NEODIHYDROTHEBAINE AND BRACTAZONINE, TWO DIBENZ[d,f]AZONINE ALKALOIDS OF PAPAVER BRACTEATUM*

HUBERT G. THEUNS, HERMAN B. M. LENTING[†], CORNELIS A. SALEMINK[†], HITOSHI TANAKA[‡], MASAYOSHI SHIBATA[‡], KAZUO ITO[‡] and ROBERT J. J. CH. LOUSBERG[§]

Laboratory of Organic Chemistry, Agricultural University, De Dreijen 5, 6703 BC Wageningen, The Netherlands; † Organic Chemical Laboratory, State University of Utrecht, Utrecht, The Netherlands; ‡Laboratory of Natural Products Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan; §Ministry of Welfare, Health and Culture, Leidschendam, The Netherlands

(Revised received 6 September 1983)

Key Word Index—Papaver bracteatum; Papaveraceae; alkaloids; dibenz[d,f]azonines; neodihydrothebaine; bractazonine; biosynthetic pathway; synthesis; 5,6,8,9-tetrahydro-2-methoxy-7-methyl-dibenz[d,f]azonin-1,12-diol; 5,6,8,9-tetrahydro-2,10-dimethoxy-7-methyl-dibenz[d,f]azonin-1-ol; 5,6,8,9-tetrahydro-2,11-dimethoxy-7-methyl-dibenz[d,f]azonin-1-ol; 5,6,8,9-tetrahydro-2,12-dimethoxy-7-methyl-dibenz[d,f]azonin-1-ol.

Abstract—Two new dibenz[d,f]azonine alkaloids, neodihydrothebaine and bractazonine were isolated from *Papaver* bracteatum. Their possible biosynthesis from thebaine is discussed. The structures of both new alkaloids are proven by synthesis. An isomeric dibenz[d,f]azonine compound was also prepared.

INTRODUCTION

Several minor morphinane-type alkaloids were earlier reported to be present in *Papaver bracteatum*: codeine [1], neopine [1], the isomeric *N*-oxides of thebaine [2], oripavine [3], 14- β -hydroxycodeine [4], 14- β -hydroxycodeinone [4] and thebaine methochloride [5]. They can all be considered to be structurally derived from thebaine [6], the major alkaloid of this plant.

We now wish to report on the presence of two new alkaloids in P. bracteatum, both having a basic skeleton different from thebaine, but nevertheless probably biogenetically related to it. Neither of these two substances was earlier reported to occur in nature. One of them was identified as the synthetically derived compound 5,6,8,9tetrahydro-2,12-dimethoxy-7-methyl-dibenz[d,f]azonin-1-ol (neodihydrothebaine, 1). The other one is hitherto unknown in literature, and we propose the name bractazonine for it. Bractazonine is shown to be isomeric to neodihydrothebaine, and is 5,6,8,9-tetrahydro-2,11dimethoxy-7-methyl-dibenz[d, f]azonin-1-ol, 2. Possible biosynthetic pathways for both new alkaloids are discussed. The structures of neodihydrothebaine and bractazonine are confirmed by synthesis. In doing so, another trisubstituted dibenz[d,f]azonine was prepared and its synthesis is also described. This is the first report on the natural occurrence of dibenz[d,f]azonine alkaloids within the Papaveraceae.

RESULTS AND DISCUSSION

Crude extracts of *P. bracteatum* were separated by counter-current fractionation [1]. GC/MS screening [4] revealed the presence of two MW m/z '313' alkaloids in fractions 99–127. The mass spectrometrical fragmen-

tations of these two compounds showed strong resemblances to those reported for the naturally occurring Menispermaceae dibenz[d, f]azonine alkaloids laurifonine (3), laurifinine (4) and laurifine (5) [8, 9]. Therefore, dibenz[d, f]azonine skeletons were assumed for the two alkaloids.

For further purification, subfractions 112–118 were submitted to preparative GC and TLC. Capillary GC/MS showed the isolated material to consist of a 1:1 mixture of the two unknown compounds. The ¹H NMR spectrum of this mixture was fully compatible with the proposed dibenz[d, f]azonine skeleton. Biogenetic considerations, as discussed below, suggested neodihydrothebaine (1) as a likely structure for one of the compounds. Therefore, neodihydrothebaine was prepared according to methods described in the literature [10, 11]. Capillary GC/MS measurements provided evidence for the identity of synthetic neodihydrothebaine with one of the isolated compounds. For the unknown second alkaloid in the isolated mixture the name bractazonine is proposed.

Insight into the structure of bractazonine was obtained from its ¹H NMR spectrum. Two methoxyl resonances at δ 3.90 and 3.78 could be ascribed to neodihydrothebaine, whereas a second resonance at δ 3.90 and one at 3.84 could be ascribed to bractazonine. The *N*-methyl signals of the two compounds at δ 2.28 were barely separated from each other. All data suggested bractazonine to have an isomeric structure differing from 1 only in substitution pattern.

The location of the methoxyl groups in bractazonine was studied by ASIS-effects. In $CDCl_3-C_6D_6$ (1:1) the methoxyl resonances of synthetic 1 showed strong upfield shifts (δ 3.56 and 3.53). For the mixture of the natural alkaloids the same upfield shifts were observed for all methoxyl resonances. At this stage, it was convenient to know the chemical shift and ASIS-effect of a methoxyl located at position C-1. For this purpose, synthetic 1 was methylated. The newly introduced C-1 methoxyl was found at relatively high field (δ 3.54), most likely due to the

^{*}Part 6 in the Series; for part 5 see ref. [7].

experience of an anisotropy effect executed by the aromatic C-ring as a result of a twisting around the central bond of the biphenyl system. The ASIS-effect on this newly introduced methoxyl was virtually nil, whereas the two other methoxyl resonances of O-methylneodihydrothebaine (6) were affected to an equal extent as those in the parent compound 1. These results strongly suggested that methoxyl substitution at C-1 or C-13 could be excluded for bractazonine [12, 13].

 $Pr(fod)_3$ induced shifts in ¹H NMR studies were expected to allow conclusive assignments of the position of methoxyl groups in the unknown alkaloid. As model substances 1,2-dimethoxybenzene and 2-methoxyphenol were studied first. The former compound showed large shifts of the methoxyl resonance upon addition of $Pr(fod)_3$, and moderate line-broadening. For the latter substance, however, the induced shift of the methoxyl resonance was much smaller, and subject to considerable line broadening. The isolated methoxyl groups of 1,3-dimethoxybenzene showed only small induced shifts in comparison to those of 1,2-dimethoxybenzene, while little line broadening occurred.

Clearly, the induced shifts of methoxyl resonances are dependent upon the aromatic substitution patterns: odimethoxy compounds experience large shifts; methoxyl resonances with a hydroxyl ortho to it show smaller shifts, accompanied with more distinct line broadening. Isolated methoxyl resonances exhibit negligible shifts and the line width remains virtually uninfluenced. The line broadening in the model compounds in the case of o-hydroxy methoxy substitution vs o-dimethoxy substitution was quite striking.

