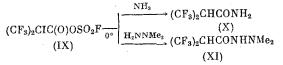
UDC 542.91:547.412. A. V. Fokin, A. I. Rapkin, A. S. Tatarinov, V. A. Titov, and Yu. N. Studnev 732'226:547.234

Polyfluoroalkyl fluorosulfates (PFS) react with anhydrous NH3 and alkylamines to give high yields of polyfluorocarboxylic acid amide: ch are weaker bases than NH₃ and amines [3] do not re

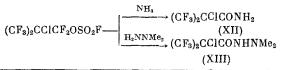
We have found that unsymmetrical dimethyl zine react smoothly with PFS in ether at 0°C to give the corres cid hydrazides:

> $\begin{array}{ll} R_F CF_2 OSO_2 F \ + \ H_2 NNRR' \rightarrow R_F CONHNRR \\ (I)-(V) & (Ia, b)-(Va, b) \end{array}$ R = R' = Me (a), R = H, R' = Ph (b). $R_F = CF_3CFH$ (I), $HCF_2CF_2(II)$, $CF_3CFCl(III)$, $ClCF_2CF_2(IV)$, $Cl(CF_2)_7(V)$.

Complete conversion of PFS and maximum yields of hydrazides (Ia, b)-(Va, b) are observed upon the use of a 4-5-fold molar excess of the hydrazine, which is explained by the need to bind the acid products formed [1].


An unsuccessful attempt was undertaken to obtrain hydrazide (IIIa) according to Voronkov et al. [4] by the transamination of 2-chlorotetrafluoropropionamide by the action of DH, but more than 70% of the starting amide was recovered after heating the reagent mixture for six days.

Special interest was found in the reactions of these N-nucleophiles with α -bromo- (VI) and α -iodohexafluoroisobutyl fluorosulfates (VII) which contain rather mobile bromine and iodine atoms. Bubbling of excess NH₃ through a solution of (VI) and (VII) in ether at 0°C gives ester (VIII) and, correspondingly, ethyl bromide or ethyl iodide instead of the expected amides


$$\begin{array}{l} (\mathrm{CF}_3)_2\mathrm{CXCF}_2\mathrm{OSO}_2\mathrm{F} + \mathrm{NH}_3 \rightarrow (\mathrm{CF}_3)_2\mathrm{CHCOOEt} + \mathrm{EtX} \\ (\mathrm{VI}), \ (\mathrm{VII}) \\ \mathrm{X} = \mathrm{Br}, \ \mathrm{I}. \end{array}$$

 α -Bromohexafluoroisobutyroyl chloride under mild conditions brominates diethyl ether and is thereby converted to ethyl a-hydrohexafluoroisobutyrate (VIII) [5]. The formation of ester (VIII) and ethyl halides in the present reaction is apparently a result of the intermediate formation of the α -bromo- and oisobutyryl fluorides from fluorosulfate (VI) and (VII).

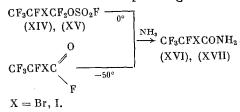
In contrast to (VI) and (VII), α isobutyroyl fluorosulfate (IX) reacts with NH_3 and DH in order to form the amide (X) and N,N-dimethylhydrazide (XI) of α -hydrohexafluoroisobutyric acid, respectively.

On the other hand, β -chlorooctafluoroisobutyl fluorosulfate reacts with NH₃ and DH under these condiitons to give the amide (XII) and N,N-dimethylhydrazide (XIII) of α -chlorohexafluoroisobutyric acid.

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 469-473, February, 1986. Original article submitted April 24, 1985.

