
This article was downloaded by: [University of Chicago] On: 02 July 2012, At: 14:11 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides and Nucleotides

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lncn19</u>

Glycosylation of 2-Thiouracil Derivatives. A Synthetic Approach to 3-Glycosyl-2, 4-dioxypyrimidines

A. I. Khodair ^a , E. E. Ibrahim ^b & E. S. H. El Ashry ^c
^a Department of Chemistry, Faculty of Education, Tanta University, Kafer EL-Sheikh Branch, Tanta, Egypt
^b Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
^c Department of Chemistry, Faculty of Science, Alexandria

^c Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt

Version of record first published: 21 Aug 2006

To cite this article: A. I. Khodair, E. E. Ibrahim & E. S. H. El Ashry (1997): Glycosylation of 2-Thiouracil Derivatives. A Synthetic Approach to 3-Glycosyl-2, 4-dioxypyrimidines, Nucleosides and Nucleotides, 16:4, 433-444

To link to this article: <u>http://dx.doi.org/10.1080/07328319708001360</u>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Glycosylation of 2-Thiouracil Derivatives.

A Synthetic Approach to 3-Glycosyl-2,4-dioxypyrimidines

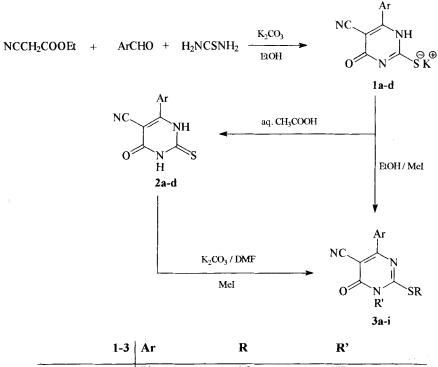
A. I. Khodair^{1,*}, E. E. Ibrahim² and E. S. H. El Ashry^{3,*}

¹Department of Chemistry, Faculty of Education, Tanta University (Kafer EL-Sheikh Branch), Tanta, Egypt.

²Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt.

³Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.

Abstract: Reaction of 6-aryl-5-cyano-2-thiouracils 2a-d with glycosyl halides 4a,b under alkaline conditions gave the respective bisglycosylated derivatives 5a-h. However, their deacetylation with ammonia in methanol caused a cleavage of the S-glycosyl residue and gave the N-3 glycosylated analogues 6a-h.

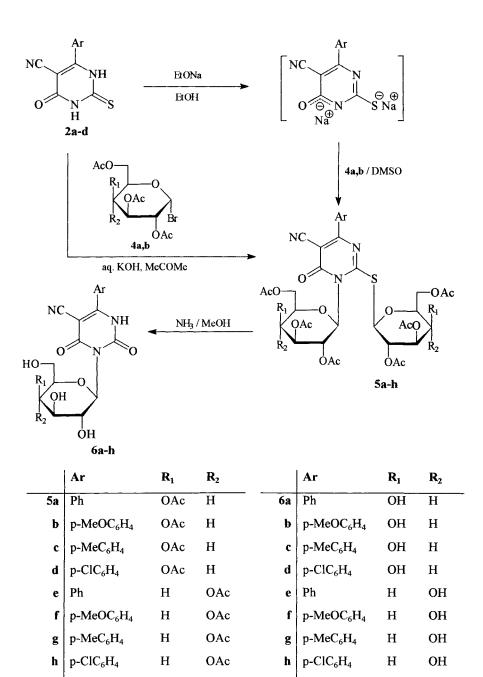

INTRODUCTION

Pyrimidines have occupied a unique place and have remarkably contributed to biological and medicinal chemistry. Various analogues of thiopyrimidines possess effective antibacterial, antifungal, antiviral, insecticidal, and miticidal activities¹⁻³. Thiopyrimidine nucleosides are of interest owing to their occurrence as constituents of certain transfer ribonucleic acids $(tRNA)^4$. A variety of pyrimidine nucleosides have shown interesting biological activities including antitumor activities^{5,6}, antiviral activity⁷, virucidal against the herpes virus⁸ and strain HF of HSV-1⁹. Among pyrimidine nucleosides¹⁰, 5-iodo-2-deoxyuridine (IdUrd) has been in clinical use as a drug for years. The most active congeners among the 5-substituted 2'-deoxyuridine derivatives are (*E*)-5-(2-halogenovinyl)-2'-

deoxyuridines¹¹, which are particularly active against HSV-1 and varicella-zoster virus. The structure activity relationships among 5-substituted 2'-deoxyuridine analogues have been studied in some detail^{12,13}. (2-Deoxy-D-glucosyl)uracil is an inhibitor of a nonspecific pyrimidine phosphorylase¹⁴. The versatile biological properties of pyrimidines and thiopyrimidines prompted us to investigate the synthesis, the antiviral activities and the antitumer activites of 6-aryl-5-cyano-2-alkylmercapto-3,4-dihydropyrimidin-4-ones **3a-h**, 6-aryl-5-cyano-3-(2',3',4',6'-tetra-*O*-acetyl- β -D-gluco- and D-galactopyranosyl)-2-(2'',3'',4'',6''-tetra-*O*-acetyl- β -D-gluco- and D-galactopyranosyl)-3,4-dihydropyrimidin-4-ones **5a-h** and 6-aryl-5-cyano-3-(β -D-gluco- and D-galactopyranosyl)-3,4-dihydropyrimidin-2,4-diones **6a-h**.

RESULTS AND DISCUSSION

6-aryl-5-cyano-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-ones 2a-d The were prepared in 28-42 % overall yield in two steps from the reaction of ethyl cyanoacetate with thiourea and aromatic aldehydes according to reported procedures^{15,16}. The potassium salts could be isolated from the reaction whose acidification gave 2a-d. A model study on the alkylation of **1a-d** and / or **2a-d** was carried out using iodomethane and ethyl bromoacetate by the reaction of one mole of the alkylating agents directly with the potassium salts of 6aryl-5-cyano-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-ones **1a-d** or the reaction with **2a-d** in the presence of potassium carbonate in DMF whereby the same product 3a-h was obtained in each case (Scheme 1). On the other hand, the use of two moles of the alkylating agents led to the dialkylated derivatives¹⁷. The structure of compounds **3a-h** was confirmed by the spectral data (IR, ¹H-NMR and MS). Their IR spectra showed a characteristic carbonyl group in the range 1633-1661cm⁻¹. Their ¹H-NMR spectra revealed the presence of an SMe or SCH₂ in the range 2.30-2.70 ppm and 4.10-4.30 ppm, respectively, as well as a broad singlet at δ 12.20 ppm due to the NH. These data as well as the mode of the reaction indicated that the



1-3	Ar	R	R'
a	Ph	Me	Н
b	p-MeOC ₆ H ₄	Me	н
c	p-MeC ₆ H ₄	Me	Н
d	p-MeOC ₆ H ₄ p-MeC ₆ H ₄ p-ClC ₆ H ₄	Me	Н
e	Ph	CH ₂ CO ₂ Et	Н
f	p-MeOC ₆ H ₄	CH ₂ CO ₂ Et	Η
g	p-MeOC ₆ H ₄ p-MeC ₆ H ₄ p-ClC ₆ H ₄	CH ₂ CO ₂ Et	Н
h	p-ClC ₆ H ₄	CH ₂ CO ₂ Et	Н
i	Ph	Me	Me

Scheme 1

site of alkylation was the sulfur rather than the nitrogen and in the case of the disubstituted derivative the N-3 was the second position for alkylation.