For neodihydrothebaine (1), the methoxyl resonance at low field shifted upon addition of small amounts of Pr(fod)₃ to higher field, with considerable line broadening (disappearance of wiggles, loss of height), while the other methoxyl resonance remained virtually unchanged. Completely in line with the above data from model compounds it can be concluded that the resonance found at lower field can be assigned to the methoxyl group at C-2. This result was further substantiated by the synthesis of compound 7, which showed its C-2 methoxyl resonance at δ 3.88.

The methoxyl group at C-12 (δ 3.78) in *O*-methylneodihydrothebaine (6) remained virtually unchanged upon addition of Pr(fod)₃. The induced upfield shift of the C-1 methoxyl resonance was twice that of the C-2 methoxyl group. This result may be explained by the supposition that chelation takes place with the two oxygen atoms at C-1 and C-2, thus forcing the methyl protons of the methoxyl group at C-1 in a steric position over ring C. Protons in such a position experience the combined upfield shifts, caused by the shift reagent and by the anisotropy effect of ring C.

For laurifonine (3) synthesized from O-methylflavinantine, the methoxyl resonances at δ 3.83 and 3.91 shifted to higher field upon addition of the shift reagent, while the other methoxyl resonance at δ 3.78 was virtually uninfluenced. Hence, the latter resonance in the ¹H NMR spectrum of laurifonine must be assigned to the C-12 methoxyl group.

Laurifinine, which was earlier believed to have either structure 4 [8] or structure 8 [9], could be proven to be identical to compound 4, by comparison with a synthetic reference sample [14]. The methoxyl resonance at δ 3.82 in the ¹H NMR spectrum of authentic laurifinine shifted

upon addition of $Pr(fod)_3$ to higher field, with considerable line broadening, while the other methoxyl group at $\delta 3.78$ remained almost uninfluenced. As a consequence the methoxyl at C-2 must be located at $\delta 3.82$.

For the isolated alkaloid mixture both methoxyl resonances at higher field remained virtually uninfluenced upon addition of $Pr(fod)_3$. The coinciding methoxyl resonance at lower field (integrating for six protons) shifted to higher field, and slightly separated into two singlets, both with considerable line broadening. From these results bractazonine was considered to be a dibenz[d, f]azonine, possessing an isolated methoxyl group (δ 3.84) next to an ohydroxy methoxyl function (δ 3.90).

Further examination of the chemical shifts of the isolated methoxyl groups in the compounds studied showed that the C-12 methoxyl resonance was invariably found at $ca \delta 3.78$. Therefore a substitution pattern, which differs from those of the 1,2,12- and 2,3,12-trisubstituted compounds studied, should be considered for bractazonine.

The similarity of the natural alkaloids neodihydrothebaine and bractazonine in their chromatographic and extraction behaviours suggested an identical position of the phenolic function in these compounds. On the other hand, the different behaviour of the o-hydroxy methoxyl resonances in the Pr(fod)₃ induced shift experiment on the isolated material suggested otherwise. The most likely substitution pattern of ring C, from the biogenetic point of view, is a C-11 substitution for bractazonine (see below). Such considerations lead to the proposition of structure 2 for bractazonine. Although biogenetic considerations may provide useful indications for structural elucidations, they are not conclusive. Therefore it was necessary to prepare compound 9 as well. The need to compare bractazonine with the 10-substituted product 9 was further stressed by the finding that the C-10 methoxyl group of protostephanine (10) showed its resonance at δ 3.82, as revealed by Pr(fod)₃ induced shift studies in ¹HNMR (see Experimental). For the synthesis of compounds 2 and 9 a photolytic cyclization procedure [14, 15] was employed.

In several chromatographic systems neodihydrothebaine (1), product 2 and product 9 showed identical R_f values. In ¹H NMR the synthetic compounds 2 and 9 were compared, each in 1:1 mixture with neodihydrothebaine, with the isolated natural mixture of alkaloids (see Experimental). Comparison of these data, with those obtained for the isolated mixture of natural alkaloids shows that the artificial mixture of products 1 and 2 is fully compatible with the data obtained for the isolated mixture of *P. bracteatum* alkaloids. The differences with the mixture of products 1 and 9, however, are minimal, which stressed the need for further structural evidence. For this purpose GC/MS analysis was chosen.

In the mass spectra of 10-methoxy-dibenz[d, f]azonine alkaloids a substantially more intense $[M - OMe]^+$ fragment ion was observed than in the spectra of 11methoxy- or 12-methoxy-dibenz[d, f]azonines. Both neodihydrothebaine and bractazonine showed no intense fragment ion at m/z 282. Consequently, structure 9 could be excluded as possible structure for bractazonine. These results indicated bractazonine to be identical with compound 2.

Next, the behaviour of the artificial mixture of neodihydrothebaine (1) and compound 2, tentatively identified as bractazonine, was studied in a $Pr(fod)_3$ shift experiment

in ¹H NMR. The results, obtained for the latter mixture, were in full agreement with those, originally obtained from the isolated mixture of natural neodihydrothebaine and bractazonine. Obviously, there is some preference for the shift reagent to chelate with one of these alkaloids, thus causing the differences observed among the ohydroxy methoxyl resonances. A capillary GC/MS comparison of the natural and synthetical mixtures of alkaloids confirmed their identity.

The possible formation of neodihydrothebaine (1) and bractazonine (2) as artifacts, resulting from acidic extraction conditions [16], can be excluded since both compounds were also detected in basic extracts.

The dibenz[d, f]azonine skeleton is rarely encountered in nature. Apart from the three alkaloids laurifonine (3) laurifinine (4) and laurifine (5), isolated from the leaves of *Cocculus laurifolius* (Menispermaceae) [8,9], only two other structurally related natural alkaloids have been found before: protostephanine (10) isolated from *Stephania japonica* (Menispermaceae) [17], and erybidine (11), in several *Erythrina* species (Leguminosae) [18–23]. The finding of the naturally occurring dibenz[d, f]azonine alkaloids neodihydrothebaine (1) and bractazonine (2) in *P. bracteatum* (Papaveraceae) adds two more representatives of this structural class to the small number of compounds already known.

The biosynthetic formation of 11- and 12-substituted dibenz[d,f]azonine alkaloids in *P. bracteatum* may be rationalized in terms of aryl and alkyl migrations, respectively, in the common precursor thebaine. These steps are also conceivable starting with salutaridinol, the immediate precursor of thebaine. The biosynthetic pathways, proposed here, are depicted in Scheme 1.

The pathway involving alkyl migration (pathway a), through the intermediary neospirinedienone methoxonium ion, is identical to the pathway followed in the synthesis of neodihydrothebaine from thebaine [10]. We now propose that the biosynthesis of 1 proceeds according to a similar route. The first step of pathway b (Scheme 1) is analogous to some known reactions of morphinandienones [24, 25], whereas the conversion of proerythrinadienone intermediates into dibenz[d, f]azonines, the next step in pathway b, was realized chemically [26], and is beyond question in the biosynthesis of *Erythrina* alkaloids [27]. A similar biosynthetic pathway, proceeding through an intermediary proerythrinadienol,

Scheme 1. Proposed biosynthesis of dibenz[d,f]azonines in Papaver bracteatum.

was proposed for the *in vivo* formation of the dibenz[d,f]azonine alkaloids laurifonine (3), laurifinine (4) and laurifine (5) [28]. The formation of a proerythrinadienone methoxonium ion, as proposed in pathway b, is likely to proceed through participation of the nitrogen lone pair, giving intermediate 12, in which stereoelectronic factors favour aryl migration [25].

