SYNTHESIS OF OPTICALLY ACTIVE METHYLMENTHOXYCHLOROSILANES AND MENTHYL ESTERS OF METHYLCHLOROSILYLPROPIONIC AND METHYLCHLOROSILYLISOBUTYRIC ACIDS

K. A. Andrianov, A. A. Mamedov, L. M. Volkova, and E. I. Klabunovskii

UDC 542.91 + 535.56 + 546.287

The stereochemistry of organosilicon compounds, and especially of the optically active compounds, is attracting much attention in recent years [1]. The optical activity in such compounds can be due to an asymmetrical silicon atom, as well as to optically active organic groups, attached to the silicon atom. The latter compounds have remained relatively unstudied, whereas they can serve as the components of disymmetrical catalysts [2] and as the starting materials for the preparation of various optically active organosilicon heat stable polymers, representing interest for the creation on their basis of supports for disymmetrical catalysts and adsorbents. An optically active aminopolysiloxane, obtained by the hydrolysis of 2-methylbutyltrichlorosilane [3], is described in the literature.

The purpose of the present paper was to obtain some optically active organosilicon monomers and polymers, containing the menthoxy group attached directly to the silicon atom, and also in the organic radical, and to study the effect of the structure of the molecule on the optical rotation. Of the first type of compounds we synthesized sundry methylmenthoxychlorosilanes by the reaction of methyltrichlorosilane with l-menthol in the presence of urea. When the reaction is run using equimolar ratios of the reactants, both the mono- and the dimenthoxyderivatives are formed according to the scheme

$$CH_{3}SiCl_{3} + l-C_{10}H_{19}OH \rightarrow CH_{3}Si(OC_{10}H_{19})_{n}Cl_{3-n}$$

When the conditions for the hydrolysis of the methylmenthoxychlorosilanes were studied it proved that reaction with sodium bicarbonate gave, besides hydrolysis of the chlorine, also substantial cleavage of the menthoxy group. When the hydrolysis is run with the calculated amount of water in the presence of triethylamine the menthoxy group is not attacked, and only the chlorine is hydrolyzed to give methyl-menthoxypolysiloxanes. However, the obtained methylmenthoxypolysiloxanes are both hydrolytically and heat unstable. Almost complete cleavage of the menthoxy group is observed when they are heated in the air at 200° for 1 h or when they are refluxed with water.

To synthesize optically active organosilicon monomers, containing the methoxy group in the organic radical, we studied the addition of methylchlorohydrosilanes to the menthyl esters of the acrylic and methacrylic acids in the presence of H_2PtCl_6 . Previously it had been established [4-9] that the addition of silane hydrides to methyl methacrylate goes with the formation of only the β -adduct, whereas with methyl acrylate, depending on the starting silane hydride, both the α - and the β -isomers were obtained. When the reaction of methylchlorohydrosilanes with menthyl methacrylate was studied it was found that the addition goes in the first 3-4 h, with the formation of the menthyl esters of methylchlorosilylisobutyric acid according to the scheme

$Cl_n (CH_3)_{3-n}SiH + CH_2 = C (CH_3)COOC_{40}H_{49} \rightarrow$ $\rightarrow Cl_n (CH_3)_{3-n}SiCH_2CH (CH_3)COOC_{40}H_{49} \quad n = 1, 2, 3$

Long heating of the reaction mixture with excess chlorosilane complicates the reaction, and the formation of products containing the Si—OC bond is observed. The reaction of methyldichlorosilane with menthyl acrylate gave two isomers, indicating that the presence of the bulky menthoxy group does not change the course of the reaction.

$$Cl_{2}(CH_{3})SiH + CH_{2} = CHCOOC_{10}H_{19} \rightarrow Cl_{2}(CH_{3})SiCHCOOC_{10}H_{19} + Cl_{2}(CH_{3})SiCH_{2}CH_{2}COOC_{10}H_{19}$$

Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, and the N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1481–1486, July, 1967. Original article submitted July 13, 1966.