Reaction of 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl bromide 4a¹⁸ with 2a-d or with the sodium salt of 2a-d in the presence of aqueous potassium hydroxide gave the corresponding bisglucosides **5a-d**. Similarly, the reaction with 2,3,4,6-tetra-O-acetyl- α -Dgalactopyranosyl bromide 4b¹⁸ gave 5e-h. The structures of compounds 5a-h could be established and confirmed on the bases of their elemental analysis and spectral data. The elemental analysis as well as the mass spectra indicated the presence of the two glycosyl residues. Their IR spectra were characterized by the absence of signals for an NH groups and the presence of signals at 1660-1690 cm^{-1} due to the carbonyl of the pyrimidinone in addition to the acetoxy carbonyl groups at 1750-1760 cm⁻¹. The ¹H-NMR spectrum of **5f** showed the presence of two doublets at δ 5.85 and 6.30 ppm with spin-spin coupling constants of 10.63 and 7.96 Hz respectfully, that were assigned of H-1' and H-1". These coupling constants indicated their diaxial orientation with H-2' and H-2". Consequently, both glycosyl residues were in the β -configuration. Attempted deprotection of **5a-h** with ammonia in methanol, did not give the anticipated deacetylated derivatives but gave the nucleosides 6a-h, respectively, indicating that a hydrolytic cleavage of the C-S bonds took place. The structures of compounds 6a-h were confirmed by elemental analysis and spectral data. The IR absorption spectra of compound 6a showed characteristic bands at 3346, 3226, 2210, 1725 and 1639 cm⁻¹ due to the hydroxy groups of the glucose moiety, N₁-H, CN, C₂=O and C₄=O, respectively. The ¹H-NMR spectrum of compound **6a** revealed the presence of a broad singlet at δ 11.85 ppm due to N₁-H. The presence of a one doublet at δ 5.41 ppm (J_{1',2'}=10.10 Hz), indicated the presence of only one β -D-glucopyranose moiety. The four hydroxy groups of glucose moiety resonate at δ 4.61-5.36 ppm (exchangeable by D₂O). The ¹³C-NMR spectrum of compound **6a** was characterized by a singlets at δ 88.00, 151.50 and 166.30 ppm were due to C-1', C-2 and C-4, respectively.

Com	M.p.	Yield	d (%)	Mol. formula	Analysis (%) Calc./Found			MS
р.	(°C)	а	b	(Mol. Mass)	C	H	N	m/z
3a	267	86	78	C ₁₂ H ₉ N ₃ OS (243.28)		Refere	ence 15	
3b	>300	87	82	$C_{13}H_{11}N_3O_2S$	57.13	4.06	15.37	273
				(273.31)	56.70	4.20	15.50	(M ⁺)
3c	>300	86	76	C ₁₃ H ₁₁ N ₃ OS	60.68	4.31	16.33	257
				(257.31)	60.50	4.40	16.10	(M ⁺)
3d	295	84	80	C ₁₂ H ₈ ClN ₃ OS	51.90	2.90	15.13	277
				(277.73)	52.10	2.80	15.00	(M ⁺)
3e	252	88	72	$C_{15}H_{13}N_3O_3S$	57.13	4.16	13.33	315
				(315.35)	57.10	4.20	13.20	(\mathbf{M}^{\dagger})
3f	232	86	79	$C_{16}H_{15}N_3O_4S$	55.64	4.38	12.17	345
_				(345.37)	55.40	4.10	12.40	(M ⁺)
3g	295	84	75	$C_{16}H_{15}N_3O_3S$	58.35	4.59	12.76	329
~ 1	010	0.5	-	(329.37)	58.40	4.60	12.90	(\mathbf{M}^{\dagger})
3h	210	85	78	$C_{15}H_{12}CIN_3O_3S$	51.51	3.46	12.01	349
_				(349.79)	51.80	3.40	11.90	(M ⁺)
5a	162	57	34	C ₃₉ H ₄₃ N ₃ O ₁₉ S	52.64	4.87	4.72	889
~1	100	6.2	27	(889.84)	53.30	5.40	5.00	(M ⁺)
5b	198	53	37	$C_{40}H_{45}N_3O_{20}S$	52.23	4.93	4.57	919
F .	150	60	22	(919.87)	52.50	4.90	4.80	(M [*])
5c	158	58	32	$C_{40}H_{45}N_3O_{19}S$	53.15	5.02	4.65	903
.	170	<i></i>	20	(903.87)	53.30	5.30	5.00	(\mathbf{M}^{\dagger})
5d	170	55	38	$C_{39}H_{42}CIN_3O_{19}S$	50.68	4.58	4.55	924
F ~	216	56	26	(924.28) C H N O S	51.00	4.90	4.70	(\mathbf{M}^{\dagger})
5e	216	56	36	$C_{39}H_{43}N_{3}O_{19}S$	52.64	4.93	4.72	889
5f	215	52	35	(889.84) CHNOS	52.90	4.80	5.00	(\mathbf{M}^{+})
31	213	52	35	$C_{40}H_{46}N_3O_{20}S$	52.23 51.90	5.03 5.20	4.57 4.90	919 010
5g	225	54	38	(920.87) CHNOS		5.20 5.12		(M') 903
Jg	223	54	30	C ₄₀ H ₄₆ N ₃ O ₁₉ S (904.87)	53.09 53.30	4.90	4.64 4.90	(M ⁺)
5h	214	59	36	$C_{39}H_{43}CIN_3O_{19}S$	50.68	4.90	4.90	924
	217	57	50	(925.29)	50. 80	4.50	4.80	(M^{+})
6 a	207	77	_	$(J_2J_2J_3)$ $C_{17}H_{17}N_3O_7$	54. 4 0	4.50	11.20	375
	201	, ,		(375.34)	54.70	4.80	11.40	(M^{\dagger})
6b	185	70	-	$C_{18}H_{19}N_3O_8$	53.33	4.72	10.37	405
		,		(405.36)	53.60	4.50	10.70	(M^{\dagger})
6 c	223	67	-	$C_{18}H_{19}N_{3}O_{7}$	55.53	4.92	10.79	389
				(389.36)	55.90	5.10	10.50	(M ⁺)
6 d	197	71	-	C ₁₇ H ₁₆ ClN ₃ O ₇	49.83	3.94	10.25	409
				(409.78)	50.10	4.10	10.50	(\mathbf{M}^{\dagger})
6e	240	81	-	C ₁₇ H ₁₇ N ₃ O ₇	54,40	4.57	11.20	375
				(375.34)	54.70	4.40	11.40	(M ⁺)
6f	215	7 0	-	C ₁₈ H ₁₉ N ₃ O ₈	53.33	4.72	10.37	405
				(405.36)	53.50	4.80	10.10	(M ⁺)
6g	229	67	-	C ₁₈ H ₁₉ N ₃ O ₇	55.53	4.92	10.79	389
2				(389.36)	55.70	5.00	11.10	(M ⁺)
6h	225	71	-	C ₁₇ H ₁₆ ClN ₃ O ₇	49.83	3.94	10.25	409
				(409.78)	50.00	3.80	10.60	(M ⁺)