In view of the finding of both neodihydrothebaine (1) and bractazonine (2) as natural alkaloids (most likely biogenetically derived from thebaine), it is imperative to refer to the classical exposé on the structural elucidation of thebaine, by R. Robinson [29]: "But the star performers in the team of molecular acrobats are undoubtedly the alkaloids of the morphine group and I shall speak especially of thebaine."

EXPERIMENTAL

GC/MS were recorded at 70 eV. Capillary GC/MS analyses were performed using a capillary CP Sil-5 (Chrompack) GC column (50 m glass; carrier gas He 5 ml/min; 5 min isothermal at 200°, then $+4^{\circ}$ /min temp programmed to 300°) with an open split coupling (all glass system) linked to a double focussing mass spectrometer (electron impact, at 70 eV; source temperature 240°; cathode emission 0.7 mA; acceleration voltage 800 V; scan speed 1 decade/min; interval 0.8 sec; mass range 22–520), connected to a data system. ¹H NMR spectra were recorded in CDCl₃ (unless given otherwise), at 90 MHz in the CW mode or at 100 MHz in the FT mode. TMS was int. standard ($\delta = 0$). ASIS-effects were studied by gradual addition of C₆D₆ to a CDCl₃ soln of the alkaloid, until a *ca* 1:1 composition was reached. Shift expts were performed by addition of small vols of a soln of *tris*(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedionato)praseodymium [Pr(fod)₃] in CDCl₃ to a soln of the compounds in CDCl₃, and recording spectra after each addition, until a *ca* 1:10 complex was reached. The resulting straight line graphs are expressed as normalized shielding gradients d δ (calculated induced shifts in ppm for equimolar complexes). Differences in chemical shifts are given as $\Delta \delta$ in ppm.

GC was carried out on a FID chromatograph using on-column injection and glass columns, packed with 3% OV-17 on Chrompack SA (80–100 mesh), operating at 260° (system a), or with 3% SE-30 on Chromosorb W-HP (80–100 mesh), operating at 260° (system b). For GC R_t s thebaine was chosen as ref. (RR_t \equiv 1.00). TLC was performed on silica gel GF 254 plates using EtOAc-Et₂NH (19:1) (system a), or C₆H₆-Me₂CO-MeOH (7:2:1) (system b), or on Al₂O₃ F 254 (type E) plates using CHCl₃-heptane-Et₂O (4:5:1) (system c). Alkaloid detection was accomplished using UV light (254 nm). Mps are corr.

Plant extraction and concentration of alkaloids. (i) Capsules of P. bracteatum Lindl., cv 'Arya I', cultivated by Franco-Pavot Industries, France, were extracted as reported earlier [1]. The concn of neodihydrothebaine plus bractazonine (1 + 2) in the

crude extract was 0.036% dry wt. (ii) Capsules of *P. bracteatum*, cv 'Arya II', cultivated at the Agricultural University Wageningen, Wageningen, The Netherlands, were extracted by elution using 5% aq. HOAc for 2 hr, and after adjustment of the pH of the eluate to 8.9 using an NH₃-NH₄Cl buffer soln, extracted with CHCl₃-iso-PrOH (3:1). Solvents were removed in vacuo at low temp and the residue analysed by GC. The concn of thebaine was 2.66% and the concn of (1 + 2) was 0.11% dry wt. In the non-phenolic alkaloid fraction of an $(H_2O-K_2CO_3-n-BuOH-C_6H_6)$ extract of the same plant material, the presence of (1 + 2) was demonstrated.

Isolation of a mixture of neodihydrothebaine (1) and bractazonine (2). Counter-current fractions 112-118 [1] were submitted to prep. GC (3% OV-17, 270°), yielding 3.1 mg of material, homogeneous by TLC. In order to remove some starting point material in TLC, this material was submitted to prep. TLC (system a), yielding 1.7 mg of a 1:1 mixture of neodihydrothebaine and bractazonine. ¹H NMR: δ 2.28 (6H, 2×s, 2 × NMe), 2.3-2.7 (16H, m, 8 × CH₂), 3.78 (3H, s, OMe), 3.84 (3H, s, OMe), 3.90 (6H, s, 2 × OMe), 6.7-7.2 (10H, m, aromatic H). Accurately determined δ values of the OMe resonances in ¹H NMR of the natural mixture (using FT-NMR) were δ 3.780, 3.837 and 3.904. In CDCl₃-C₆D₆ (1:1) the OMe resonances were found at δ 3.50-3.56. The normalized shielding gradients in a Pr(fod)₃ shift expt were for δ 2.28 d δ 4.3 and 5.1, for δ 3.78 d δ 0.5, for δ 3.84 d δ 0.7, and for δ 3.90 d δ 12 and 16.

 $Pr(fod)_3$ shift experiments on model compounds. The normalized shielding gradients were for 1,2-dimethoxybenzene d δ 30, for 2-methoxyphenol d δ 9.3, and for 1,3-dimethoxybenzene d δ 0.20.

Pr(fod)₃ shift experiments on alkaloids 1, 3, 4, 6 and 10. Neodihydrothebaine (1): δ 2.28 (NMe) dδ 7.9, δ 3.78 (C-12 OMe) dδ 0.6, δ 3.90 (C-2 OMe) dδ 14; Laurifonine (3): δ 2.31 (NMe) dδ 3.8, δ 3.78 (C-12 OMe) dδ 0.7, δ 3.83 (C-2 OMe) dδ 19, δ 3.91 (C-3 OMe) dδ 20; Laurifinine (4): δ 2.32 (NMe) dδ 1.4, δ 3.78 (C-12 OMe) dδ ~ 0, δ 3.82 (C-2 OMe) dδ 2.6; O-Methylneodihydrothebaine (6): δ 2.28 (NMe) dδ 4.7, δ 3.54 (C-1 OMe) dδ 7.3, δ 3.78 (C-12 OMe) dδ 0.2, δ 3.89 (C-2 OMe) dδ 4.0; Protostephanine (10): δ 2.30 (NMe) dδ 4.7, δ 3.78 (C-12 OMe) dδ 0.8, δ 3.82 dδ 1.2 (C-10 OMe) and 15 (C-2 OMe), δ 3.91 (C-3 OMe) dδ 16.

Laurifinine (4). ¹H NMR: δ 2.32 (3H, s, NMe), 2.3–2.8 (8H, m, 4 × CH₂), 3.78 (3H, s, OMe), 3.82 (3H, s, OMe), 5.0 (1H, br s, OH), 6.67 and 6.80 (2H, 2 × s, H-1 and H-4), 6.72 (1H, d, J = 2.7 Hz, H-13), 6.87 (1H, dd, J = 2.7 and 8.4 Hz, H-11), 7.15 (1H, d, J = 8.4 Hz, H-10). The $\Delta\delta$ (OMe) observed was 0.041. In CDCl₃-C₆D₆ (1:1) the OMe resonances were found at δ 3.42 and 3.54. GC/MS m/z (rel. int.): 314 (23), 313 (100), 312 (14), 311 (23), 298 (15), 270 (10), 257 (26), 256 (71), 255 (71), 239 (14), 226 (10), 225 (40), 195 (12).

