathrm{R}]_{\text {cent }}=\left(\frac{I_{0} \alpha k_{\mathrm{t}}}{2}\right)^{1 / 2}=1.34 \times 10^{7} k_{\mathrm{t}}^{1 / 2} \alpha^{1 / 2} \mathrm{~s}^{-1}
$$

At 300 K and with $\left[\mathrm{H}_{2}\right.$] at 500 Torr, the quantum yield for $\mathrm{C}_{2} \mathrm{H}_{4}$ formation in the $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] \rightarrow 0$ limit is 3.20 . (The extrapolation back to $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] \rightarrow 0$ is actually achieved by using the model, the line being drawn through the data points of Figure 4.) Thus, with these conditions

$$
\frac{k_{1}\left[\mathrm{H}_{2}\right][\mathrm{R}]_{\text {total }}}{2 I_{0}}=3.20
$$

where $k_{1}=2.60 \times 10^{-12} \alpha^{1 / 2} k_{\mathrm{t}}^{1 / 2} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at 300 K .
The same result is of course obtained by using the rate of light absorption at the centroid with the radical concentration at the centroid; i.e., the quantum yield at the centroid is the same as that found by integration over the x variable. Also, with regard to expressions for product ratios, such as eq iv, integration of T_{x} through the reaction volume yields T at the centroid, provided the integration is weighted with $[\mathrm{R}]_{x}$. It is therefore an adequate approximation to develop the model at the centroid.

Thus, $T / k_{1}=5.17 \times 10^{18}$ molecules cm^{-3} at 300 K , independent of α and k_{t}. From the change in quantum yield of $\mathrm{C}_{2} \mathrm{H}_{4}$ formation when the temperature is increased to 400 K , we obtain $T / k_{1}=$ 5.15×10^{17} molecules cm^{-3} at 400 K .

To model the system, we need only the ratios of rate coefficients. For a particular radical intermediate, the required quantities have been obtained from product ratios as described. The results do not directly yield either k_{1} / k_{3} or k_{1} / k_{6}, however. With regard to the former quantity, the only hint from experiment is the zero [H_{2}] intercept of the $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right] /\left[\mathrm{C}_{4} \mathrm{H}_{6}\right]$ ratios of Figure 9, for 300 K . These intercepts are equal to

$$
\frac{k_{1}}{k_{2}}\left(\frac{k_{4}+k_{5}}{k_{3}}\right)+\frac{k_{1} T}{k_{2} k_{3}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}
$$

and there is little change when $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ is increased from 4 to 10 Torr. If it were supposed that $k_{3}=k_{1}$, then for 4 Torr it would be 0.52 . Such behavior is not found experimentally: to match what is found, k_{3} has to be significantly larger than k_{1}.
The ab initio calculations presented in ref 18 correspond to the following reaction enthalpies:

$$
\begin{gathered}
\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} \quad \Delta H=-22.7 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{H}_{2} \mathrm{CCHCHCH}+\mathrm{H}_{2} \rightarrow 1,3-\mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H}
\end{gathered}
$$

$$
\Delta H=-31.6 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\mathrm{H}_{2} \mathrm{CCHCCH}_{2}+\mathrm{H}_{2} \rightarrow 1,3-\mathrm{C}_{4} \mathrm{H}_{6}+\mathrm{H}$

$$
\Delta H=-0.06 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

These data also indicate that $\mathrm{H}_{2} \mathrm{CCHCHCH}$ may be more reactive than $\mathrm{C}_{2} \mathrm{H}_{3}$ in respect of H abstraction from H_{2}. The third equation is included to support the comment made earlier that

[^5]

Figure 14. Radical concentrations computed from the model (all data for 300 K): $\mathrm{O},\left[\mathrm{C}_{2} \mathrm{H}_{3}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 4 Torr; $\bullet,\left[\mathrm{C}_{2} \mathrm{H}_{3}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 10 Torr; $\Delta,\left[\mathrm{C}_{4} \mathrm{H}_{5}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 4 Torr; $\Delta,\left[\mathrm{C}_{4} \mathrm{H}_{5}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 10 Torr; a , $\left[\right.$ trans- $\left.\mathrm{C}_{6} \mathrm{H}_{7}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 4 Torr; $\boldsymbol{-}$, $\left[\right.$ trans- $\left.\mathrm{C}_{6} \mathrm{H}_{7}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 10 Torr. The trans- $\mathrm{C}_{6} \mathrm{H}_{7}$ concentrations have been sealed up by 5 -fold.
the secondary $\mathrm{C}_{4} \mathrm{H}_{5}$ radical is expected to be considerably less reactive than the primary. The greater stability of the secondary form has also been shown in an independent set of calculations. ${ }^{19}$