435

is [1, 2]. Alkyl- and arylhydra
eact with PFS.
hydrazine (DH) and phenylhydra
sponding polyfluorocarboxylic at
NBB'
$$\rightarrow$$
 BrCONHNBB'


TABLE	1.	1 H	and	¹⁹ F	NMR	Spectral	Parameters
-------	----	-----	-----	-----------------	-----	----------	------------

Compound	ð, ppm	J,Hz
$\begin{array}{cccc}1&2&3&4&5\\CF_3CFHCONHN(CH_3)_2\\(Ia)\end{array}$	$\delta_1 = -1,45d.d., \delta_2 = 124,14d.q., \\ \delta_3 = 4,21d.q., \delta_4 = 8,80br.s. \delta_5 \\ 2,61s$	$ \begin{bmatrix} J_{12} = 11,0 \\ J_{13} = 7,4 \\ J_{23} = 44,5 \end{bmatrix} $
$\begin{array}{c}1&2&3\\\mathrm{HCF}_{2}\mathrm{CF}_{2}\mathrm{CONHNHC}_{6}\mathrm{H}_{5}\\(\mathrm{IIb})\end{array}$	$\begin{array}{c} \delta_1 \ 6,05 \ t. \ t, \ \delta_2 \ 61,79 \ d. \ t, \ \delta_3 \ 48,41 \\ d. \ t, \ \delta_4 \ 10,31 \ br. \ s, \ \delta_5 \ 6,5-7,4 \\ m \end{array}$	$J_{12} = 54,2 \\ J_{13} = J_{23} = 7,3$
${}^{1}_{CF_3CFClCONHN(CH_s)_2}^{2}_{(IIIa)}$	$\delta_1 2,28d$, $\delta_2 58,35 \ q$, $\delta_3 8,80 \ br$. s, $\delta_4 2,77 \ s$	J ₁₂ =6,2
$\begin{array}{ccc}1&2&3&3\\CF_3CFClCONHNHC_6H_5\\(III^{b})\end{array}$	$\delta_1 1,95d, \delta_2 57,50 \ q, \delta_3 10,26 \ br.s, \delta_4 6,7-7,1 \ m$	J ₁₂ =6,8
$\begin{array}{c}1&2&3&4\\ \mathrm{ClCF_2CF_2CONHN}\left(\mathrm{CH_3} ight)_2\\ \mathrm{(IVa)}\end{array}$	$δ_1 - 8.95$ t, $δ_2$ 39,47 t, $δ_3$ 9,11 br.s, δ_4 2,70 s	J ₁₂ =4,5
$\begin{array}{c} 1 & 2 & 3 & 3 & 4 \\ ClCF_2CF_2CONHNHC_6H_5 \\ (IVb) \end{array}$	$\delta_1 - 7,51 \pm \delta_2 40,78 \pm \delta_3 10,43$ br.s, $\delta_4 6,7-7,4m$	J ₁₂ =4,7
$(\mathbf{CF}_{3})_{2}\mathbf{CH}^{2}_{2}\mathbf{COOCH}_{2}\mathbf{CH}_{3}^{4}$ (VIII)	$\begin{array}{c} \delta_1 - 12,70 \text{ d} \;, \delta_2 \; 4,05 \; \text{sep} \;, \delta_3 \; 4,25 \\ \text{q} \;, \delta_4 \; \text{l.30 t} \end{array}$	$J_{12} = J_{34} = 6,8$
$({\rm CF}_3)_2 {\rm CHCONHN}({\rm CH}_3)_2 *$ (XI)	$\begin{array}{l} \delta_1 = -11,99 \hspace{0.1 cm} d \hspace{0.1 cm} \delta_2 \hspace{0.1 cm} 5,0 \hspace{0.1 cm} \text{sept,} \hspace{0.1 cm} \delta_3 \hspace{0.1 cm} 8,70 \\ \text{br.s} \hspace{0.1 cm} , \hspace{0.1 cm} \delta_4 \hspace{0.1 cm} 2,4 \hspace{0.1 cm} \text{s} \end{array}$	J ₁₂ ==6,7
$(CF_3)_2$ CCICONHN $(CH_3)_2$ (XIII)	$\delta_1 = 6,95 \text{ s}, \delta_2 9,20 \text{ br.s}, \delta_3 2,84 \text{ s}$	
$\begin{array}{c} \mathbf{i} & 2 & 3 \\ \mathbf{CF}_{3}\mathbf{CFBrCONH}_{2} \\ \mathbf{(XVI)} \end{array}$	$\delta_1 = -0.97 d_0 \delta_2 55,50 q_0$, $\delta_3 7.95 br.s$	J ₁₂ =8,7
CF ₃ CF1CONH ₂ (XVII)	$\delta_1 = -2,03 \text{ d}, \delta_2 61,45 \text{ q}, \delta_3 7,70 \text{ br.s}$	J ₁₂ =11,9
*Solution in CF3COOH.		