Protostephanine (10). ¹H NMR: $\delta 2.30$ (3H, s, NMe), 2.0–3.0 (8H, m, 4 × CH₂), 3.78 (3H, s, OMe), 3.82 (6H, s, 2 × OMe), 3.91 (3H, s, OMe), 6.32 and 6.45 (2H, 2 × d, J = 2.4 Hz, H-11 and H-13), 6.66 and 6.73 (2H, 2 × s, H-1 and H-4). The observed $\Delta \delta$ (OMe) were 0.042, 0.087 and 0.128. GC/MS *m*/z (rel. int.): 358 (23), 357 (100), 355 (19), 342 (12), 326 (16), 313 (13), 302 (16), 301 (91), 300 (82), 299 (88), 283 (11), 270 (14), 269 (12), 268 (11), 255 (11).

Synthesis of 1 from thebaine. Method a. This synthesis was accomplished starting from thebaine (4.4 g), using freshly prepared MgI₂, and subsequent reduction of the resulting imine by the action of LiAlH₄, as recorded in ref. [10]. Florisil chromatography (eluent Et₂O) yielded a yellow solid, which was further purified by prep. TLC (system a). Yield 57%. Mp 100° (from MeOH). Method b. Thebaine (1.08 g) was dissolved in TFA (5 ml) [11]. The dark-red soln discoloured quickly, and after stirring for 0.5 hr at room temp the pink soln was evaporated in vacuo. MeOH (60 ml) was added to the yellow syrup, and NaBH₄ (large excess) was added portionwise. The reaction mixture was stirred for 0.5 hr and, after addition of H₂O, concd in vacuo. CHCl₃ extraction was performed and the extract dried over Na₂SO₄. After evaporation of solvent, the residue was chromatographed on an Al₂O₃ column (activity III, CHCl₃ satd with H₂O), affording pure 1 (1.03 g; yield 95 %). Mp 107°. ¹H NMR: δ 2.28 (3H, s, NMe), 2.3-2.7 (8H, m, 4 × CH₂), 3.78 (3H, s, OMe), 3.90 (3H, s, OMe), 5.08 (1H, br s, OH), 6.73 and 6.84 (2H, AB-pattern, J = 8.1 Hz, H-3 and H-4), 6.74, 6.90 and 7.18 (3H, ABC-pattern, $J_{10,11} = 8.3$ Hz, $J_{11,13} = 2.7$ Hz, H-13, H-11 and H-10, respectively). The $\Delta\delta$ (OMe) was determined as 0.125. In CDCl₃-C₆D₆ (1:1) the OMe resonances were found at δ 3.53 and 3.56. GC/MS m/z (rel. int.): 314 (22), 313 (100), 312 (11), 298 (11), 296 (16), 270 (14), 257 (30), 256 (66), 255 (48), 239 (10), 225 (17), 223 (26), 195 (11).

Synthesis of O-methylneodihydrothebaine (6). Compound 1 (50 mg) was treated with excess CH_2N_2 in Et_2O for 3 days at room temp. Evaporation of solvent gave the O-Me ether. This product was purified by TLC (system a). Yield 83%. Oil. ¹H NMR: δ 2.26 (3H, s, NMe), 2.3–2.7 (8H, m, 4 × CH₂), 3.54 (3H, s, OMe), 3.78 (3H, s, OMe), 3.89 (3H, s, OMe), 6.90 (2H, A2-pattern, J = 8.7 Hz, H-3 and H-4), 6.68, 6.85 and 7.13 (3H, ABC-pattern, $J_{10,11} = 8.4$ Hz, $J_{11,13} = 2.7$ Hz, H-13, H-11 and H-10, respectively). In CDCl₃–C₆D₆ (1:1) the OMe resonances were found at δ 3.48, 3.50 and 3.61. GC/MS m/z (rel. int.): 328 (22), 327 (100), 326 (10), 325 (15), 297 (11), 296 (54), 271 (36), 270 (40), 269 (21), 256 (10), 255 (15), 254 (25), 253 (71), 240 (14), 239 (28), 238 (30), 225 (12), 165 (13), 152 (10).

Synthesis of 5,6,8,9-tetrahydro-2-methoxy-7-methyl-dibenz-[d, f] azonin-1,12-diol (7). Thebaine. HCl (1.08 g) was dissolved in TFA (5 ml) and stirred at room temp for 0.5 hr. The soln retained its red colour. The TFA was removed in vacuo, MeOH (20 ml) and NaBH₄ (large excess) was added to the yellow residue and the reaction mixture stirred for 0.5 hr at room temp. H₂O was added and the MeOH removed in vacuo. CHCl3 extraction, drying over MgSO₄ and concn afforded the crude product (1.02 g). This was separated on Al₂O₃ (activity III). Elution with hexane-Et₂O (1:1) and CHCl₃-Et₂O mixtures afforded first fractions, which on further purification were shown to contain 1 (10 mg, yield 1 %), neopine (169 mg, yield 18%), isoneopine (150 mg, yield 16%) and codeine (10 mg, yield 1 %). Finally compound 7 was eluted (oil, 233 mg, yield 25%). ¹H NMR: δ2.24 (3H, s, NMe), 2.2-2.8 (8H, m, 4 × CH₂), 3.88 (3H, s, OMe), 5.6 (2H, br s, 2 × OH), 6.58 (1H, d, J = 2.7 Hz, H-13), 6.72 and 6.82 (2H, AB-pattern, J)= 8.4 Hz, H-3 and H-4), 6.73 (1H, dd, J = 2.7 Hz, J = 8.4 Hz, H-11), 7.10 (1H, d, J = 8.4 Hz, H-10). GC/MS m/z (rel. int.): 300 (20), 299 (100), 298 (12), 284 (10), 282 (18), 256 (14), 243 (19), 242 (44), 241 (42), 225 (10), 211 (16), 209 (30), 181 (15).

Synthesis of laurifonine 3 from O-methylflavinantine. This synthesis was performed in an analogous manner to that of protostephanine from protostephanone [30, 31]. O-Methylflavinantine (13, 299 mg) was stirred with excess NaBH₄ (430 mg) in MeOH (30 ml) for 4 hr at 0°. The reaction was monitored by TLC (silica gel C₆H₆-EtOAc-Et₂NH (7:2:1) R_f 13 0.44; R_f Omethylflavinantinol-I (14) 0.37; R_f O-methylflavinantinol-II (15) 0.23—detection by conc H₂SO₄ spray, giving bright orange spots for the dienols). Upon addition of H₂O (30 ml) the MeOH was removed *in vacuo* at room temp and the products extracted into CH₂Cl₂ (6 × 30 ml). The soln was dried (Na₂SO₄) and evaporated, yield 238 mg. The intermediary dienols were isolated in one prepn using the above TLC system.

O-Methylflavinantinol-I (14). ¹H NMR: δ 2.47 (3H, s, NMe), 3.74 (3H, s, OMe), 3.85 (3H, s, OMe), 3.88 (3H, s, OMe), 4.70 (1H, d, J = 3.9 Hz, H-7), 5.32 (1H, s, H-5), 5.81 (1H, d, J = 3.9 Hz, H-8), 6.59 (1H, s, H-1), 6.79 (1H, s, H-4) [32].