a = method A; b = method B.

comp.	IR selected bands (cm ⁻¹)	¹ H NMR (δ ppm) (DMSO)
3b	3414 (NH), 2219 (CN),	2.45 (3H, s, SMe), 3.86 (3H, s, OMe), 7.42 (2H, d,
	1650 (C ₄ O).	Ar-H), 8.15 (2H, d, Ar-H). 12.20 (1H, br.s, NH).
3c	3380 (NH), 2208 (CN),	2.38 (3H, s, SMe),2.41 (3H, s, Me), 7.22 (2H, d, Ar-
	$1633 (C_4 O).$	H), 7.75 (2H, d, Ar-H), 12.25 (1H, br.s, NH).
3d	3380 (NH), 2208 (CN),	2.58 (3H, s, SMe), 7.60 (2H, d, Ar-H), 7.97 (2H, d,
3.0	1633 (C ₄ O). 3456 (NH), 2223 (CN),	Ar-H), 12.20 (1H, br.s, NH). 1.08 (3H, t, J=7.00 Hz, Me), 4.06 (2H, q, J=7.20 Hz,
3e	1736 (COOEt), 1661	CH ₂), 4.12 92H, s, SCH ₂), 7.62 (3H, m, Ar-H), 7.93
	(C_4O) .	(2H, m, Ar-H), 12.15 (1H, br.s, NH).
3f	3438 (NH), 2218 (CN),	1.12 (3H, t, J=7.10 Hz, Me), 4.07 (2H, q, J=7.10 Hz, Me)
	1740 (COOEt), 1653	CH ₂), 4.13 (2H, s, SCH ₂), 7.12 (2H, d, Ar-H), 7.97
	(C ₄ O).	(2H, d, Ar-H), 12.10 (1H, br.s, NH).
3g	3449 (NH), 2220 (CN),	
	1741 (COOEt), 1653	-
~	(C_4O) .	
3h	3454 (NH), 2219 (CN),	<u>-</u>
	1739 (COOEt), 1661 (C_4O) .	
5a	(C ₄ O). 2228 (CN), 1758 (MeCO),	1.81, 1.96, 1.98, 2.01, 2.07 (24H, 5s, 8 Ac), 3.99-
	$1666 (C_4 O).$	4.15 (4H, m, H-6', H-6"), 4.20-4.43 (2H, m, H-5',
		H-5"), 4.98-5.22 (4H,m, H-4', H-4",H-3', H-3"),
		5.58 (2H, m, H-2', H-2"), 6.00 (1H, d, J=10.58 Hz,
		H-1'), 6.50 (1H, d, J=7.98 Hz, H-1"), 7.58 (3H, m,
		Ar-H), 8.08 (2H, d, Ar-H).
5b	2226 (CN), 1758 (MeCO),	1.75, 1.97, 1.99, 2.00, 2.07 (24H, 7s, 8 Ac), 3.90 (21L $_{\circ}$ OM $_{\circ}$) 2.08 4.15 (41L $_{\circ}$ H $_{\circ}$) 4.20
	1672 (C ₄ O).	(3H, s, OMe), 3.98-4.15 (4H, m, H-6', H-6''), 4.20- 4.15 (2H, m, H-5', H-5''), 4.85-5.20 (4H,m, H-4', H-
		4",H-3', H-3"), 5.50-5.65 (2H, m, H-2', H-2"), 6.15
		(1H, d, J=10.75 Hz, H-1'), 6.50 (1H, d, J=8.10 Hz,
		H-1"), 7.40 (2H, m, Ar-H), 8.01(2H, d, Ar-H).
5c	2226 (CN), 1752 (MeCO),	1.74, 1.82, 1.97, 1.99, 2.02, 2.03 (24H, 6s, 8
	1688 (C ₄ O).	Ac),2.43 (3H, s, Me), 4.05-4.15 (4H, m, H-6', H-
		6"), 4.20-4.45 (2H, m, H-5", H-5"), 5.11-5.19
		(4H,m, H-4', H-4",H-3', H-3"), 5.58 (2H, m, H-2', H 2"), 6.00 (1H, d, H-10.68 H- H, 1'), 6.40 (1H, d,
		H-2"), 6.00 (1H, d, J=10.68 Hz, H-1'), 6.49 (1H, d, J=7.90 Hz, H-1", 7.42 (2H, m, Ar-H), 7.98 (2H, d,
		Ar-H).
5d	2225 (CN), 1757 (MeCO),	1.80, 1.95, 1.98, 2.02, 2.07 (24H, 5s, 8 Ac), 3.98-
	1668 (C ₄ O).	4.45 (6H, m,H-5', H-5", H-6', H-6"), 4.99-5.30
		(4H,m, H-4', H-4",H-3', H-3"), 5.56 (2H, m, H-2',
		H-2"), 6.00 (1H, d, J=10.50 Hz, H-1'), 6.50 (1H, d,
		J=7.95 Hz, H-1"), 7.60 (2H, m, Ar-H), 8.10 (2H, d,
-	0000 (CNI) 1757 (04 CO)	Ar-H).
5e	2228 (CN), 1756 (MeCO),	1.82, 1.96, 1.99, 2.02, 2.14, 2.17 (24H, 6s, 8 Ac), 4 01412(4H, 24H, 24H, 24H, 24H, 24H, 24H, 24H, 2
	1669 (C_4O).	4.01,4.12 (4H, 2d, J=7.42 Hz, H-6', H-6''), 4.45,

TABLE 2 - IR AND ¹H NMR DATA OF THE COMPOUNDS PREPARED

(CONTINUED)

TABLE 2 - IR AND ¹H NMR DATA OF THE COMPOUNDS PREPARED (CONTINUED)