It has proved to be satisfactory for the model to take $k_{3}=6 k_{1}$, both at 300 and 400 K . Referring back to Figure 9 , the difference between the intercepts for the 4 - and 10 -Torr results (300 K) would then be 0.13 , which is possible within the experimental error limits.
The choice for k_{1} / k_{6} is less important as far as modeling the system is concerned. The addition of $\mathrm{C}_{4} \mathrm{H}_{5}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$ is expected to generate the $\mathrm{H}_{2} \mathrm{CCHCHCHCHCH}$ radical. Presumably, isomerization to the structure $\mathrm{H}_{2} \mathrm{CCHCCHCHCH} 2$ does not occur signficantly, because its abstraction from H_{2} would produce both cis- and trans- $1,3,5$-hexatriene. If k_{6} is taken to equal k_{1}, the intercept of the Figure 10 plot is predicted to be 1.2, in accord with experiment.

The experimentally determined ratios, and the other estimates discussed in this section, are all listed in Table I.

If $\left[\mathrm{C}_{4} \mathrm{H}_{5}\right.$] and [trans $\left.-\mathrm{C}_{6} \mathrm{H}_{7}\right]$ are eliminated from eq i -iii, and noting that the quantum yield for formation of $\mathrm{C}_{2} \mathrm{H}_{4}$, Φ, is equal to $k_{1}\left[\mathrm{H}_{2}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3}\right] / 2 \Delta I$, we obtain the following expression for Φ as a function of the concentrations.

$$
\begin{gathered}
\Phi^{-1}=A-B(C+D) \\
A=\frac{k_{2}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}{k_{1}\left[\mathrm{H}_{2}\right]}+\frac{T}{k_{1}\left[\mathrm{H}_{2}\right]} \\
B=\frac{k_{2}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}{k_{1}\left[\mathrm{H}_{2}\right]}\left(1+\frac{\left(k_{4}+k_{5}\right)\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}{k_{3}\left[\mathrm{H}_{2}\right]}+\frac{T}{k_{3}\left[\mathrm{H}_{2}\right]}\right)^{-1} \\
C=1+\frac{k_{4}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}{k_{3}\left[\mathrm{H}_{2}\right]} \\
D=\frac{k_{5}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]}{k_{3}\left[\mathrm{H}_{2}\right]}\left(\frac{1+\gamma k_{7}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] / k_{6}\left[\mathrm{H}_{2}\right]}{1+k_{7}\left[\mathrm{C}_{2} \mathrm{H}_{2}\right] / k_{6}\left[\mathrm{H}_{2}\right]+T / k_{6}\left[\mathrm{H}_{2}\right]}\right)
\end{gathered}
$$

(19) N. C. Handy, R. H. Nobes, and K. Somasundram, submitted for publication.

Figure 15. Radical concentrations computed from the model (all data for 400 K): $\bullet,\left[\mathrm{C}_{2} \mathrm{H}_{3}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 10 Torr ; $0,\left[\mathrm{C}_{2} \mathrm{H}_{3}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 25 Torr; $\Delta,\left[\mathrm{C}_{4} \mathrm{H}_{5}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 10 Torr; $\Delta,\left[\mathrm{C}_{4} \mathrm{H}_{5}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 25 Torr; \boldsymbol{B}, $\left[\right.$ trans- $\left.\mathrm{C}_{6} \mathrm{H}_{7}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 10 Torr; \mathbf{m}, $\left[\right.$ trans $\left.-\mathrm{C}_{6} \mathrm{H}_{7}\right]$ for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 25 Torr. The trans- $\mathrm{C}_{6} \mathrm{H}_{7}$ concentrations have been sealed up by 6 -fold, and the $\mathrm{C}_{4} \mathrm{H}_{5}$ concentrations by 2 -fold.

Figure 16. Intensity exponents of the $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{4} \mathrm{H}_{6}$ products (300 K): O, $\mathrm{C}_{2} \mathrm{H}_{4}$ experiment; $\mathrm{C}_{2} \mathrm{H}_{4}$ model; $\Delta, \mathrm{C}_{4} \mathrm{H}_{6}$ experiment; $\Delta, \mathrm{C}_{4} \mathrm{H}_{6}$ model.
γ is the number of H atoms which are regenerated subsequent to addition of $\mathrm{C}_{6} \mathrm{H}_{7}$ to $\mathrm{C}_{2} \mathrm{H}_{2}$.