O-Methylflavinantinol-II (15). ¹H NMR: δ 2.47 (3H, s, NMe), 3.74 (3H, s, OMe), 3.85 (3H, s, OMe), 3.88 (3H, s, OMe), 4.56 (1H, d, J = 3.1 Hz, H-7), 5.30 (1H, s, H-5), 5.76 (1H, d, J = 3.1 Hz, H-8), 6.60 (1H, s, H-1), 6.77 (1H, s, H-4) [32]. The above dienols 14 and 15 (238 mg) were stirred for 18 hr in TFA (20 ml) under N_2 , giving instantaneously a red colour. The TFA was removed in vacuo and the residue in MeOH was treated portionwise with excess NaBH₄ at 0°. After stirring for 2 hr, H₂O was added, and the MeOH removed in vacuo. Extraction into CH₂Cl₂ yielded after drying (Na₂SO₄) upon evaporation compound 3 (oil, 209 mg, yield 73 %). ¹H NMR: δ 2.31 (3H, s, NMe), 2.4-2.8 (8H, $m, 4 \times CH_2$), 3.78 (3H, s, OMe), 3.83 (3H, s, OMe), 3.91 (3H, s, OMe), 6.68 and 6.73 (2H, $2 \times s$, H-1 and H-4), 6.72 (1H, d, J = 2.7 Hz, H-13), 6.86 (1H, dd, J = 2.7 Hz, J = 8.4 Hz, H-11), 7.14 (1H, d, J = 8.4 Hz, H-10). GC/MS m/z (rel. int.): 328 (23), 327 (100), 312 (17), 284 (13), 271 (58), 270 (79), 269 (69), 254 (12), 253 (16), 240 (18), 239 (11), 238 (15), 165 (13), 152 (11).

Total synthesis of 2. Bractazonine was synthesized using a procedure involving a photolytic aryl coupling reaction [14, 15]. The substrate for this photolytic reaction was prepared from 2-bromo-3-hydroxy-4-methoxybenzaldehyde and 3-hydroxy-benzaldehyde.

2-Bromo-3-isopropoxy-4-methoxybenzaldehyde [16]. 2-Bromo-3-hydroxy-4-methoxybenzaldehyde [33] (0.05 mole) and dry K_2CO_3 (3.8 g) in dry DMF (50 ml) were stirred in an N_2 atmosphere, while 2-bromopropane (0.06 mole) was added dropwise in 15 min. After another 30 min stirring at room temp, the reaction mixture was heated at 100° for 2 hr. After cooling, the reaction mixture was poured on ice- H_2O (250 g) and extracted with Et_2O (4 × 300 ml). The extract was washed with H_2O (50 ml), dried (MgSO₄), and concd *in vacuo* giving product 16 in 91% yield. Mp 48°. ¹H NMR: δ 1.33 (6H, d, J = 6 Hz, CMe₂), 3.93 (3H, s, OMe), 4.61 (1H, m, J = 6 Hz, C<u>H</u>Me₂), 6.96 and 7.72 (2H, 2 × d, J = 8.6 Hz, H-5 and H-6), 10.32 (1H, s, CHO). GC/MS m/z (rel. int.): 274 (9), 272 (9), 233 (9), 232 (94), 231 (75), 230 (100), 229 (69).

2-Bromo-3-isopropoxy-4-methoxybenzylalcohol (17). Compound 16 in EtOH was treated portionwise with NaBH₄ (1.2 equivalent). After stirring for 1 hr, H₂O was added and the EtOH removed *in vacuo*. After acidification using conc HCl, CHCl₃ extraction was performed. The extract was washed with H₂O, aq. HCl (3 N) and H₂O, dried (MgSO₄) and concd *in vacuo*. Yield 100%. Oil. ¹H NMR: δ 1.32 (6H, d, J = 6 Hz, CMe₂), 2.23 (1H, br s, OH), 3.85 (3H, s, OMe), 4.59 (1H, m, J = 6 Hz, C<u>H</u>Me₂), 4.70 (2H, s, ArCH₂O), 6.84 and 7.14 (2H, 2 × d, J = 8 Hz, H-5 and H-6). GC/MS m/z (rel. int.): 276 (20), 274 (20), 234 (95), 233 (18), 232 (100), 231 (11), 217 (15), 215 (15), 153 (31), 125 (24), 124 (29), 110 (16).

2-Bromo-3-isopropoxy-4-methoxybenzylchloride (18). Compound 17 (38 g) in dry Et₂O (380 ml) and pyridine (1.4 ml) was treated with SOCl₂ (27 ml) in dry Et₂O (90 ml). The reaction mixture was stirred at room temp for 20 min. The soln was washed with H₂O (2 × 150 ml) and with dil. aq. NH₃ and dried (MgSO₄). Evaporation of solvent gave 18 (39 g, yield 96 %). Oil. ¹H NMR: δ 1.31 (6H, d, J = 6 Hz, CMe₂), 3.83 (3H, s, OMe), 4.58 (1H, m, J = 6 Hz, C<u>H</u>Me₂), 4.70 (2H, s, ArCH₂Cl), 6.84 and 7.18 (2H, 2 × d, J = 8 Hz, H-5 and H-6). GC/MS m/z (rel. int.): 296 (3), 294 (14), 292 (10), 259 (3), 257 (3), 254 (11), 253 (4), 252 (45), 251 (4), 250 (35), 218 (8), 217 (97), 216 (9), 215 (100), 202 (4), 200 (4).

2-Bromo-3-isopropoxy-4-methoxybenzylcyanide (19). KCN (10.7 g) was added to 18 (39 g) in DMSO (250 ml) and stirred at room temp for 18 hr. The reaction mixture was poured into H₂O (1.5 l.) and extraction with Et₂O (5 × 400 ml) was performed. The Et₂O extracts were washed with brine (2 × 150 ml), dried (MgSO₄) and concd *in vacuo*. Yield 36 g (95%). Mp 45°. ¹H NMR: δ 1.31 (6H, d, J = 6 Hz, CMe₂), 3.79 (2H, s,

ArCH₂CN), 3.86 (3H, s, OMe), 4.60 (1H, m, J = 6 Hz, C<u>H</u>Me₂), 6.86 and 7.22 (2H, $2 \times d$, J = 9 Hz, H-5 and H-6). GC/MS m/z (rel. int.): 285 (7), 283 (8), 244 (10), 243 (99), 242 (12), 241 (100), 228 (17), 226 (18), 162 (27).

2-Bromo-3-isopropoxy-4-methoxyphenylacetic acid (20). Compound 19 (0.4 mol), ethylene glycol (500 ml) and KOH (100 g) in H₂O (150 ml) were refluxed for 2 hr. The reaction mixture was poured into H₂O (21.) and extracted with EtOAc (3×300 ml). The aq. phase was acidified (6 N HCl) and extracted with CHCl₃ (4×500 ml). The extracts were dried (MgSO₄) and the solvent removed *in vacuo*. Yield 90%. Mp 99°. ¹H NMR: δ 1.31 (6H, *d*, *J* = 6 Hz, CMe₂), 3.78 (2H, *s*, ArCH₂COOH), 3.82 (3H, *s*, OMe), 4.57 (1H, *m*, *J* = 6 Hz, CHMe₂), 6.79 and 6.97 (2H, AB-pattern, *J* = 8.5 Hz, H-5 and H-6, respectively), 9.90 (1H, *br s*, COOH). GC/MS *m*/z (rel. int.): 304 (25), 302 (25), 263 (8), 262 (66), 261 (8), 260 (67), 218 (9), 217 (98), 216 (10), 215 (100), 182 (9), 181 (64), 137 (9).