$ \begin{array}{c} 4.60\ (2H, 2t, J=4.14\ Hz, H-5', H-5''), 5.2-5.43\ (6H, m, H-4', H4'', H-3', H-3'', H-2''), 5.36\ (1H, d, J=11.20\ Hz, H-1'), 5.34\ (1H, d, J=8.20), 2.05, 2.15, 2.20\ (24H, 7s, 8\ Ac), (MeCO), 1670\ 3.85\ (3H, s, OMe, 4.02, 4.07\ (4H, 2d, J=7.38\ Hz, H-6', (CqO). 1670\ 3.85\ (3H, s, OMe, 4.02, 4.07\ (4H, 2d, J=7.38\ Hz, H-6', H-6''), 4.50, 4.60\ (2H, 2t, J=4.20\ Hz, H-5', H-5''), 5.10- 5.45\ (6H, m, H-4', H-4'', H-3', H-3'', H-2'', H-2''), 5.85\ (1H, d, J=10.63\ Hz, H-1'), 6.30\ (1H, d, J=7.96\ Hz, H-1''), 7.23\ (2H, m, Ar-H), 8.10\ (2H, d, Ar-H). 8.10\ (2H, d, Ar-H). 106\ (3H, s, Me), 4.03, 4.12\ (4H, 2d, J=7.40\ Hz, H-6', H-6''), 4.47.462\ (2H, 2t, J=4.15\ Hz, H-5'), 5.15-5.48\ (6H, m, H-4', H-4'', H-3'', H-3''), H-3''), 5.15-5.48\ (6H, m, H-4', H-4'', H-3'', H-3''), H-3''), 5.15-5.48\ (6H, m, H-4', H-4'', H-3'', H-3''), H-3''), 5.15-5.48\ (6H, m, H-4', H-4'', H-3', H-3''), H-5''), 5.15-5.48\ (6H, m, H-4', H-4'', H-3', H-3''), H-5''), 5.15-5.48\ (6H, m, H-4', H-4'', H-3', H-3''), H-5''), 5.15-5.48\ (6H, m, H-4', H-4'', H-3'', H-3''), H-5''), 5.15-5.48\ (6H, m, H-4', H-4'', H-3'', H-3''), H-5''), 5.15-5.48\ (6H, m, H-4', H-4'', H-3'', H-3''), H-5''), 5.15-5.49\ (6H, m, H-4', H-4'', H-3'', H-3''), H-5''), 5.15-5.49\ (6H, m, H-4', H-4'', H-3'', H-3''), H-5''), 5.15-5.40\ (6H, m, H-4', H-4'', H-3'', H-3''), H-5''), 5.15-5.40\ (6H, m, H-4', H-4'', H-3'', H-3''), H-5''), 5.20\ (2H, m, Ar-H), 7.96\ (2H, d, Ar-H), 12.00\ (1H, d, J=10.05\ Hz, H-1'), 7.60\ (2H, d, Ar-H), 12.00\ (1H, d, J=10.05\ Hz, H-1'), 7.95\ (2H, d, Ar-H), 12.00\ (1H, d, H-2'), 4.61\ (N,H), 2211\ (CN), (1H, t, 6'-OH), 5.27\ (H, H, d-4'', H-3', H-2'), 4.61\ (NH, H, 22114\ (CN), (1H, t, 6'-OH), 5.07\ (1H, d, 4'-OH), 5.18\ 1728\ (C_2O), 1656\ (2H, d, Ar-H), 7.95\ (2H, d, Ar-H), 7.95\ (2H, d, Ar-H), 12.00\ (1H, br.s, NH). 1205\ (2L, d), (2L)\ (2L)\$			
$\begin{array}{c} \mbox{Hz}, H-1'), 6.34 (1H, d, J=8.70 Hz, H-1''), 7.55 (3H, m, Ar-H), 8.10 (2H, d, Ar-H). \\ \mbox{2227} (CN), 1755 1.80, 197, 1.98, 2.00, 2.05, 2.15, 2.20 (24H, 7s, 8 Ac), (MeCO), 1670 3.85 (3H, s, OMe), 4.02, 4.07 (4H, 2d, J=7.38 Hz, H-6', (C_{q}O). 1670 3.85 (3H, s, OMe), 4.02, 4.07 (4H, 2d, J=7.38 Hz, H-6'), 5.45 (6H, m, H-4', H-4'', H-3'', H-3'', H-2'', H-2''), 5.85 (1H, d, J=10.63 Hz, H-1'), 6.30 (1H, d, J=7.96 Hz, H-1''), 7.23 (2H, m, Ar-H), 8.10 (2H, d, Ar-H). \\ \mbox{5g} 2226 (CN), 1755 1.84, 1.96, 1.98, 2.01, 2.15, 2.18 (24H, 6s, 8 Ac), 2.42 (MeCO), 1668 (3H, s, Me), 4.03, 4.12 (4H, 2d, J=7.40 Hz, H-6', H-6''), (C_{4}O). 1668 (3H, s, Me), 4.03, 4.12 (4H, 2d, J=7.40 Hz, H-6', H-6''), 4.47-4.62 (2H, 2t, J=4.15 Hz, H-5'', H-5''), 5.15-5.45 (6H, m, H-4', H-4'', H-3'', H-3'', H-2''), 5.86 (1H, d, J=13.65 Hz, H-1'), 7.42 (2H, m, Ar-H), 7.98 (2H, d, Ar-H). \\ \mbox{5h} 2228 (CN), 1756 1.82, 1.96, 1.98, 2.01, 2.05, 2.15, 2.20 (24H, 7s, 8 Ac), (MeCO), 1669 400, 4.10 (4H, 2d, J=7.40 Hz, H-6', H-6''), 4.45, 4.60 (C_{4}O). 1664 (0, 4H, 2d, J=7.40 Hz, H-6'', H-5''), 5.15-5.40 (6H, m, H-4', H-4'', H-3'', H-3'', H-2''), 5.00 (1H, d, J=10.95 Hz, H-1'), 6.35 (1H, d, 2J=7.40 Hz, H-6', H-6''), 4.45, 4.60 (C_{4}O). 1669 400, 4.10 (4H, 2d, J=7.40 Hz, H-6', H-6''), 4.45, 4.60 (C_{4}O). (2H, 2t, J=4.15 Hz, H-5', H-5''), 5.15-5.40 (6H, m, H-4', H-4'', H-3'', H-3'', H-2''), 4.61 (N, H), 2210 (CN) (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 (C_{2}O), 1639 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C_{4}O). (2H, 0A-3H), 7.89 (2H, d, Ar-H), 12.00 (1H, brs, NH) 3355 (OH), 3225 3.40-3.75 (6H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 3.85 (N, H), 2211 (CN), 3H, m, Ar-H), 7.89 (2H, d, Ar-H), 7.95 (2H, d, Ar-H), 12.00 (1H, brs, NH). 1728 (C_{2}O), 1656 (3H, s, 3'-OH), 5.38 (1H, s, 4'-OH), 5.96 (1H, s, 3'-OH), 5.18 (178, (C_{2}O), 1649 (1H, s, 3'-OH), 5.38 (1H, s, 4'-OH), 5.96 (1H, s, 4'-OH), 5.18 (178, (C_{2}O), 1656 (2B (H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 4.52 (NH), 2211 (CN), (1H, t, 6$			
$ \begin{array}{c} \mbox{H}, 8, 10 (2H, d, Ar-H). \\ \mbox{5f} & 2227 (CN), 1755 & 1.80, 1.97, 1.98, 2.00, 2.05, 2.15, 2.20 (24H, 7s, 8 Ac), (MeCO), 1670 & 3.85 (3H, s, OMe), 4.02, 4.07 (4H, 2d, J=7.38 Hz, H-6', (C_4O). \\ \mbox{F} & H-6''), 4.50, 4.60 (2H, 2t, J=4.20 Hz, H-5''), F.5''), 5.10-5.45 (6H, m, H-4', H-4'', H-3''), H-3'', H-2''), 5.85 (1H, d, J=10.63 Hz, H-1'), 6.30 (1H, d, J=7.96 Hz, H-1''), 7.23 (2H, m, Ar-H), 8.10 (2H, d, Ar-H). \\ \mbox{5g} & 2226 (CN), 1755 & 1.84, 1.96, 1.98, 2.01, 2.15, 2.18 (24H, 6s, 8 Ac), 2.42 (MeCO), 1668 (3H, s, Me), 4.03, 4.12 (4H, 2d, J=7.40 Hz, H-6', H-6''), (C_4O). \\ \mbox{4} & 47.46 (2 (Hz, Lz, J=4.15 Hz, H-5', H-5''), 5.15.54 st (6H, m, H-4', H-4'', H-3', H-3'', H-2'', H-2''), 5.86 (1H, d, J=13.22 Hz, H-1'), 6.34 (1H, d, J=8.65 Hz, H-1''), 7.42 (2H, m, Ar-H), 7.98 (2H, d, Ar-H). \\ \mbox{5h} & 2228 (CN), 1756 & 1.82, 1.96, 1.98, 2.01, 2.05, 2.15, 2.20 (24H, 7s, 8 Ac), (MeCO), 1669 4.00, 4.10 (4H, 2d, J=7.40 Hz, H-6', H-6''), 4.45, 4.60 (C_4O). \\ \mbox{(C4O)}, 1669 & 4.00, 4.10 (4H, 2d, J=7.40 Hz, H-6', H-6''), 4.45, 4.60 (C_4O). \\ \mbox{(C4O)}, 1669 & 4.00, 4.10 (4H, 2d, J=7.40 Hz, H-6', H-6''), 4.45, 4.61 (H, 1, J=10.10 Hz, H-1'), 6.35 (1H, d, J=7.60 Hz, H-1''), 7.60 (2H, m, Ar-H), 8.15 (2H, d, Ar-H). \\ \mbox{6a} 3346 (OH), 3226 3.22-3.72 (6H, m, H-6', H-6'', H-5'', H4', H-3', H-2'), 4.61 (N_1H), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 (C_2O), 1639 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C_4O). \\ \mbox{6b} 3355 (OH), 3225 3.340-3.75 (6H, m, H-6', H-5'', H-4', H-3', H-2'), 3.85 (N_1H), 2212 (CN), (3H, s, OMe), 4.59 (1H, t, 6'-OH), 5.06 (1H, s, 4'-OH), 5.18 (1H, d, C_4O). \\ \mbox{6c} 3335 (OH), 3223 3.30-3.73 (6H, m, H-6', H-5'', H-4'', H-3', H-2'), 4.52 (NH), 2211 (CN), (Hz, t, 6'-OH), 5.38 (Hz, s, 2'-OH), 5.33 (1H, d, J=10.50 (L_4O). \\ \mbox{7b} Hz 2211 (CN), (Hz, t, 6'-OH), 5.34 (1H, s, 4'-OH), 5.19 (1H, s, 3'-OH), 1726 (C_2O), 1656 (1H, s, 3'-OH), 5.33 (1H, d, J=9.21 Hz, NH). \\ \mbox{7b} 338 (CH), 3226 3.22-3.72 (6H, m, H-6''$			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			Hz, H-1'), 6.34 (1H, d, J=8.70 Hz, H-1"), 7.55 (3H, m, Ar-