	MR Found, % Calculated, %	ound calcu- c n si c n Si ci	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	alcula	1d	
	Ö	υ	6334511966 6334511966 6334511966
		13	25,6 8,66 8,66 8,66 21,71 21,71 22,37 29,64 5,55 55
	0/0	17	10 10 10 10 10 10 10 10 10 10
	Found,	Id	10,144 10
		IJ	$\begin{array}{c} 664,80\\ 660,10\\ 53,12\\ 53,12\\ 553,12\\ 553,00\\ 553,00\\ 553,00\\ 62,7\\ 52,99\\ 62,72\\ 62,7$
		calcu- lated	001088888888888
	MR	found	70,90 889,49 884,70 884,70 884,70 884,70 884,70 884,70
		a ²⁰	, 0280 1, 0287 1, 0287 1, 0552 1, 1482 1, 1482 1, 0603 1, 0603 1, 0597 1, 1451 1, 1451
		ⁿ 20	1,45541 1,45541 1,46291 1,46291 1,46391 1,46391 1,46401 1,46401 1,46891 1,469911 1,469911 1,469911 1,469911 1,469911 1,469911 1,469911 1,469911 1,469911 1,469911 1,46
ted Compounds	I	Nield, bp, C % (p, mm of Hg)	$\begin{array}{c} 34,13\\ 8,34160-164 (1)\\ 49,51460-164 (1)\\ 52,0140-145 (3)\\ 52,0140-145 (3)\\ 29,451120-114 (1)\\ 22,55140-114 (1)\\ 23,53112-116 (1)\\ 23,53112-116 (1)\\ 23,53112-116 (1)\\ 23,53112-116 (1)\\ 23,53112-116 (1)\\ 32,53112-116 (1)\\ 32,53112-116 (1)\\ 32,53112-116 (1)\\ 32,53112-116 (1)\\ 32,53112-116 (1)\\ 32,53112-116 (1)\\ 32,53112-116 (1)\\ 32,53112-116 (1)\\ 32,53112-116 (1)\\ 33,53112-116 (1)\\ $
TABLE 1. Properties of Synthesized Compounds		Compound Tie	CH ₃ SiCl ₂ (OC ₁₀ H ₁₉) CH ₃ SiCl ₂ (OC ₁₀ H ₁₉) CH ₃ SiO(10C ₁₀ H ₁₉) Cl(CH ₃)SiCH ₂ CH (CH ₃) COOC ₁₀ H ₁₉ (Cl(CH ₃)SiCH ₂ CH (CH ₃) COOC ₁₀ H ₁₉ (Cl ₂ SiCH ₂ SiCH ₂ CH (CH ₃) COOC ₁₀ H ₁₉ (Cl(CH ₃)SiCH ₂ CH (COC ₁₀ H ₁₉ (Cl(CH ₃)SiCH ₂ CH (COC ₁₀ H ₁₉ (Cl(CH ₃)SiCH ₂ CH ₂ COOC ₁₀ H ₁₉ (Cl(CH ₃)SiCH ₂ CH ₂ COOC ₁₀ H ₁₉ (Cl(CH ₃)SiCH ₂ CH (CH ₃)COOC ₁₀ H ₁₉ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH (CH ₃)COOC ₁₀ H ₁₀ (Cl(CH ₃)SiCH ₃ CH
TABL		No.	

Ŕ

* Amount of OH groups,

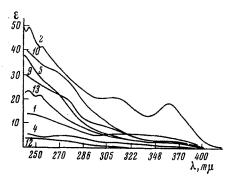


Fig. 1. Optical rotation dispersion curves.

The structure of the obtained compounds was established by the NMR method. For the α -isomer the CH₃ doublet, $\delta =$ $1.35 \cdot 10^{-6}$, with a coupling constant J = 7 Hz, is characteristic, while for the β -isomer the Cl₂(CH₃)SiCH₂ triplet, $\delta = 2.56 \cdot 10^{-6}$, is characteristic. The other lines were not identified due to superimposition of the spectrum of the menthyl substituent.