3-Tosyloxybenzaldehyde (21). 3-Hydroxybenzaldehyde (20 g) was stirred with tosylchloride (1 equivalent) in pyridine (225 ml) for 18 hr. The solvent was removed *in vacuo* and the residue divided between H₂O (250 ml) and CHCl₃ (4 × 300 ml). The extracts were washed with H₂O (100 ml), 3 N HCl (100 ml) and H₂O (100 ml). After drying over MgSO₄ the solvent was removed *in vacuo*, giving compound 21 (42 g, yield 92 %). Mp 63°. ¹H NMR: δ 2.44 (3H, s, ArMe), 7.2–7.9 (8H, *m*, ArH), 9.96 (1H, s, CHO). GC/MS *m/z* (rel. int.): 276 (14), 155 (47), 92 (9), 91 (100).

3-Tosyloxybenzylalcohol (22). To compound 21 (41.6 g) in cold dry THF (750 ml), NaBH₄ (17.1 g) was added. In an N₂ atmosphere BF₃ · OEt₂ (76.1 ml) in dry THF (100 ml) was added dropwise in 1 hr at 0°. After stirring for 15 min at 0°, excess borane was destroyed by cautious addition of H₂O. After addition of cold 3 N HCl, CHCl₃ extraction was performed. The extract was dried (MgSO₄) and concd *in vacuo*, giving product 22 in 100 % yield. Mp 65°. ¹H NMR: δ 2.06 (1H, br s, OH), 2.44 (3H, s, ArMe), 4.63 (2H, s, ArCH₂O), 6.7–7.4 (6H, *m*, ArH), 7.72 (2H, *d*, J = 8.7 Hz, tosyl-H). GC/MS *m/z* (rel. int.): 278 (26), 155 (59), 123 (12), 92 (10), 91 (100).

3-Tosyloxybenzylchloride (23). Compound 22 was treated with SOCl₂ as reported for the synthesis of 18. The yield of 23 was 95%. Mp 59°. ¹H NMR: δ 2.43 (3H, s, ArMe), 4.48 (2H, s, ArCH₂Cl), 6.8–7.4 (6H, m, ArH), 7.72 (2H, d, J = 8.7 Hz, tosyl-H). GC/MS m/z (rel. int.): 298 (11), 296 (26), 155 (98), 91 (100), 77 (10).

3-Tosyloxybenzylcyanide (24). Compound 23 was treated with KCN in DMSO, as in the synthesis of 19. The yield of 24 was 86%. Mp 69°. ¹H NMR: δ 2.44 (3H, s, ArMe), 3.69 (2H, s, ArCH₂CN), 6.7-7.5 (6H, m, ArH), 7.72 (2H, d, J = 8.7 Hz, tosyl-H). GC/MS m/z (rel. int.): 287 (25), 155 (78), 92 (8), 91 (100).

3-Tosyloxyphenethylamine (25). To a mixture of 24 (5.74 g) and NaBH₄ (0.43 g) in dry THF (60 ml) BF₃ · OEt₂ (1.9 ml) was added dropwise while stirring at 0°. The soln was then stirred at room temp for 6 days and decomposed with EtOH, H₂O and dil. aq. HCl, respectively, and evaporated. The residue was neutralized with aq. NH₃ and extracted with CHCl₃. The CHCl₃ extract was washed with H₂O, dried (Na₂SO₄), and evaporated to give the amine 25 (5.82 g, yield 100 %). Oil. ¹H NMR: δ 1.27 (2H, br s, NH₂), 2.43 (3H, s, ArMe), 2.5–3.0 (4H, m, 2 × CH₂), 6.7–7.4 (6H, m, ArH), 7.72 (2H, d, J = 9 Hz, tosyl-H). GC/MS m/z (rel. int.): 292 (3), 291 (11), 262 (2), 155 (30), 136 (35), 107 (26), 92 (11), 91 (100), 90 (10).

N-(3-Tosyloxyphenethyl)-2-(2-bromo-3-isopropoxy-4-methoxyphenyl)acetamide (26). A mixture of 20 (6.06 g) and 25 (5.82 g) in decalin (135 ml) was heated under reflux for 2.5 hr. After cooling, the mixture was evaporated to dryness and the residue dissolved in CHCl₃. The CHCl₃ soln was shaken thoroughly with 5% aq. HCl, 2% aq NaOH and H₂O. The soln was dried (Na₂SO₄) and evaporated to give the amide 26 (9.68 g, yield 84%). Oil. Acidification of the basic washings and CHCl₃ extraction recovered some 20. When corrected for recovered acid 20, the yield of 26 was 100%. ¹H NMR: δ 1.31 (6H, d, J = 6 Hz, CMe₂), 2.43 (3H, s, ArMe), 2.64 (2H, t, J = 7 Hz, ArCH₂CH₂NH), 3.33 (2H, double t, J = 6 Hz, J = 7 Hz, ArCH₂CH₂NH), 3.63 (2H, s, ArCH₂CO), 3.84 (3H, s, OMe), 4.57 (1H, m, J = 6 Hz, CHMe₂), 5.36 (1H, br t, J = 6 Hz, NH), 6.6–7.8 (10H, m, ArH).

N-(3-Hydroxyphenethyl)-2-(2-bromo-3-isopropoxy-4-methoxyphenyl) acetamide (27). To a stirred soln of 26 (9.1 g) in MeOH (50 ml) and DMF (50 ml) KOH (3.64 g) was added and the reaction mixture stirred at 60° for 3 hr. After cooling, the mixture was poured into H₂O, treated with HCl and extracted with CHCl₃. The CHCl₃ extract was washed with H₂O, dried (Na₂SO₄), and evaporated to give the phenolic compound 27 in 92% yield. Colourless oil. ¹H NMR: δ 1.32 (6H, d, J = 6 Hz, CMe₂), 2.60 (2H, t, J = 7 Hz, ArCH₂CH₂N), 3.43 (2H, double t, J = 6 Hz, J = 7 Hz, ArCH₂CH₂NH), 3.65 (2H, s, ArCH₂CO), 3.83 (3H, s, OMe), 4.63 (1H, m, J = 6 Hz, C<u>M</u>Me₂), 5.46 (1H, br t, J = 6 Hz, NH), 6.5–7.3 (6H, m, ArH). GC/MS m/z (rel. int.): 423 (9), 421 (10), 342 (31), 300 (58), 217 (48), 215 (48), 180 (100), 121 (67), 120 (40), 77 (30).