This model was first directed at the experimental data of Figure 4 , adjusting γ to fit the $\mathrm{C}_{2} \mathrm{H}_{4}$ yields with $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 10 and 50 Torr. In fact, with the data of Table I there are few options for variation and γ has to be set at zero. The model was then applied to predict the $\mathrm{C}_{6} \mathrm{H}_{6}$ quantum yields, and the experimental data proved to be in satisfactory agreement as shown.

By arbitrarily choosing $\alpha=1.0$ and $k_{\mathrm{t}}=10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$ s^{-1} (i.e., $k_{1}=2.6 \times 10^{-17} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at 300 K) we have

Figure 17. Comparison of the chain formation of $\mathrm{C}_{2} \mathrm{H}_{4}$ with the chain plus termination yields. The data for $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ at 4 Torr have been displaced by one quantum yield unit for clarity (all data 300 K).
derived radical concentrations at the centroid as a function of $\left[\mathrm{H}_{2}\right]$, and they are given in Figures 14 and 15.

A similar procedure was applied at 400 K , varying γ to fit the $\mathrm{C}_{2} \mathrm{H}_{4}$ yields of Figure 7. The required value of γ is 0.78 ; the quantity has to be finite at the higher temperature, because with $\gamma=0$ the maximum possible $\mathrm{C}_{6} \mathrm{H}_{6}$ quantum yield is 2.0: experimentally, a quantum yield of ~ 4 is found with [$\mathrm{C}_{2} \mathrm{H}_{2}$] at 60 Torr, and it is still rising with increasing $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ (Figure 7). The experimental yields were measured after prediction from the model, and the two are in excellent agreement.

Model calculations are also compared to experimental quantities in Figures 2, 3, 5, and 6; in general, the agreement is good.

Discussion

The model can be applied to predict the dependence of the product yields on the light intensity, by scaling T with the square root of the excitation rates. Experimentally, product ratios were measured with and without interposition of a neutral filter having a 0.26 transmission; these quantities were taken to be of the form 0.26^{n}, and a set of n for $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{4} \mathrm{H}_{6}$ yields are given in Figure

16 , for the $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=10$ Torr results at 300 K . Small errors in the ratios cause significant changes of n and scatter of the data points, but the trend to increasing n with decreasing $\left[\mathrm{H}_{2}\right]$ is found, as predicted by the model. For the $\mathrm{C}_{2} \mathrm{H}_{4}$ product at 300 K , the exponents do increase significantly above the model calculations, for small $\left[\mathrm{H}_{2}\right]$. This behavior is not found at 400 K , where the n agree comparatively well with the model over the full $\left[\mathrm{H}_{2}\right]$ range. At 300 K , the high n arise because $\mathrm{C}_{2} \mathrm{H}_{4}$ is produced in termination reactions of $\mathrm{C}_{2} \mathrm{H}_{3}$.

To explore further the termination products at 300 K , a series of experiments were undertaken with gas mixtures typically of the composition $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=2$ Torr, $\left[\mathrm{H}_{2}\right]=10$ Torr, and $\left[\mathrm{N}_{2}\right]=$ 400 Torr; recorded $\mathrm{C}_{2} \mathrm{H}_{4}$ quantum yields are 0.29 with full light and 0.28 with the neutral filter. The model was then applied to predict what fraction of $\mathrm{C}_{2} \mathrm{H}_{4}$ results from reaction 1, what fraction of $\mathrm{C}_{2} \mathrm{H}_{3}$ comprises the total radical concentration, and what fraction of $\mathrm{C}_{2} \mathrm{H}_{3}$ terminates) mutually. After subtracting the chain component ($\Phi=0.052$ with the full light) from the observed quantum yields and scaling with $\left((\mathrm{R})_{\text {total }}\right)^{2} /\left[\mathrm{C}_{2} \mathrm{H}_{3}\right]^{2}=1.52$, we found the yield of $\mathrm{C}_{2} \mathrm{H}_{4}$ per mutual termination by two $\mathrm{C}_{2} \mathrm{H}_{3}$ radicals to be ~ 0.37. We cannot make a correction for the fraction of $\mathrm{Hg}\left({ }^{3} \mathrm{P}_{1}\right)$ quenched by $\mathrm{C}_{2} \mathrm{H}_{2}$ because the subsequent reactions are not known. The yields of $\mathrm{C}_{4} \mathrm{H}_{6}$ produced in the same reaction appear to be quite small, very roughly 0.12 .
The $\mathrm{C}_{2} \mathrm{H}_{4}$ quantum yields by termination are important in relation to the apparently linear variation of $\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]$ with $\left[\mathrm{H}_{2}\right]$ at 300 K , illustrated in Figures 2 and 3; the model predicts a greater than first order dependence on $\left[\mathrm{H}_{2}\right]$, and the discrepancy posed a difficulty in the early stages of this research. However, it is now clear that the effect is due to supplementation of chain production of $\mathrm{C}_{2} \mathrm{H}_{4}$ with its formation by termination. In Figure 17, the chain and chain plus termination yields have been computed from the model over the range of $\left[\mathrm{H}_{2}\right]$. The termination component is taken to be $0.37\left([\mathrm{R}]_{\text {total }}\right)^{2} /\left[\mathrm{C}_{2} \mathrm{H}_{3}\right]^{2}$. The form of the variation of the sum with $\left[\mathrm{H}_{2}\right]$ is in accord with experiment.
Several other investigations of the termination products of $\mathrm{C}_{2} \mathrm{H}_{3}$ have been published. ${ }^{20-22}$ Most of the systems are either as complex as the present one or more so. Termination products have not been separated from those produced by the chain steps.