Only the β -adducts were isolated when dimethylchlorosilane and trichlorosilane were reacted with menthyl acrylate.

> $Cl_n(CH_3)_{3-n}SiH + CH_2 = CHCOOC_{10}H_{19} \rightarrow$ $\rightarrow Cl_n(CH_3)_{3-n}SiCH_2CH_2COOC_{10}H_{19} \quad n = 1, 3$

The structure of all of the synthesized compounds was also confirmed by the infrared spectra.

The silanol is formed in 80% yield when the menthyl ester of dimethylchlorosilylisobutyric acid is hydrolyzed in the presence of urea, while the formation of the disiloxane is not observed.

 $\begin{array}{l} \mathrm{Cl}\,(\mathrm{CH}_3)_2\mathrm{SiCH}_2\mathrm{CH}\,(\mathrm{CH}_3)\,\mathrm{COOC}_{40}\mathrm{H}_{49} + \mathrm{H}_2\mathrm{O} \rightarrow \\ \\ \rightarrow \mathrm{HO}\,(\mathrm{CH}_3)_2\mathrm{SiCH}_2\mathrm{CH}\,(\mathrm{CH}_3)\,\mathrm{COOC}_{40}\mathrm{H}_{49} \end{array}$

The hydrolysis of the methylester of methyldichlorosilylisobutyric acid under the same conditions leads to the formation of a polymer with a low molecular weight.

The properties of the synthesized compounds are given in Table 1. The values of the specific rotation at 589.3 and 313 m μ (maximum value) are given in Table 2. The strong absorption in the vicinity of 300 m μ , which can be seen from the given ultraviolet spectra (Fig. 2), makes it difficult to measure the rotation dispersion (r.d.) at $\lambda < 300 \text{ m}\mu$. The corresponding values of the molecular rotation [M]_D and [M]₃₁₃ and the constants A and λ_0 of the Drude monomial equation, which in a certain wavelength range are described by the r.d. curves, are also given in Table 2. The constants were calculated graphically by the Heller method in the coordinates $1/[M]\lambda^2 \text{ vs. } 1/\lambda^2$. The obtained series of compounds makes it possible to ascertain the effect of the chlorosilyl group in the investigated compounds on the optical rotation of the menthoxy group [compounds (I), (II),

E 2	TABLE 2. Optical Rotation Constants of Organosilicon Compounds (Chloroform, 23°)	of Organo	silicon (Compound	s (Chlor	oform,	23°)			
	Formula	Mol. wt.	α[α] -	- [a]313 mµ	a[M] -	$-[M]_{313}$	$-A \cdot 10^{-5}$	λ₀,mμ	Wavelength range, mμ	C, g/100 ml
	CH ₃ SiCl ₂ (OC ₁₀ H ₁₉) CH ₃ SiCl (OC ₁₀ H ₁₉)2 Cl (CH ₂)2SiCH ₂ CH (CH ₃) COOC ₁₀ H ₁₉ Cl ₂ (CH ₅)SSiCH ₂ CH (CH ₃) COOC ₁₀ H ₁₉	269,26 389,02 318,92 339,36	62,99 62,99 52,89 51,42	274,5 340,5 290,1 224,1	169,4 304,7 168,7 174,3	738,4 1324,6 734 750 7	54,8 97,60 55,4	157 158 158 172	577366 546312 492334 589334	4,71 4,02 3,90 5,27
	Cl ₈ SiCH ₂ CH (CH ₃) COOC ₁₀ H ₁₉	359,76	34,29	101,6 (366)	123,4	365,6	39,6	162	589-366	6,19
	Cl(CH ₅) ₂ SiCH ₂ CH ₂ CH ₂ COOC ₁₀ H ₁₃	304,9	55, 1	(366) (366)	168,0	497,7	53,9	163	589365	4,34
		325,26	49,11	(334)	159,7	550,4	47,6	132	589-366	ł
	Cl2 (CH2) SiCH2CH2COOCH	325,26	45,72	137,7	148,9	448,6	49,26	149	589407	4,36
		345,8 300 56	38,33 53,03	160,7	132,4	555,3	43,0 55 86	151	589-334	3,57
		284,46	65, 14	289,2	187.6	822.7	59,42	164	546334	4,06
	[(H ₁₉ C ₁₀ O) ₂ Si (CH ₃)] ² [(H ₁₉ C ₁₀ O)Si (CH ₃) — O].	360,9 244,36	57,08 39,93	253,4 159,4	206,0	914,5 306.7	64,85 99.9	172,5 183 0	607-334	3,21
		001134	1 07,20	102,201	1 60'en	070	76.77	100,3	110-004	0,02