Photolysis of 27. Compound 27 (500 mg) in MeOH (250 ml), containing NaOH (400 mg), was irradiated for 50 min using a 125 W high-pressure Hg lamp (Philips HPLN 57236 E/74, from which the outer bulb was removed) in a quartz immersion apparatus, while a stream of N₂ was passed through the soln. The solvent was removed *in vacuo* and the residue dissolved in H₂O, whereupon Et₂O extraction was performed. The aq. phase was neutralized (conc HCl) and extracted with CHCl₃. The extract was washed with H₂O, dried (MgSO₄) and evaporated. From a CHCl₃ soln of the products from 4.45 g 27 upon cooling some 29 crystallized. Recrystallization from CHCl₃ gave 1.33 g 29. Mp 256°. The mother liquors were separated by silica gel chromatography, using CHCl₃-MeOH mixtures (0-15% MeOH). This yielded a mixed fraction of **28** and **30** (421 mg) and finally crude **29** (1.10 g). The latter fraction was crystallized and further purified by silica gel chromatography using EtOAc-*n*hexane-MeOH (75:25:1). The yield of **29** was 2.06 g (58%). The fraction containing **28** and **30** was chromatographed in a similar manner giving first **28** (230 mg, yield 6%), and then **30** (87 mg, yield 2.4%) (see Scheme 2).

N-(3-Hydroxyphenethyl)-2-(3-isopropoxy-4-methoxyphenyl) acetamide (28). ¹H NMR: δ 1.31 (6H, d, J = 6 Hz, CMe₂), 2.63 (2H, t, J = 7 Hz, ArCH₂CH₂N), 3.41 (2H, 'q', J = 6 Hz, J = 7 Hz, ArCH₂CH₂NH), 3.46 (2H, s, ArCH₂CO), 3.82 (3H, s, OMe), 4.46 (1H, m, J = 6 Hz, CHMe₂), 5.80 (1H, t, J = 6 Hz, NH), 6.4–7.2 (7H, m, ArH), 7.7 (1H, br s, OH). GC/MS m/z (rel. int): 344 (10), 343 (42), 301 (5), 182 (15), 181 (87), 166 (11), 138 (37), 137 (100), 123 (12), 122 (11), 121 (16), 120 (15).

5,8,9-Trihydro-1-isopropoxy-2-methoxy-6-oxo-7H-dibenz[d, f]azonin-11-ol (29). ¹H NMR: δ 0.72 and 1.04 (6H, 2 × br d, J = 6 Hz, CMe₂), 2.1-4.7 (7H, m), 3.87 (3H, s, OMe), 3.98 (1H, m, J = 6 Hz, C<u>H</u>Me₂), 5.9 (1H, br s, OH), 6.5-7.2 (5H, m, all resonances being broadened, ArH). GC/MS m/z (rel. int.): 342 (14), 341 (56), 300 (18), 299 (100), 270 (18), 242 (40), 241 (13), 211 (15), 209 (13), 181 (14).

5,8,9-Trihydro-1-isopropoxy-2-methoxy-6-oxo-7H-dibenz[d, f]azonin-13-ol- (30). Mp 158-170°. ¹H NMR: $\delta 0.8$ and 1.05 (6H, two very broad bands, CMe₂), 3.88 (3H, s, OMe), 4.03 (1H, m, J = 6 Hz, C<u>H</u>Me₂), 6.2-7.3 (5H, m, ArH). In CD₃OD at 200 MHz the CMe₂ resonances were observed as four doublets, at $\delta 0.73$, 0.86, 0.98 and 1.08, together integrating for 6H. This integral was divided in the *ca* proportion 5:4:4:5, respectively. The peak heights of the outer two resonances were 1.7 times those of the inner resonances. J was 6 Hz. The OMe resonance was a sharp s

Scheme 2. Substrates for and products of the photolytic aryl-aryl coupling reaction.

at δ 3.87. At 50° the CMe₂ resonances were broadening, and at 75° almost complete collapse to a broad unresolved band was observed. GC/MS m/z (rel. int.): 342 (18), 341 (59), 300 (21), 299 (100), 270 (30), 242 (52), 181 (18).

5,8,9-Trihydro-2,11-dimethoxy-1-isopropoxy-6-oxo-7H-dibenz-[d,f]azonin (31). To a suspension of 29 (600 mg) and dry K₂CO₃ (300 mg) in dry EtOH was added dropwise excess MeI (0.3 ml) at room temp during 10 min. The stirred mixture was heated at 50° for 6 hr, evaporated and dissolved in warm CHCl₃. The CHCl₃ soln was washed with H₂O, dried (Na₂SO₄) and evaporated. The crude yield was 97%. The products, obtained by methylation of 1.63 g 29 were purified by silica gel chromatography, using CHCl₃-EtOAc (3:1), which yielded 1.21 g 31 (yield 71%). ¹H NMR: δ 0.80 and 0.97 (6H, two very broad bands, CMe₂), 3.85 (3H, s, OMe), 3.87 (3H, s, OMe), 6.33 (1H, br), 6.6-7.5 (5H, m, ArH). GC/MS m/z (rel. int.): 356 (10), 355 (46), 314 (19), 313 (100), 284 (18), 256 (27), 225 (10).

5,8,9-Trihydro-2,11-dimethoxy-6-oxo-7H-dibenz[d,f]azonin-1ol (32). A soln of 31 (840 mg) in HOAc (53 ml) containing conc HBr (4.2 ml) was heated with stirring at 80° for 1.5 hr. After cooling the mixture was poured into ice-H₂O and then extracted with CHCl₃. The CHCl₃ extract was washed with H₂O, dried (Na₂SO₄) and evaporated to afford 32 (691 mg, yield 93%). ¹H NMR: δ 3.79 (3H, s, OMe), 3.88 (3H, s, OMe), 5.9 (1H, br s, OH), 6.7–7.3 (5H, m, ArH).

5,6,8,9-Tetrahydro-2,11-dimethoxy-7H-dibenz[d, f]azonin-1-ol (33). To a cold suspension of 32 (326 mg) and NaBH₄ (227 mg) in dry THF (30 ml) BF₃ · OEt₂ (0.8 ml) was added dropwise in 15 min. After stirring at room temp for 6 hr, excess borane was destroyed by slow addition of EtOH (2 ml), followed by addition of H₂O (3 ml) and conc HCl (1 ml). The reaction mixture was concd *in vacuo* and the residue treated with H₂O and conc aq. NH₃ until pH 8–9 was reached, and then extracted with CHCl₃. The CHCl₃ extract was washed with H₂O, dried (MgSO₄) and evaporated. Yield 96%. Mp 212°. ¹H NMR: δ 2.0–3.2 (10H, m), 3.84 (3H, s, OMe), 3.91 (3H, s, OMe), 6.6–6.93 (4H, m, ArH), 7.0–7.2 (1H, m, ArH). GC/MS m/z (rel. int.): 300 (21), 299 (100), 257 (26), 256 (13), 255 (16), 253 (26), 242 (12), 240 (19), 226 (11), 225 (36), 223 (12).

Bractazonine (2). A 37 % aq. HCHO soln (0.15 ml) was added to a soln of 33 (109 mg) in MeOH (20 ml) and the mixture stirred at room temp. for 0.5 hr. The mixture was cooled to 5–10° and NaBH₄ (144 mg) was added in small portions during 10 min. After continued stirring for 30 min at room temp, the mixture was evaporated to dryness and dissolved in CHCl₃. The CHCl₃ extract was washed with H₂O, dried (Na₂SO₄) and evaporated, to give 2 (107 mg, yield 94 %). Mp 101°. ¹H NMR: δ 2.28 (3H, s, NMe), 2.3–2.7 (8H, m, 4 × CH₂), 3.84 (3H, s, OMe), 3.90 (3H, s, OMe), 5.3 (1H, br s, OH), 6.70 and 6.84 (2H, AB-pattern, J = 8.3 Hz, H-3 and H-4), 6.82 (1H, d, J = 2.7 Hz, H-10), 6.82 (1H, dd, J = 2.7 Hz, J = 9.2 Hz, H-12), 7.09 (1H, d, J = 9.2 Hz, H-13). The observed $\Delta\delta$ (OMe) was 0.068. GC/MS m/z (rel. int.): 314 (22), 313 (100), 312 (14), 298 (15), 296 (24), 270 (27), 257 (15), 256 (28), 255 (32), 239 (15), 225 (14), 223 (30).

