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Biomimetic Spirocyclisation using Novel Intramolecular Radical Oxygenation; a Model 
for the Biosynthesis of the lnteriorin Lignans 
Stuart P. Green and DonaM A. Whiting* 
Chemistry Department, The University, Nottingham, UK NG7 2RD 

Novel intramolecular radical spirocyclisation reactions in aromatic nuclei, 22 -+ 23 and 30 -+ 31, are presented, which 
mimic a key step in the proposed biosynthesis of the interiorins 1-4 and kadsulignans 5,6. 

We have drawn attention to a number of secondary metab- 
olites whose biosynthesis involves C-C bond formation, 
apparently through radical processes. In these cases it is 
postulated that a carbon radical is generated through 
hydrogen abstraction, most probably by cytochrome P-450 
operating in its normal C-H hydroxylation mode. However, 
rather than the common rapid oxygenation of the C-radical by 
'hydroxyl rebound', radical reactions such as cyclisation, 
substitution or rearrangement intervene, followed either by a 
final oxidative step or by recovery of hydrogen, perhaps from 
protein thiol functions. We envisage that this relatively rare 
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situation arises only in secondary metabolism, with monoox- 
genases less efficient than those in primary metabolism which 
have been the focus of most study. In support of this 
contention, we have reported a number of biomimetic 
transformations-cyclisation of aryloxymethylene radicals, 
pyridine alkylation, ring expansion and aromatisation, etc-  
using unambiguous radical processes. 

In this context, the recently reported structures of the 
interiorins A-D (1-4)2 and of the kadsulignans C and D ( 5 ,  6)3 
drew our attention. These compounds are examples of 
o,o-bridged bibenzyl lignans,4 e.g.  7, but display an unusual 
spirodienone subunit which might reasonably arise through 
cyclisation of a carbon radical 8 derived from an 0-methyl 
group, as in Scheme 1. The cyclised radical 9, resonance 
stabilised, can be imagined to form a spirodienone 11 by one 
of two radical paths, as shown. Pathway (a)  involves abstrac- 
tion of an hydrogen atom from hydroxyl, while pathway (b )  
invokes hydroxylation to hydrate 10, followed by loss of 
water; both paths require an hydroxy iron(1v) species accepted 
in P-450 oxygenations. We set out to model both these 
potential routes, as in Scheme 2. As in earlier work,'.' we 
chose to generate carbon radicals by photolysis of thiohydrox- 
amate esters. For path (a)  we intended to mimic protein cavity 
abstraction of hydrogen by fragmentation, (12 -+ 13 -+ 14, 
RLG = good radical leaving group), and for path (b)  we 
proposed to parallel active site hydroxylation with intramole- 
cular oxygen transfer (15 + 16 + 14). In practice, after a 
series of experiments (to be discussed in a full paper) in which 
radicals of general type 12 were generated, with a range of 
potential radical leaving groups, we were disappointed to be 
unable to observe any products of type 14. However, we had 
more success with a model for path (b) ,  where we were 
fortunate to find that a suitably disposed nitro function could 
act as an oxygen donor to a carbon radical, and we report here 
this novel biomimetic chemistry. 

The substrate for our first investigation was prepared from 
monobenzylhydroquinone 17, which was reacted with methyl 
4-bromobutanoate to provide ester 18 (81%). Debenzylation 
to 19 (95%) and reaction with Sanger's reagent yielded the 
aryl ether 20 (87%), the ester group of which could be 
hydrolysed under mild acid conditions to provide the desired 
carboxylic acid 21 (67%). The corresponding thiohydrox- 
amate ester 22 was formed in situ by standard methods, and 
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irradiated in refluxing benzene for 1 h. The reaction products 
included the hoped-for spirodienone 23, albeit in only 2.4% 
yield (from 21); the chroman 24 (13%) derived from homoly- 
tic aromatic substitution, and the sulfide 25 (23%), arising 
from trapping of the first primary carbon radical with pyridine 
thiyl. With this encouragement, we examined a second system 
in which 6,6-cyclisation was blocked, and additional stabilisa- 
tion by methoxyl groups was offered to the intermediate 
cyclohexadienyl radical, cf. 9.  To this end, syringaldehyde was 

reacted with methyl 4-bromobutanoate to provide the ester 
26. Baeyer-Villiger oxidation gave the formate 27 (79%), 
which was selectively cleaved by diethylamine to the phenol 28 
(48%). Treatment with Sanger's reagent and hydrolysis as 
before yielded the required starting acid 29 (61%). The 
Barton ester 30 was formed in standard fashion, and irradiated 
in refluxing benzene for 1 h. We were pleased to find that the 
dimethoxyspirodienone 31 was then the major product (49% 
from 29), with a minor quantity of the trapped decarboxylated 
but uncyclised compound 32.1- 

These novel reactions indicate that , in a suitable substrate, a 
viable radical pathway exist for ipso-addition (5-exo) of a 
carbon radical to an aromatic unit, and that intramolecular 
oxygenation can be engineered in such a way as to lead to a 
para-spirodienone. In the natural example 7 + 11, both 
electronic and stereochemical factors are more favourable 
than in the models discussed here, and, taken with our earlier 
work, we consider that a circumstantial but strong case for a 
radical process in vivo is established. A similar process could 
lead to ortho-spirodienones systems as found in the kadsulig- 
nans 5 and 6. Biological studies of the cytochromes involved 
would be rewarding. The detailed mechanism of these 
reactions has been investigated further, and is discussed in the 
following communication. 
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Footnote 
t A11 new compounds gave satisfactory spectroscopic and analytical 
data. 
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