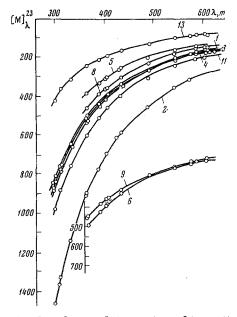


Fig. 2. Ultraviolet spectra of investigated compounds.

(XII) and (XIII)], and the effect of the new asymmetric atom appearing in the group attached to the chlorosilyl moiety [compounds (III)-(V), (VII) and (X)]. From an examination of the data on the optical rotation (see Table 2 and Fig. 1) it can be seen that in compounds (I) and (II) the chlorosilyl group reduces the specific rotation when compared with organic alkyl menthyl ethers, for which $[\alpha]_{D} \approx -95$ to -92° , however $[\alpha]_{D}$ for (II) is hardly different from the $[\alpha]_{D}$ for dimenthoxy formal $[CH_2 \cdot (OC_{10}H_{19})_2 : [\alpha]_D - 77.94^\circ].$ $[\alpha]_D$ is smaller in the polymethylmenthoxysiloxanes than in the chloromethylmenthoxysilanes. In compounds (III)-(IX) an increase in the chlorine content lowers $[\alpha]$. From Table 2 it can be seen that the maximum values of the molecular rotation [M]₃₁₃ show greater change than [M]D, depending on the number of menthyl groups and the presence of an asymmetric atom in the molecule. The obtained data on the r.d. make it possible to draw some conclusions regarding the relationship between the constants of the equation and the structure. All of the compounds have a negative rotation and give smooth negative r.d. curves, which are satisfactorily described by the Drude equation, valid in the indicated wavelength range, with the constants A and λ_0 . As was to be expected, the dispersion constant shows little change and lies in the range 150-170 m μ for all of the compounds, while the rotation constants show greater change. The small changes in $[\alpha]$ and A in the series (III)-(V), when compared with (VI), (VIII) and (IX), show that the contribution of the asymmetric β -carbon atom, formed in the synthesis, to the total rotation is apparently small. A comparison of $[\alpha]$ and A for (IV) and (VII) reveals that approach of the Cl₂(CH₂)Si group toward the asymmetric center lowers both $[\alpha]$ and A. Removal of the menthyl group away from the ester molecule makes it possible to estimate the degree of asymmetric synthesis. A comparison of the optical rotation of dimer (XII) and polymer (XIII) with the corresponding chlorosilanes reveals an important reduction in the negative rotation. In contrast, the hydrolysis of compounds (III) and (IV), containing a new asymmetric center, gives hydrolysis products [(X) and (XI)] that have a high negative specific rotation. It is interesting that in the previously investigated poly(2-methylbutyl)siloxane the $[M]_D$ (52.7) is also greater than for the monomer ($[M]_D$ 12.7), whereas the values of A nearly coincide (A $\cdot 10^{-5} = 19.2$ and 19.6) [2].

EXPERIMENTAL

<u>Methylmenthoxydichlorosilane (I)</u> and <u>Methyldimenthoxychlorosilane (II)</u>. With stirring, a solution of 19.8 g of *l*-menthol ($[\alpha]_D - 50.3^\circ$) in 150 ml of ether was added to a mixture of 19 g of CH₃SiCl₃ and 8.2 g of urea. The mixture was stirred for 40 min, and the precipitate was filtered. Fractional distillation gave 12.5 g of (I), bp 97-97.5° (5 mm); n_D²⁰ 1.4554; d₄²⁰ 1.028 and 4.12 g (II), bp 160-164° (2 mm); n_D²⁰ 1.4629; d₄²⁰ 1.0287.