Hydrazide (XI) was also obtained by convergent synthesis through the addition of DH to bis(trifluoromethyl)ketene.

$$(CF_3)_2C = C = O + H_2NNMe_2 \xrightarrow{toluene(-10^\circ)} (XI)$$

The bromine and iodine atoms in 2-bromo- and 2-iodohexafluoropropyl fluorosulfate (XV) are not as mobile as in (VI), (VII), and (IX). Treatment of ethereal solutions of (XIV) and (XV) with anhydrous NH_3 gives 2-bromo- (XVI) and 2-iodopropionamides (XVII) in yields above 80% which were also obtained by the reactions of the corresponding acid fluorides with ammonia.

In addition, we found that aqueous $\rm NH_3$ may be used for the synthesis of amides of polyfluorocarboxylic acids from PFS

(I), (II), (XIV), (XV) +
$$NH_3(aq.) \rightarrow R_FCONH_2$$

(XVI)-(XIX)

This reaction is general and applicable for the synthesis of diamides of higher perfluoroalkanedicarboxylic acids.

$$FSO_2O(CF_2)_nOSO_2F + NH_3(aq.) \rightarrow (CF_2)_{n-2}(CONH_2)_2$$
(XX)-(XXII)

$$n = 6$$
 (XX), 8 (XXI), 10 (XXII).

Compound	Yield,		Chemical	Found/Calculated, %			
	%	Mp, °C	formula	с	н	F	N
(I a;-	68	81-82	$C_5H_8F_4N_2O$	$\frac{32,12}{31,91}$	$\frac{4,00}{4,26}$	$\frac{40,74}{40,42}$	$\frac{14,58}{14,89}$
(11p)	65	84-85	$C_9H_8F_4N_2O$	$\frac{45,49}{45,76}$	<u>3,30</u> <u>3,39</u>	$\frac{32,60}{32,20}$	<u>11,59</u> 11,86
(III a)	78	91-92	$C_5H_7ClF_4N_2O$	$\tfrac{26,51}{26,97}$	$\frac{2,90}{3,15}$	$\frac{34,17}{34,16}$	$\frac{12,33}{12,58}$
(III'b)	74	92-93	C ₉ H ₇ ClF ₄ N ₂ O	<u>39,71</u> 39,93	$\frac{2,45}{2,59}$	$\frac{28,19}{28,08}$	10,58 10,35
(IVa)	78	65-66	C ₅ H ₇ ClF ₄ N ₂ O	27,39 26,97	$\frac{3,09}{3,15}$	$\frac{34,53}{34,16}$	$\frac{12,44}{12,58}$
(IVb) -	75	105-106	·C ₉ H ₇ ClF ₄ N ₂ O	<u>40,08</u> <u>39,93</u>	$\frac{2,49}{2,59}$	$\frac{28,30}{28,08}$	<u>10,19</u> 10,35
(Va)	83	55-56	$C_{10}H_7CIF_{14}N_2O$	$\frac{25,10}{25,40}$	<u>1,42</u> <u>1,48</u>	$\tfrac{56,48}{56,29}$	$\frac{5,96}{5,93}$
(X)	72	154–155 *	C ₄ H ₃ F ₆ NO	$\frac{\underline{24,71}}{\underline{24,62}}$	<u>1,80</u> <u>1,54</u>	$\frac{58,73}{58,46}$	$\frac{-6,73}{-7,18}$
(XI)	69	159-160	C ₆ H ₈ F ₆ N ₂ O	$\frac{30,15}{30,25}$	$\frac{3,35}{3,36}$	<u>47,53</u> <u>47,90</u>	11,60 11,76
(XII)	79	81-82*	C ₄ H ₂ ClF ₆ NO	$\frac{21,12}{20,91}$	<u>1,08</u> 0,87	<u>49,89</u> 49,67	<u>5,95</u> 6,10
(XIII)	79	105-106	C ₆ H ₇ ClF ₆ N ₂ O	$\tfrac{\underline{26,10}}{\underline{26,42}}$	$\frac{2,41}{2,57}$	<u>41,55</u> <u>41,83</u>	$\frac{10,12}{10,30}$
(XVI)	83	83-84	$C_3H_2F_4BrNO$	<u>16,22</u> 16,08	$\frac{1,05}{0,89}$	$\frac{34,08}{33,94}$	$\frac{6,23}{6,25}$
(XVII)	78	8878	C ₃ H ₂ F ₄ INO	<u>13,33</u> 13,29	<u>1,01</u> 0,74	$\frac{28,43}{28,05}$	$\frac{5,43}{5,17}$
(XVIII)	83	58-59 +	C ₃ H ₃ F ₄ NO	$\frac{24,88}{24,83}$	$\frac{2,15}{2,07}$	$\frac{52,63}{52,41}$	$\frac{9,79}{9,66}$
(XIX)	85	58–59 **	C ₃ H ₃ F ₄ NO	<u>24,90</u> 24,83	$\frac{1,55}{2,07}$	$\frac{52,23}{52,41}$	$\frac{-9,60}{-9,66}$