			H), 8.10 (2H, d, Ar-H).
	5f	2227 (CN), 1755	1.80, 1.97, 1.98, 2.00, 2.05, 2.15, 2.20 (24H, 7s, 8 Ac),
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(MeCO), 1670	3.85 (3H, s, OMe), 4.02, 4.07 (4H, 2d, J=7.38 Hz, H-6',
$ \begin{array}{c} d, J=10.63 \ Hz, H-1'), 6.30 (1H, d, J=7.96 \ Hz, H-1''), 7.23 \\ (2H, m, Ar-H), 8.10 (2H, d, Ar-H). \\ \hline \\ $		(C ₄ O).	H-6"), 4.50, 4.60 (2H, 2t, J=4.20 Hz, H-5', H-5"), 5.10-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			5.45 (6H,m, H-4', H-4",H-3', H-3", H-2', H-2"), 5.85(1H,
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			d, J=10.63 Hz, H-1'), 6.30 (1H, d, J=7.96 Hz, H-1"), 7.23
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
	5g	2226 (CN), 1755	1.84, 1.96, 1.98, 2.01, 2.15, 2.18 (24H, 6s, 8 Ac), 2.42
		(MeCO), 1668	
		(C ₄ O).	4.47-4.62 (2H, 2t, J=4.15 Hz, H-5', H-5"), 5.15-5.45
$ \begin{array}{c} J=13.22 \ Hz, \ H-1'), \ 6.34 \ (1H, \ d, \ J=8.65 \ Hz, \ H-1''), \ 7.42 \\ (2H, \ m, \ Ar-H), \ 7.98 \ (2H, \ d, \ Ar-H). \end{array} $,	(6H,m, H-4', H-4",H-3', H-3", H-2', H-2"), 5.86 (1H, d,
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			J=13.22 Hz, H-1'), 6.34 (1H, d, J=8.65 Hz, H-1"), 7.42
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			(2H, m, Ar-H), 7.98 (2H, d, Ar-H).
	5h	2228 (CN), 1756	1.82, 1.96, 1.98, 2.01, 2.05, 2.15, 2.20 (24H, 7s, 8 Ac),
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(MeCO), 1669	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(C_4 O)$.	(2H, 2t, J=4.15 Hz, H-5', H-5"), 5.15-5.40 (6H, m, H-4',
$\begin{array}{ccccc} 8.15 & (2H, d, Ar-H). \\ \begin{array}{ccccc} 8.15 & (2H, d, Ar-H). \\ \begin{array}{cccccc} 8.15 & (2H, d, Ar-H). \\ (N_1H), & 2210 & (CN), \\ (1H, t, 6'-OH), & 5.07 & (1H, d, 4'-OH), & 5.19 & (1H, s, 3'-OH), \\ 1725 & (C_2O), & 1639 & 5.36 & (1H, s, 2'-OH), & 5.41 & (1H, d, J=10.10 & Hz,H-1'), & 7.53 \\ (C_4O). & (3H, m, Ar-H), & 7.89 & (2H, d, Ar-H), & 12.00 & (1H, br.s, NH). \\ \end{array} \\ \begin{array}{ccccccccccccccccccccccccccccccccccc$			H-4",H-3', H-3", H-2', H-2"), 6.00 (1H, d, J=10.95 Hz, H-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			1'), 6.35 (1H, d, J=7.60 Hz, H-1"), 7.60 (2H, m, Ar-H),
			8.15 (2H, d, Ar-H).
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6a	3346 (OH), 3226	3.22-3.72 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.61
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		(N ₁ H), 2210 (CN),	(1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH),
6b3355(OH), 32353235 $3.40-3.75$ (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 3.85 (N1H), 2212 (CN), (3H, s, OMe), 4.59 (1H, t, 6'-OH), 4.68 (1H, d, 4'-OH), 1728 (C2O), 1649 $4.92(1H, t, 3'-OH), 5.24$ (1H, t, 2'-OH), 5.38 (1H, dd, (C4O).6c3335(OH), 3225 3225 2.38 (3H, s, Me), $3.22-3.72$ (6H, m, H-6', H-6", H-5', H4', (N1H), 2212 (CN), (1H, s, 3'-OH), 5.38 (1H, s, 2'-OH), 5.06 (1H, s, 4'-OH), 5.18 1728 (C2O), 1656(1H, s, 3'-OH), 5.38 (1H, s, 2'-OH), $5.40(1H, d, J=10.50)$ (C4O).6d3338(OH), 3223 3.223 $3.30-3.73$ (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.52 (NH), 2211 (CN), (1H, t, 6'-OH), 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH), 1726 (C2O), 1656 5.28 (1H, d, J=5.30 Hz, 2'-OH), 5.33 (1H, d, J=9.92 Hz, (C4O).6e3346(OH), 3226 $3.22-3.72$ (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.61 (NH), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 (C2O), 1639 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C4O).		1725 (C ₂ O), 1639	5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz,H-1'), 7.53
		(C_4O) .	(3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH).
1728 (C_2O) , 1649 $4.92(1H, t, 3'-OH)$, 5.24 (1H, t, 2'-OH), 5.38 (1H, dd, (C_4O).6c3335(OH), 32252.38 (3H, s, Me), 3.22-3.72 (6H, m, H-6', H-6", H-5', H4', (N_1H), 2212 (CN), H-3', H-2'), 4.62 (1H, t, 6'-OH), 5.06 (1H, s, 4'-OH), 5.18 17286d3338(OH), 32233.30-3.73 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.52 (NH), 2211 (CN), (1H, t, 6'-OH), 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH), 17266d3338(OH), 32233.30-3.73 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.52 (NH), 2211 (CN), (1H, t, 6'-OH), 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH), 17266d3346(OH), 32263.22-3.72 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.61 (NH), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 17256e3346(OH), 32263.22-3.72 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.61 (NH), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 17256e3346(OH), 32263.22-3.72 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.61 (NH), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 (C_2O), 16395.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C_4O).	6b	3355 (OH), 3235	3.40-3.75 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 3.85
