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 SYNTHESIS OF BICYCLO[4.3.1]DEC-2-EN-7-ONE 

VIA INTRAMOLECULAR [2+2] PHOTOCYCLOADDITION

Hideharu SETO,
*
Shinya  HIROKAWA, Yasuo FUJIMOTO, and Takashi TATSUNO

The Institute of Physical and Chemical Research, Hirosawa, Wako, Saitama 351

 An efficient five step synthesis of bicyclo[4.3.1]dec-2-en-7-

one by intramolecular [2+2] photocycloaddition of 1-acetoxy-2-

(pent-4-enoyl)cyclopentene and subsequent transformation sequence 

of the resulting cyclobutane derivative is described.

 The bicyclo[4.3.1]decane skeleton (Scheme 1; A) is a novel structural feature 

of natural products such as nakafuran-91) (Scheme 1; B), pallescensin C2) and 

pallescensin D2) which were recently isolated from some marine sponges and nudi-

branchs. In connection with our work on the total synthesis of these compounds, 

we required a simple and general method for the synthesis of reasonably functional-

ized bicyclo[4.3.l]decane ring systems. We wish to report here the synthesis of 

bicyclo[4.3.l]dec-2-en-7-one (9), a potential intermediate leading to nakafuran-9, 

by intramolecular [2+2] photocycloaddition of easily prepared 1-acetoxy-2-(pent-4-

enoyl)cycl.opentene (3) and subsequent conversion of the photoproduct (40). 

 Scheme 1

A B

 The starting material, enol acetate (3)3) [a colorless oil, by 80-83.5 CC/0.08 

mmHg], was prepared from the acid chloride (1) by the usual way in 65% overall yield 

[i, 1.2 equiv. of 1-morpholinocyclopentene, 1.2 equiv. of triethylamine, chloroform, 

r.t., overnight, then 36% hydrochloric acid, water, reflux, 5 h; ii, 1.5 equiv. of 

acetyl chloride, pyridine, 0 CC, 4 h]. Irradiation of (3)4) (1.4 x 10-2mol•.1-1) in 

diethyl ether with a 300 W medium-pressure mercury lamp equipped with Pyrex filter 

under an argon stream at-60--50 CC for ca. 40 h afforded the desired "crossed"
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cycloaddition product (4a) 8) in high isolated yield [colorless prisms, mp 73.5-74 CC 

(lit.,4) 74-75 CC), 74.8%] together with the "straight" adduct (4b) 8) [colorless 

prisms, mp 78.5-79 CC (lit., 4) 78-79 CC), 7.8%]. These photoproducts were easily 

separated by column chromatography on silica gel. Hydrolytic cleavage of the acetoxy 

group of (4a) with 4% potassium hydroxide in dioxane/water, 1:1, at r.t. for 1.5 h 

gave directly the ketol (6)8) [colorless needles, mp 121-123 CC, 86.6%] instead of 

forming desired bicyclo[4.3.l]decan-2,7-dione (5) which was presumably the transient 

intermediate. However, it is expected that the cleavage of the C3-C7 bond in (6) 

leading to bicyclo[4.3.1]decane skeleton can be readily accomplished by Grob fragmen-

tation 5) of diol monotosylate (8), because the C2-tosyloxy leaving group and the C3-

C7 bond are arranged in antiperiplanar on the basis of Dreiding model consideration. 

In fact, this expectation proved to be true as follows.

Scheme 2

 Reduction of (6) with 2.5 equiv. of L-Selectride in tetrahydrofuran at-78 CC 

for 3 h occurred exclusively from the sterically less hindered side to afford the 

diol (7a)8) [colorless needles, mp 143-144 CC, 93.7%]. On the other hand, sodium 

borohydride reduction of (6) in ethanol at 0 CC led to a 5;2 mixture of (7a) and 

(7b)8) [colorless granules, mp 142-143.5 CC, total yield 90.4%] which were separated



Chemistry Letters, 1 9 8 3 991

by column chromatography on silica gel. The stereochemical evidence of each diols 

were obtained from their 'H-NMR spectra [J C
2-H, C3-H 9.5 Hz in (7a) and 3.5 Hz in 

(7b)]. Tosylation of (7a) with 1.3 equiv. of p-toluenesulfonyl chloride in 

pyridine at r.t. for overnight gave the diol monotosylate (8)8) [colorless needles, 

mp 98-99.5 CC, 92.4%]. Finally, when (8) was treated with 3.0 equiv. of potassium 

t-butoxide in t-butyl alcohol at 40 CC for 1 h, to meet to our expectation, the 

Grob fragmentation proceeded smoothly to afford bicyclo[4.3.1]dec-2-en-7-one (9)8) 

[a colorless oil, 81.9%]. The structure of (9) was established as follows (Scheme 

3). S
cheme 3

 Catalytic hydrogenation of (9) [1 atm hydrogen, platinum oxide, diethyl ether, 

r.t.] followed by Wolff-Kishner reduction of the resulting ketone (10)8) [10% 

hydrazine monohydrate, cat, amount of acetic acid, diethylene glycol, 80-90 CC, 

then potassium hydroxide, 190-200 CC] afforded a known hydrocarbon, bicyclo[4.3.1]-

decane (11)6), confirming the carbon skeleton. Deuteration of (9) [potassium 

carbonate, deuterium oxide, tetrahydrofuran, reflux] gave (9)-d38), suggesting the 

partial structure B. The partial structure A was given by the coupling pattern of 

the vinyl protons of its 1H-NMR spectrum [d: 5.71(1H, d/d/d/d, J=11.5, 7, 3, and 

1.5 Hz), 5.81(lH, d/t, J=11.5 and 5.5 Hz)]. Moreover, the signal pattern of the 

allylic protons unchanged on deuteration indicated that A and B units were not 

adjacent to each other. Thus, the structure (9) was sole possible one for this 

compound. 

 As described, the synthesis of bicyclo[4.3.1]dec-2-en-7-one (9) was achieved 

in five steps and 46% overall yield from readily available enol ester (3). Further
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studies on generalization of this route to a variety of substituted bicyclo[4.3.1]-

dec-2-en-7-one derivatives and on the conversion of (9) into (t)-nakafuran-9 are in 

progress. 
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