TABLE 2. Physical Constants of the Compounds Obtained

*See the work of Aktaev [7]. †See the work of Aktaev [8]. **See the work of Atherton [9].

EXPERIMENTAL

The ¹⁹F and ¹H NMR spectra were taken on a Hitachi R-20 spectrometer at 60 and 56.45 MHz in acetone relative to CF_3CO_2H as the external standard and HMDS (Table 1). The gasliquid chromatographic analysis was carried out on an LKhM-8MD chromatograph on a 3 m × 3 mm column packed with 30% DNF on Chromatone AW-DMCS (0.250-0.315) and a 3 m × 3 mm column packed with 5% QF-1 on Chezasorb AW-NMDS (0.200-0.250) with 18.5 ml/min helium gas flow rate. The yields, properties, and elemental analysis data for these products are given in Table 2.

<u>Polyfluorocarboxylic acid hydrazides (typical experiment)</u>. A solution of 40 mmole PFS in 15 ml ether was added dropwise with stirring to a solution of 150 mmole DH (or phenyl-hydrazine) in 70 ml abs. ether at 0°C and stirred for 3 h at 20°C. The reaction mass was poured into 150 ml water. The organic layer was separated and the aqueous fraction was extracted with two 20-ml portions of ether. The combined extract was washed with water and dried over MgSO₄. The solvent was removed in vacuum at a water pump and the solid residue was sublimated at 1 mm.

<u>Reaction of β -iodooctafluoroisobutyl fluorosulfate (VII) with NH₃</u>. A sample of 4.5 liter anhydrous NH₃ was bubbled with stirring through a solution of 13.6 g (32 mmole) β -iodooctafluoroisobutyl fluorosulfate (VII) in 80 ml abs. ether. The reaction mass was poured into water and the organic layer was separated. The aqueous fraction was extracted with two 20-ml portions of ether. The combined extract was washed with water and dried over MgSO₄. Fractionation gave 2.1 g ethyl iodide, bp 70-72°C (identical to an authentic sample as shown by gas-liquid chromatography) and 5.5 g (VIII), bp 102-104°C, d₄²⁰ 1.356, n_D²⁰ 1.3142 [5]. Ethyl bromide and (VIII) were obtained under analogous conditions from β -bromooctafluoroisobutyl fluorosulfate (VI).

<u> α -Hydrohexafluoroisobutyro-N,N-dimethylhydrazide (IX)</u>. A solution of 4 g (66.7 mmole) DH in 10 ml toluene was added dropwise with stirring to a solution of 12 g (67.4 mmole) bis-(trifluoromethyl)ketene in 50 ml abs. toluene over 30 min at -10°C and then the solution was gradually warmed to 20°C. The crystals formed were filtered off and recrystallized from toluene to give 6.3 g (39.4%) (IX), mp 160°C. A mixed probe of hydrazide (IX) and a sample obtained by another method was undepressed.