<u>Menthyl Ester of Dimethylchlorosilylisobutyric Acid (III)</u>. With stirring, 10.3 g of $Cl(CH_3)_2SiH$ was added to 24.5 g of freshly distilled menthyl methacrylate and 0.5 ml of 0.1 N H₂PtCl₆ · 6H₂O solution in isopropyl alcohol. The reaction mixture was heated at 120° for 1.5 h. Fractional distillation gave 15.15 g (49.5%) of (III), bp 140-143° (3 mm); n_D²⁰ 1.4622; d₄²⁰ 0.9808.

Compounds (IV)-(IX) were obtained in a similar manner (see Table 1).

<u>Menthyl Ester of Dimethylhydroxysilylisobutyric Acid (X)</u>. With stirring, 1.5 ml of water was added to a solution of 2.23 g of (III) in 50 ml of ether and 4 g of urea. The mixture was stirred at room temperature for 1.5 h, the precipitate was separated, and the ether was distilled from the filtrate until the weight remained constant. We obtained 1.67 g of (X); n_D^{20} 1.4649; d_4^{20} 0.9772.

(XI) was obtained in a similar manner by the hydrolysis of (IV).

The optical rotation was studied in chloroform solution at concentrations of approximately 4-5%, at 23°, in a polarimeter tube with a length of either 0.5 or 1 dm, using an SPU-E spectropolarimeter equipped with a double monochromator, in the wavelength range $302-612 \text{ m}\mu$.

The NMR spectra were taken on a "Hitachi H-60" spectrometer, with an operating frequency of 60 MHz, in chloroform solution. Tetramethylsilane was used as the internal standard.

The authors wish to thank B. Lavrukhin for taking the NMR spectra.

CONCLUSIONS

1. The reaction of methylhydrochlorosilanes with the menthyl esters of acrylic and methacrylic acid gave seven new optically active menthyl esters of chlorosilylpropionic and chlorosilylisobutyric acid. The mono- and dimenthoxychloromethylsilanes were isolated when methyltrichlorosilane was etherified with l-menthol.

2. All of the obtained compounds have a negative rotation and give smooth negative rotation dispersion curves, which are satisfactorily described by the Drude equation in the wavelength range 302-612 m μ .

LITERATURE CITED

- 1. L. H. Sommer, Stereochemistry, Mechanism and Silicon, N.Y. (1965).
- 2. A. Nagato, J. Iyoda, and I. Shijhara, J. Chem. Soc. Japan, (Ind. Chem. Sect.), 69, 1957 (1966).
- 3. E. I. Klabunovskii, L. F. Godunova, and A. A. Balandin, Vysokomolekul. Soed., 3, 441 (1966).
- 4. L. H. Sommer, F. P. MacKay, O. W. Steward, and P. G. Campbell, J. Amer. Chem. Soc., <u>79</u>, 2764 (1957).
- 5. J. Curry and G. W. Harrison, J. Organ. Chem., 23, 627 (1958).
- L. Goodman, R. M. Silverstein, and J. M. Shoolery, J. Am. Chem. Soc., <u>78</u>, 4493 (1956); <u>79</u>, 3073 (1957).
- 7. A. D. Petrov, S. I. Sadykh-Zade, and E. I. Filatova, Zh. Obshch. Khimii, 29, 2936 (1959).
- 8. J. L. Speier, J. A. Webster, and G. H. Barnes, J. Amer. Chem. Soc., 79, 974 (1957).
- 9. A. D. Petrov, V. F. Mironov, V. A. Ponomarenko, S. I. Sadykh-Zade, and E. A. Chernyshev, Izv. AN SSSR, Otd. Khim. Nauk, 1958, 954.