Acknowledgment. This research is supported by the United Kingdom Atomic Energy Authority. We are grateful to Dr. P. A. V. Johnson for informative discussions and to Dr. C. F. Melius for communication of unpublished results.

Registry No. $\mathrm{H}, 12385-13-6 ; \mathrm{C}_{2} \mathrm{H}_{2}, 74-86-2 ; \mathrm{C}_{2} \mathrm{H}_{3}, 2669-89-8 ; \mathrm{H}_{2}$, 1333-74-0.
(20) L. Szirovicza, Int. J. Chem. Kinet., 17, 117 (1985).
(21) N. A. Weir, J. Chem. Soc., 6870 (1965)
(22) A. G. Sherwood and H. E. Gunning, J. Phys. Chem., 69, 2323 (1965).

[^0]: (1) D. J. Norfolk, R. F. Skinner, and W. J. Williams in Gas Chemistry in Nuclear Reactors and Large Industrial Plant, A. Dyer, Ed., Heyden, London, 1980.
 (2) D. J. Norfolk, R. F. Skinner, and W. J. Williams, Radiat. Phys. Chem., 21, 307 (1983)

[^1]: (3) R. R. Baldwin and R. W. Walker, Symp. (Int.) Combust., [Proc.], 18th, 1980, 819 (1981).
 (4) J.-Y. Park, M. C. Heaven, and D. Gutman, Chem. Phys. Lett., 104, 469 (1984).

[^2]: (5) J. G. Moehlmann, J. T. Gleaves, J. W. Hudgens, and J. D. McDonald, J. Chem. Phys., 60, 4790 (1974); D. J. Donaldson and J. J. Sloan, J. Chem. Phys., 77, 4777 (1982).
 (6) M. G. Moss, M. D. Ensminger, and J. D. McDonald, J. Chem. Phys,, 74, 6631 (1981).
 (7) H. E. Hunziker, H. Kneppe, A. D. McLean, P. Siegbahn, and H. R. Wendt, Can. J. Chem., 61, 993 (1983).
 (8) A. B. Callear and G. B. Smith, Chem. Phys. Lett., 105, 119 (1984).
 (9) A. B. Callear and W. P. D. Pereira, Trans. Faraday Soc., 59, 2758 (1963).
 (10) J. C. H. Hwa, P. L. de Benneville, and H. J. Sims, J. Am. Chem. Soc., 82, 2537 (1960).

[^3]: (11) W. A. Payne and L. J. Stief, J. Chem. Phys., 64, 1150 (1976).

[^4]: (12) D. G. Keil, K. P. Lynch, J. A. Cowfer, and J. V. Michael, Int. J. Chem. Kinet., 8, 825 (1976).
 (13) R. Ellul, P. Potzinger, B. Reimann, and P. Camilleri, Ber. Bunsenges. Phys. Chem. 85, 407 (1981).
 (14) L. B. Harding, A. F. Wagner, J. M. Bowman, G. C. Schatz, and K. Christoffel, J. Phys. Chem., 86, 4312 (1982).
 (15) Y. Ishikawa, K. Sugawara, and S. Sato, Bull. Chem. Soc. Jpn., 52, 3503 (1979).
 (16) K. Sugawara, K. Okazaki, and S. Sato, Bull. Chem. Soc. Jpn. 54, 2872 (1981).

[^5]: (18) C. F. Melius, J. S. Binkley, and M. L. Koszykowski in Proceedings of the 8th International Conference on Gas Kinetics, Nottingham, England, 1984, Chas Goater and Son, England, 1984, p B2; C. F. Melius, private communication.

