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Summary: Stereoselective 2,3-sigmatropic rearrangement of 

the propargyl 2-silylallyl ether(5) leads to the vinyl silane 

(71, which, after protiodesilylation and palladium catalysed 

coupling to 3-bromoprop-2-enol, produces the Z,E-dienynol(l0) 

a key intermediate in leukotriene synthesis. 

Sigmatropic rearrangements of all types have been used in a number of 

ways to control stereochemical detail in a wide range of synthetic 

pr0cedures.i In connection with synthetic investigations amongst the 

leukotriene family of arachidonic acid metabolites, e.g. leukotriene B4(l) 
2 

we required a flexible synthetic entry to Z,E-dienes of the type shown in 

(2). In this Letter we outline a solution to this interesting problem, 

which is based on a novel stereoselective 2,3-sigmatropic rearrangement of 

an appropriate prcpsrgyl 2-silylallyl ether (viz 5->7) followed by proto- 

desilylation to the Z-enynol silyl ether(6) and coupling of the latter to 

E-3-bromoprop-2-enol in the presence of a palladium catalyst. 

OH OH OH 

C02H 

A Grignard reaction between hexanal and trimethylsilylvinyl magnesium 

bromide first led to the secondary alcohol(3; 60%), which under phase-transfer 
_; 

catalysed conditions(Bu4N.HS04, 50% aq. NaOH) with propargyl bromide gave 

rise to the propargyl 2-trimethylsilylallyl ether(4; 71%). Treatment of (4) 

with n-butyllithium followed by trimethylsilyl chloride then provided the 

bis-silane(5). The bis-silane(5) underwent an efficient, stereoselective 

2,3-sigmatropic rearrangement at -30°C in tetrahydrofuran in the presence of 
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n-butyllithium to produce the E-vinylsilane(7) contaiF:ng less than 20% of 

the corresponding Z-isomer in a combined yield of 84%: Treatment of (7) 

with sodium hydride in dimethylformamide resulted in selective desilylation 

leading to the vinylsilane(8a; 88%). Finally, after protection of (8~) as 

the corresponding t-butyldiphenvlsilyl ether(8b), proticdetrimethylsilylation 

in the presence of hydriodic acid led to the Z-enynol ether(9)..5 A coupling 

reaction between (9) and E-3-bromoprop-2-en-l-01 in the presence of 

Pd(PPh3)4-CuI-Et2NHthen gave rise to the key intermediate(2) as its 

&-butyldiphenvlsilyl ether(10).6 

The use of the trimethylsilyl group in (5) to both introduce and control 

the Z-geometry of the double bond in the 2,3-sigmatropic rearrangement-protio- 

desilylation sequence leading to (9) is quite remarkable, and to our 

knowledge without precedent. From studies of the stereoselectivity of 
7 8 

2,3_sigmatropic rearrangements by Still and Mitra , and others , it is clear 

that the bulky vinyltrimethylsilyl group ensures a transition state for the 

rearrangement of (5) whereby the pentyl group is pseudo-axial (see formula 6), 

thereby leading to the E-enynol(7). In addition, the propargyl ether 

grouping itself would also appear to be important in controlling the 

stereospecificity of the rearrangement of (5), since the corresponding bis- 

allylic ether(lla) led to only 33% of the E-dienol(l2). In related model 

work, 2,3-sigmatropic rearrangement from the propargyl ally1 etherstllb) and 

(13) devoid of silicon substitution on their allylic residues, produced 

almost entirely the E-carbinols (14) and (15) respectively. 

The new stereoselective synthesis of E-disubstituted olefins, taken in 

conjunction with the known propensity for optically active bis-allylic ethers 

to transfer chirality during 2,3-sigmatropic rearrangement' makes the 

approach to (10) and analogous compounds, described here, a particularly 

attractive one for development in the leukotriene field. This development, 

along with others, is now being pursued. 
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