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		(N ₁ H), 2212 (CN),	(3H, s, OMe),4.59 (1H, t, 6'-OH), 4.68 (1H, d, 4'-OH),
6c3335(OH),32252.38 (3H, s, Me), $3.22-3.72$ (6H, m, H-6', H-6'', H-5', H4', (N1H), (N_1H) ,2212(CN),H-3', H-2'), 4.62 (1H, t, 6'-OH), 5.06 (1H, s, 4'-OH), 5.18 1728 (C2O),1656(1H, s, 3'-OH), 5.38 (1H, s, 2'-OH), $5.40(1H, d, J=10.50$ (C_4O) .H-1'), 7.62 (2H, d, Ar-H), 7.95 (2H, d, Ar-H), 12.00 $(1H, br.s, NH)$.6d3338(OH), 3223 $3.30-3.73$ (6H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 4.52 (NH) , 2211 (CN), $(1H, t, 6'-OH)$, 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH), 1726 (C_2O) ,1656 5.28 (1H, d, J=5.30 Hz, 2'-OH), 5.33 (1H, d, J=9.92 Hz, (C_4O) .H-1'), 7.60 (2H, d, Ar-H), 7.93 (2H, d, Ar-H), 12.00 (1H, $br.s, NH)$.6e3346(OH), 3226 $3.22-3.72$ (6H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 4.61 $(NH),$ 2210 (CN), $(1H, t, 6'-OH),$ 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 $(C_2O),$ 1639 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C_4O) .(3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH).		1728 (C ₂ O), 1649	4.92(1H, t, 3'-OH), 5.24 (1H, t, 2'-OH), 5.38 (1H, dd,
6c3335 (OH), 32252.38 (3H, s, Me), 3.22-3.72 (6H, m, H-6', H-6'', H-5', H4', (N1H), 2212 (CN), H-3', H-2'), 4.62 (1H, t, 6'-OH), 5.06 (1H, s, 4'-OH), 5.18 1728 (C2O), 1656 (1H, s, 3'-OH), 5.38 (1H, s, 2'-OH), 5.40(1H, d, J=10.50 (C4O).6d3338 (OH), 32233.30-3.73 (6H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 4.52 (NH), 2211 (CN), (1H, t, 6'-OH), 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH), 1726 (C2O), 16565.28 (1H, d, J=5.30 Hz, 2'-OH), 5.33 (1H, d, J=9.92 Hz, (C4O).6e3346 (OH), 32263.22-3.72 (6H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 4.61 (NH), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 (C2O), 16395.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C4O).		(C_4O) .	J=4.56, 9.38 Hz, H-1'), 7.11 (2H, d, Ar-H), 7.95 (2H, d,
$ \begin{array}{lllllllllllllllllllllllllllllll$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6c	3335 (OH), 3225	
$ \begin{array}{cccc} (C_4O). & Hz, H-1'), 7.62 (2H, d, Ar-H), 7.95 (2H, d, Ar-H), 12.00 \\ (1H, br.s, NH). \\ \textbf{6d} & 3338 (OH), & 3223 & 3.30-3.73 (6H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 4.52 \\ (NH), & 2211 (CN), & (1H, t, 6'-OH), 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH), \\ 1726 (C_2O), & 1656 & 5.28 (1H, d, J=5.30 Hz, 2'-OH), 5.33 (1H, d, J=9.92 Hz, \\ (C_4O). & H-1'), 7.60 (2H, d, Ar-H), 7.93 (2H, d, Ar-H), 12.00 (1H, br.s, NH). \\ \textbf{6e} & 3346 (OH), & 3226 & 3.22-3.72 (6H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 4.61 \\ (NH), & 2210 (CN), & (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), \\ 1725 (C_2O), & 1639 & 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 \\ (C_4O). & (3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH). \\ \end{array} $			
 (1H, br.s, NH). 3338 (OH), 3223 3.30-3.73 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.52 (NH), 2211 (CN), (1H, t, 6'-OH), 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH), 1726 (C₂O), 1656 5.28 (1H, d, J=5.30 Hz, 2'-OH), 5.33 (1H, d, J=9.92 Hz, (C₄O). H-1'), 7.60 (2H, d, Ar-H), 7.93 (2H, d, Ar-H), 12.00 (1H, br.s, NH). 3346 (OH), 3226 3.22-3.72 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.61 (NH), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 (C₂O), 1639 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C₄O). (3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH). 			
 6d 3338 (OH), 3223 3.30-3.73 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.52 (NH), 2211 (CN), (1H, t, 6'-OH), 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH), 1726 (C₂O), 1656 5.28 (1H, d, J=5.30 Hz, 2'-OH), 5.33 (1H, d, J=9.92 Hz, (C₄O). H-1'), 7.60 (2H, d, Ar-H), 7.93 (2H, d, Ar-H), 12.00 (1H, br.s, NH). 6e 3346 (OH), 3226 3.22-3.72 (6H, m, H-6', H-6", H-5', H4', H-3', H-2'), 4.61 (NH), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 (C₂O), 1639 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C₄O). (3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH). 		(C_4O) .	Hz, H-1'), 7.62 (2H, d, Ar-H), 7.95 (2H, d, Ar-H), 12.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6d	())	
$ \begin{array}{lllllllllllllllllllllllllllllll$		(NH), 2211 (CN),	(1H, t, 6'-OH), 4.68 (1H, s, 4'-OH), 4.93 (1H, s, 3'-OH),
br.s, NH). 6e 3346 (OH), 3226 3.22-3.72 (6H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 4.61 (NH), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 (C ₂ O), 1639 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C ₄ O). (C ₄ O). (3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH).			
6e 3346 (OH), 3226 3.22-3.72 (6H, m, H-6', H-6'', H-5', H4', H-3', H-2'), 4.61 (NH), 2210 (CN), (1H, t, 6'-OH), 5.07 (1H, d, 4'-OH), 5.19 (1H, s, 3'-OH), 1725 (C ₂ O), 1639 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C ₄ O). (3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH).		(C_4O) .	
1725 (C ₂ O), 1639 5.36 (1H, s, 2'-OH), 5.41 (1H, d, J=10.10 Hz, H-1'), 7.53 (C ₄ O). (3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH).	6e	· //	
(C ₄ O). (3H, m, Ar-H), 7.89 (2H, d, Ar-H), 12.00 (1H, br.s, NH).			
6f 3348 (OH), 3219 3.40 (5H, m, H-6', H-6'', H-5', H4', H-3'), 3.72 (1H, s, H-			
	<u>6f</u>	3348 (OH), 3219	3.40 (5H, m, H-6', H-6'', H-5', H4', H-3'), 3.72 (1H, s, H-

