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In oxidation of a pair of associating thiols (1d and 2) with 

O2, specific weak interactions related to their geometrical shape 

such as CH•cN and CH...SH interactions are suggested to be 

responsible for selective molecular recognition.

We report here the experimental evidence to suggest that specific weak 

interactions related to geometrical shape of associating thiols are responsible 

for selective molecular recognition in their oxidation. 

Two types of model systems were used: the associating system (system A) and 

non-associating system (system N).1,2 System A consists of a pair of associating 

thiols (1 and 2)1, each having the reaction site (SH), the binding site (-CNCN-),

and the recognition site (C6H4-R1 or R2); this system is further divided into 

system Ad (1d and 2), system Ai (1i and 2a), and system A
P (1p and 2a). System N 

consists of a pair of non-associating thiols (3 and 4)1. 

A 1:1 mixture of 1 and 2 (or of 3 and 4, 0.5mmol each) was treated with 

oxygen in the presence of a catalytic amount of Et3N (0.05mmol) at 35.0•Ž in 12.5 

ml of 80% (v/v) acetonitrile-20% water to give an unsymmetrical disulfide (6) and
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two symmetrical ones (5 and 7). The selectivity (R) in this oxidation is 

represented by the ratio of the yield1 of 6 to that of 5 (R=6/5).3 

Previously we have reported that the selectivity in oxidation of system Ad 

depends sharply on the structure of R2:3 (i) in the case of 1d and 2a maximal 

selectivity (R=21) occurs at 2a2 (j=2), R being 0.84, 1.2, 21, 13, and 11 for 

j=0, 1, 2, 3, and 4, respectively, and (ii) with 1d and 2b alternation in the 

selectivity is clearly observed, R being 4.5, 0.28, 0.53, 0.29, and 0.40 for k=0, 

1, 2, 3, and 4, respectively. In order to elucidate a factor governing these 

radical changes in R, some attempts were made.4 

Oxidation of system N clarified that with 3 and 4a (j=0 to 3) the selectivity 

showed almost no changes (R=1.8 to 1.9) and that with 3 and 4b (k=0 to 3) R 

decreased progressively from 2.0 to 0.50 with "k", thus demonstrating that 

intermolecular association between a pair of thiols is first required for the sharp 

response of R to the structure of R2-selective molecular recognition. Further, 

the rate of the oxidation remained almost unaltered with R2 under conditions 

similar to those described above (at 0.010M): (i) in system Ad the time required 

for 50% oxidation (ƒÑ0.5) was 76+6, 62+5, and 64+5min for j=0, 2, and 4, 

respectively, and (ii) in system N the ƒÑ0.5 value was 28+2 and 27+2min for j=0 

and 2, respectively.5 These results suggest that the dependence of chemical 

reactivity difference between 1d and 2 on the structure of R2 is not related to 

the sharp structure dependence of R for system Ad . 

Our previous work has shown that tetramers (8-12) composed of 1d and 2 (Figure 

1) are intermediates of their oxidation.6 Each of these tetramers would give the 

corresponding disulfide (s) selectively when treated with oxygen-(i) hetero-

tetramer 8 gives 5, 6, or 7, (ii) heterotetramers 9 and 10 exclusively give 6, and

(iii) homotetramers 11 and 12 exclusively give 5 and 7, respectively. This

Figure 1. Schematic drawings of the 
conformations of tetramers (8-12) 
formed by dimerization of dimers. 

Hydrogen bond responsible for 
stabilization of dimers;-----, non-
covalent interactions responsible 
for stabilization of tetramers.

Figure 2. Dependence of f and melting 

point for 2a or 13a on the structure of 
R2 or R3. •›, f of 2a; •œ, f of 13a; 

•¢, melting point of 2a; •£, melting 

point of 13a.
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consideration together with the results mentioned above leads us to assume that 

selective molecular recognition would be ascribed to the dependence of relative 

concentration of the tetramers on the structure of R2. This assumption is supported 

by NMR results that the NH proton of 2 participating in intermolecular hydrogen 

bonding underwent a considerably larger downfield shift7 (0.2ppm) for a 1:1 mixture 

of 1d and 2a2 than for a 1:1 mixture of 1d and 2b2 in CDCl3 at 0.01M and 32•Ž. 

Since the solvent used in this oxidation was aqueous acetonitrile, hydrophobic 

interaction may be associated with the control of molecular recognition. However, 

the following data cannot be explained by hydrophobic contribution to the 

selectivity for system Ad: (i) plots of R in oxidation of 1d and 2a2 against the 

volume percent of water in acetonitrile-water mixtures showed a maximum at 20% of 

water, but not a progressive increase with increasing volume percent of water,3,8 

and (ii) the increasing (or decreasing) order of the Tr value9 of an alkyl group 

employed as R2 in 2 is quite different from the increasing (or decreasing) order of 

R in oxidation of system Ad for the corresponding alkyl group. Therefore, selective 

molecular recognition in oxidation of system Ad would best be attributed to 

specific weak interactions related to geometrical shape of the recognition sites 

and the reaction sites in tetramers. Possible candidates for weak interactions are

CH ...N10, CH...SH, SH...SH11, and SH...N11 interactions, 12 the first two inter-

actions13 mainly contributing to the selectivity R. 

Thiol 2t (n=2, R2=R-CH3C6H4) formed a solid 1:1 complex6 with 1d, but not 

with 1p, suggesting the contribution of CH...N interaction between an alkyl group 

in R2 and the amino group in R1 to the stabilization of the solid complex. The 

contribution of CH...N interaction to selective molecular recognition is suggested

by the finding that the structure dependence of R was less sharp for systems Ai 

and A
p than for system Ad-(i) with system Ai the R value was 5 both for j=0 

and 2, and (ii) with system AP the R value was 2.6 and 6.2 for j=0 and 2, respec-

tively. Moreover, 1H NMR studies of unsymmetrical

disulfides derived from 1d and 2a2 [6d (j=2)], 1d 

and 2b2 [6d (k=2)], and 1p and 2a2 [6p (j=2)] in 

CDCl3 at 0.005M and 34•Ž revealed that the NHa 

proton underwent a downfield shift of 0.19or 0.18 

ppm in going from 6p (j=2) to 6d (j=2) or from 

6d (k=2) to 6d (j=2), respectively; these 

results indicate that CH...N interaction is

attractive and specific, and thus makes the NHa...O hydrogen bonding stronger. 

Figure 2 shows that degree of association2 (f) in benzene at 0.04M is larger 

for 2a than for its derivative, CH3CH2CH2NCNC-R3 [13a; R3=(CH2)jCH(CH3)2], except 

in the case of R2=R3=isoC4H9 and that the melting point 14 of 2a is higher than 

that of 13a by 20 to 40•Ž. Higher f and melting point of 2a would be viewed as 

being due to attractive CH...SH interaction between an alkyl and the SH groups. 

From all of the data presented here, it may be concluded that specific weak 

interactions related to geometrical shape of the recognition sites are responsible

for selective molecular recognition in oxidation of system Ad. 
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