<u>Polyfluorocarboxylic acid amides (typical experiment).</u> a) A sample of 4.5 liters (190 mmoles) ahydrous NH_3 was bubbled with stirring through a solution of 32 mmole PFS in 80 ml abs. ether for 5 h at 0°C. The mixture was poured into 150 ml water. The organic layer was separated and the water layer was extracted with two 20-ml portions of ether. The combined extract was washed with water and dried over MgSO₄. The solvent was removed at a water pump and the residue was recrystallized from hexane.

b) A sample of 50 mmole PFS was added dropwise with stirring to a mixture of 20 ml 25% aqueous NH_3 and 30 ml ether at 15°C over 0.5 h. Stirring was continued for 0.5 h at 35°C. The organic layer was separated and the mixture was worked up as in procedure a).

c) A sample of 15 mmole 2-halotetrafluoropropionyl fluoride was added dropwise to a solution of 50 mmole anhydrous NH_3 in 30 ml abs. ether at -50°C and then gradually warmed to 20°C. Then the mixture was worked up as in procedure a). The yield of propionamide (XVI) was 68% and the yield of propionamide (XVII) was 60%. Mixed probes of (XVI) and (XVII) with samples obtained by methods a and b gave undepressed melting points.

Perfluorodicarboxylic acid amides (typical experiment). A sample of 60 mmole α, ω -bis-(fluorosulfonyloxy)perfluoroalkane was added to a mixture of 120 ml 25% aqueous NH₃ and 350 ml ether at 15°C and stirred for 5 h at 35°C. Ether was removed in vacuum at a water pump. The solid residue was filtered off, washed with two 150-ml portions of water and two 75-ml portions of freon-113, and recrystallized from DMF-water. The yields of (XX)-(XXII) were 80-85%, (XX), mp 236-238°C, (XXI), 237-239°C, (XXII), mp 238-241°C [6].

CONCLUSIONS

1. Polyfluoroalkyl fluorosulfates react with hydrazines and ammonia to form hydrazines and amides of the corresponding polyfluorocarboxylic acids.

2. Treatment of ethereal solutions of β -iodo- and β -bromooctafluoroisobutyl fluorosulfates by ammonia leads to the halogenation of the ester and formation of the ethyl ester of α -hydrohexafluoroisobutyric acid, and correspondingly, ethyl iodide or ethyl bromide.

LITERATURE CITED

- 1. M. Hauptschein and M. Braid, J. Am. Chem. Soc., <u>83</u>, 2505 (1961).
- 2. A. V. Fokin, Yu. N. Studnev, L. D. Kuznetsova, and V. L. Rud', Izv. Akad. Nauk SSSR, Ser. Khim., 471 (1974).
- 3. B. V. Ioffe, M. A. Kuznetsov, and A. A. Potekhin, The Chemistry of Organic Hydrazine Derivatives [in Russian], Khimiya, Leningrad (1979), p. 56.
- V. V. Lopyrev, T. I. Yushmanova, E. N. Medvedeva, M. G. Voronkov, É. F. Lavretskaya,
 L. I. Volkova, S. G. Antonyan, and R. E. Libinzon, USSR Author's Certificate No. 764,316 (1981), Byull. Izobr., No. 33 (1981).
- 5. Yu. A. Cheburkov and M. D. Bargamova, Izv. Akad. Nauk SSSR, Ser. Khim., 833 (1967).
- 6. I. L. Knunyants and M. P. Krasuskaya, Izv. Akad. Nauk SSSR, Otdel. Khim. Nauk, 190 (1963).
- 7. N. P. Aktaev, G. A. Sokol'skii, B. A. Cheskis, and I. L. Knunyants, Izv. Akad. Nauk SSSR, Ser. Khim., 631 (1974).
- 8. N. P. Aktaev, V. A. Pashinin, and G. A. Sokol'skii, Zh. Org. Khim., 10, 1428 (1974).
- 9. J. H. Atherton, R. Fields, and R. N. Haszeldine, J. Chem. Soc., C, No. 2, 366 (1971).