	(NH), 2209 (CN),	2'), 3.84 (3H, s, OMe), 4.54 (1H, br.s, 6'-OH), 4.68 (1H,
	1726 (C ₂ O), 1658	br.s, 4'-OH), 4.93 (1H, br.s, 3'-OH), 5.25 (1H, d, J=5.30
	(C_4O) .	Hz, 2'-OH), 5.38 (1H, d, J= 10.08 Hz, H-1'), 7.10 (2H, d,
		Ar-H), 7.95 (2H, d, Ar-H), 12.00 (1H, br.s, NH).
6g	3335 (OH), 3225	2.38 (3H, s, Me), 3.22-3.72 (6H, m, H-6', H-6", H-5', H4',
	(NH), 2212 (CN),	H-3', H-2'), 4.62 (1H, t, 6'-OH), 5.06 (1H, s, 4'-OH), 5.18
	1728 (C ₂ O), 1656	(1H, s, 3'-OH), 5.38 (1H, s, 2'-OH), 5.40(1H, d, J=10.50
	(C_4O) .	Hz, H-1'), 7.62 (2H, d, Ar-H), 7.95 (2H, d, Ar-H), 12.00
		(1H, br.s, NH).
6h	3334 (OH), 3220	3.17 (2H, m, H-6', H-6"), 3.45 (2H, m, H-5', H4'), 3.70
	(NH), 2209 (CN),	(1H, s, H-3'), 4.17 (1H, br.s, H-2'), 4.50 (1H, s, 6'-OH),
	1722 (C ₂ O), 1655	4.65 (1H, s, 4'-OH), 4.95 (1H, s, 3'-OH), 5.20 (1H, d,
	(C ₄ O).	J=5.10 Hz, 2'-OH), 5.35 (1H, d, J=10.30 Hz, H-1'), 7.60
		(2H, d, Ar-H), 8.00 (2H, d, Ar-H), 11.85 (1H, br.s, NH).

TABLE 2 - IR AND ¹H NMR DATA OF THE COMPOUNDS PREPARED (CONTINUED)

Antiviral Activity. No activity was found when the compounds 3a-h, 5a-h and 6a-h were tested against HIV-1 (HTLV IIIB) in MT-4 cells.¹⁹

Atitumor activity. The 24 compounds were screened for antitumer activity against leukemia, non-small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer.²⁰ Only compound **5h** showed enough activity to be further tested in additional tumor systems.

EXPERIMENTAL

All evaporations were carried out under reduced pressure at 40 °C. All melting points are uncorrected. Aluminum sheets coated with silica gel 60 F_{254} (Merck) were used for TLC. Detection was affected by viewing under a short-wavelength UV lamp. IR spectra were obtained (KBr disc) on a Pye Unicam spectrum 1000. ¹H-NMR and ¹³C-NMR spectra were measured on a Wilmad 270 MHz or on a Varian 500 MHz spectrometer for solutions in DMSO- d_6 with TMS as internal standard. The chemical shifts are given as δ values and the J values are given in Hz. Mass spectra were recorded on a Varian MAT 112 spectrometer. Analytical data were obtained from the Microanalytical Center at Cairo and Tanta Universities.

Potassium salts of 6-aryl-5-cyano-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-ones (1a-d). A

mixture of thiourea (0.76 g, 10 mmol), ethyl cyanoacetate (1.13 g, 10 mmol), the appropriate aldehyde (10 mmol) and potassium carbonate (1.38 g, 10 mmol) in ethanol (30 ml) was refluxed for overnight and then cooled. The precipitate thus obtained was filtered off and recrystallized from ethanol (50 %) to give the products **1a-d** in 30-50 % yield as yellow solids.

6-Aryl-5-cyano-2-thioxo-1,2,3,4-tetrahydropyrimidin-4-ones (2a-d). The potassium salt 1 was dissolved in water at 80 °C, filtered off and neutralized with glacialacetic acid. The light yellow precipitate was filtered off and washed with water. It was crystallized from a DMF-water mixture to give 2a-d¹⁵.

6-Aryl-5-cyano-2-(alkylmercapto)-3,4-dihydropyrimidin-4-ones (3a-h).

Method A: The potassium salt 1 (10 mmol) was suspended in ethanol (30 ml). To this suspension was added methyl iodide (10 mmol) or ethyl bromoacetate (10 mmol). The reaction mixture was stirred at room temperature. The white solid that separated was filtered off, washed with water and recrystallized from ethanol to give the products **3a-h**.

Method B: A solution of **2** (20 mmol) in DMF (10 ml) was stirred with potassium carbonate (10 mmol) and then treated with iodomethane (10 mmol) or ethyl bromoacetate (10 mmol). The reaction mixture was stirred for 4 h at r. t. and then diluted with water. The white solid was filtered off and recrystallized from ethanol to give the products **3a-h**.

6-Aryl-5-cyano-3-(2',3',4',6'-tetra-*O*-acet-yl-β-D-gluco- and D-galactopyranosyl)-2-(2",3",4",6"-tetra-*O*-acetyl-β-D-gluco- and D-galactopyranosylmercapto)-3,4-dihydropyrimidin-4-ones (5a-h).

Method A: To a solution of 2 (10 mmol) in aqueous potassium hydroxide [1.23 g, 22 mmol, in distilled water (6 ml)] was added a solution of 4 (22 mmol) in acetone (30 ml). The reaction mixture was stirred for 4 h at r. t. until the starting material was consumed (TLC).

The mixture was evaporated under reduced pressure at 40 °C and the residue was washed with distilled water to remove the potassium bromide formed. The solid product was dried and crystallized from absolute ethanol to give the products **5a-h** in 50-60 % yield.

Method B : 6-Aryl-5-cyano-2-thiouracil 2 (10 mmol) was dissolved in 0.2 mM sodium ethoxide (100 ml) and then evaporated to dryness. The residue was dissolved in anhydrous dimethylsulphoxide (25 ml) containing 4 (20 mmol) and stirred at r. t. for 24 h. The reaction was then cooled, poured into water (200 ml) and extracted with chloroform (3 x 50 ml). The organic layer was washed with water (3 x 50 ml), dried over sodium sulfate and evaporated to dryness under *vacuum*. The resulting product was crystallized from ethanol to give the products **5a-h** in 30-40 % yield.

6-Aryl-5-cyano-3-(β -D-gluco- and D-galactopyranosyl)-3,4-dihydropyrimidin-2,4-diones (6a-h). The protected nucleoside 5 (2 g) was stirred in saturated NH3/MeOH (50 ml) at r. t. for 24 h. The solvent was removed in *vacuo* and the residue was crystallized from methanol to give the deprotected nucleosides 6a-h.

Acknowledgments: The authors would like to express their gratitude and thanks to Dr. John P. Bader, Chief, Antiviral Evaluation Branch, and Dr. V. L. Narayanan, Chief, Drug Synthesis and Chemistry Branch, National Cancer Institute, USA for carrying out the in-vitro antiviral testing.

REFERENCES

- 1. Cheng, C. C. Prog. Med. Chem. 1969, 6, 67.
- Scott, D. B. M.; Ulbricht, T. L. V.; Rogers, M. L.; Chu, E.; Rose, C. Cancer Res. 1959, 19, 15; Chem Abstr. 1959, 53, 10967i.
- Sankyo Co, Ltd.; Ube Industries; Japan Kokai Tokyo Koho JP 5936, 667 [8436, 667]; Chem Abstr. 1984, 101, 1109392.
- 4. Ruyle, W. V.; Shen, T. Y. J. Med. Chem. 1967, 10, 331.

- 5. Vince, R. U. S. Pat. 1981, 4: 268, 672; Chem. Abstr. 1981, 95, 98246.
- De Napoli, L.; Piccialli, G.; Rosso, M.; Santacroce, C. J. Heterocyclic Chem. 1986, 23, 140.
- 7. Herdewijn, P. A. M. M. Antiviral Res. 1992, 19, 1.
- Shealy, Y. F.; O'Dell, C. A. U. S. pat. 1985, 4, 543, 255; Chem. Abstr. 1986, 104.
 62067.
- Shealy, Y. F.; Clayton, J. D. U. S. Pat. 1984, 4, 728, 736; Chem. Abstr. 1988, 109. 23323.
- 10. De Clercq, E.; Approache to Antiviral Agents; Harnden, M. R.; Ed., McMillan New York 1985, 57.
- 11. De Clercq, E. Pure Appl. Chem. 1983, 55, 623.
- Goodchild, J.; Porter, R. A.; Raber, R. H., Sim, I. S.; Upton, R. M.; Roger, R. M.;
 Viney, J.; Wadsworth, H. J. Med. Chem. 1983, 26, 1252.
- Wigerinck, P.; Snoeck, R.; Claes, P.; De Clercq, E.; Herdewijn, P. J. Med. Chem. 1991, 34, 2383.
- 14. Zorbach, W. W.; Munson, H. R. JR. Synthetic procedues in nucleic acid chemistry 1968, 1, 379.
- 15. Kambe, S.; Saito, K.; Kishi, H.; Sakurai, A.; Midorikawa, H. Synthesis 1979, 287.
- 16. Ram, V. J.; Berghe, D. A. V.; Vlietinck , A. J. J. Heterocyclic Chem. 1984, 21, 1307.
- 17. Rashed, N., Mousaad, A., Saleh, A., Alex. J. Pharm. Sci. 1993, 7, 171.
- 18. Lemieux, R. U. Methods Carbohydr. Chem. 1963, 2, 221.
- 19. Nielsen, C. M.; Bygbjerg, I. C.; Vestergaad, B. F. (Letter) Lancet 1987, (No. 1), 566.
- 20. Hutchison, D. J.; Ann. N. Y. Acad. Sci. 1971, 186, 496.

Received April 2, 1996 Accepted February 27, 1997