Synthesis of 9. The starting materials for the preparation of the substrate for the photolytic coupling reaction, leading ultimately to 9, were 2-bromo-6-methoxybenzoic acid and 3-benzyloxy-4-methoxyphenethylamine.

2-Bromo-6-methoxybenzylalcohol (34). 2-Bromo-6-methoxybenzoic acid [34] in dry THF was reduced in an N₂ atmosphere at room temp using excess borane in THF. The reaction proceeded slowly as monitored by GC. After 3 days, excess hydride was destroyed by cautious addition of a mixture of THF and H₂O (1:1). The aq. phase was satd with K₂CO₃, whereupon the THF layer was separated and the H₂O layer extracted with Et₂O. The combined extracts were dried (MgSO₄) and concd *in* vacuo. The yield of 34 was 66 %, while 30 % starting material was recovered upon acidification of the aq. phase. Mp 75° (Et₂O and MeOH). ¹H NMR: δ 2.53 (1H, br s, OH), 3.86 (3H, s, OMe), 4.88 (2H, s, ArCH₂OH), 6.7–7.3 (3H, m, ArH). Upon computer simulation of the ABC pattern obtained for the aromatic protons excellent agreement was obtained for δ 6.84 (H-5), 7.11 (H-4) and 7.18 (H-3), with $J_{3,4} = 7.9$ Hz, $J_{3,5} = 2.3$ Hz and $J_{4,5} = 7.1$ Hz. GC/MS m/z (rel. int.): 218 (77), 217 (14), 216 (79), 203 (13), 201 (28), 199 (16), 187 (16), 185 (30), 183 (15), 171 (11), 169 (10), 137 (66), 136 (14), 109 (100), 108 (13), 94 (33), 91 (15), 90 (11).

2-Bromo-6-methoxybenzylchloride (35). Compound 34 was treated with SOCl₂, as in the synthesis of 18, which gave compound 35 in 96 % yield. Mp 47°. ¹H NMR: δ 3.88 (3H, s, OMe), 4.83 (2H, s, ArCH₂Cl), 6.83, 7.15 and 7.20 (ABC-pattern for H-5, H-4 and H-3, respectively, very similar to that observed in 34). GC/MS m/z (rel. int.): 238 (10), 236 (40), 234 (31), 202 (9), 201 (99), 200 (9), 199 (100), 171 (40), 169 (39), 90 (27).

2-Bromo-6-methoxybenzylcyanide (36). Treatment of 35 with KCN in DMSO afforded 36 in 96 % yield. Mp 49°. ¹H NMR: δ 3.85 (2H, s, ArCH₂CN), 3.87 (3H, s, OMe), 6.7–7.3 (3H, m, ArH, very similar to 34 and 35). GC/MS m/z (rel. int.): 227 (99), 225 (100), 212 (22), 210 (23), 187 (37), 185 (39), 146 (28).

2-Bromo-6-methoxyphenylacetic acid (37). Hydrolysis of 36 in a similar way to the preparation of 20, gave 37 in 88 % yield. Mp 180°. ¹H NMR: δ 3.82 (3H, s, OMe), 3.93 (2H, s, ArC<u>H</u>₂COOH), 6.7–7.3 (3H, m, ArH, pattern similar to that mentioned above), 8.7 (1H, br s, COOH). GC/MS m/z (rel. int.): 246 (53), 244 (54), 202 (34), 201 (47), 200 (36), 199 (45), 171 (53), 169 (53), 165 (100).

N-(3-Benzyloxy-4-methoxyphenethyl)-2-(2-bromo-6-methoxyphenyl)acetamide (38). Heating 3-benzyloxy-4-methoxyphenethylamine [35] and 2-bromo-6-methoxyphenylacetic acid (37) in decalin, afforded 38 in 70% yield. Acidification of the basic washings, followed by CHCl₃ extraction, recovered unreacted 37, making the corrected yield of 38 100%. Mp 136° (decomp. from MeOH). ¹H NMR: δ 2.62 (2H, t, J = 7 Hz, ArCH₂CH₂NH), 3.39 (2H, double t, J = 6 Hz, J = 7 Hz, ArCH₂CH₂NH), 3.73 (3H, s, OMe), 3.75 (2H, s, ArCH₂CO), 3.85 (3H, s, OMe), 5.07 (2H, s, ArCH₂O), 5.42 (1H, br t, J = 6 Hz, NH), 6.5-7.5 (11H, m, ArH), GC/MS m/z (rel. int.): 485 (1.6), 483 (1.6), 241 (7), 240 (40), 201 (6), 199 (6), 166 (6), 150 (11), 92 (9), 91 (100), 90 (5).

N-(3-Hydroxy-4-methoxyphenethyl)-2-(2-bromo-6-methoxyphenyl)acetamide (39). A stirred soln of 38 (4.0 g) in conc HCl (40 ml) and EtOH (40 ml) was heated at 60° for 6 hr. The volatile materials were removed, H₂O was added, and the mixture extracted with CHCl₃. The extract was washed with H₂O, dried (Na₂SO₄) and evaporated, producing the debenzylated amide 39 (3.22 g, yield 99 %). Mp 118° (decomp. from MeOH-Et₂O). ¹H NMR: $\delta 2.62$ (2H, t, J = 7 Hz, ArCH₂CH₂NH, 3.42 (2H, double t, J = 6 Hz, J = 7 Hz, ArCH₂CH₂NH), 3.78 (5H, s, OMe + ArCH₂CO), 3.85 (3H, s, OMe), 5.46 (1H, br t, NH), 5.65 (1H, br s, OH), 6.45-7.4 (6H, m, ArH). GC/MS m/z (rel. int.): 395 (1.6), 393 (1.6), 246 (1.4), 244 (1.4), 201 (12), 199 (12), 151 (13), 150 (100), 137 (11), 135 (8), 91 (8), 90 (5).

Photolysis of 39. Compound 39 (6.7 g) was irradiated in 500 mg aliquots for 25 min, similarly to the photolysis of 27. The products were chromatographed on silica gel, first using CHCl₃, followed by CHCl₃-Me₂CO (99:1). The elution order was 40, then 41 and finally 42. The products were not fully separated. Fractions containing mainly 41, respectively 42, were crystallized from Et₂O-MeOH, yielding pure 41 (0.77 g) and pure 42 (1.2 g). The mother liquor and the fractions containing mainly 40 were combined (1.67 g), and chromatographed on Al₂O₃ (activity III), eluted with CHCl₃ satd with H₂O, followed by CHCl₃-MeOH mixtures, up to 19:1. This yielded 41 (0.3 g), then a mixture of 40 and 39 (0.78 g, ca 25 % 39 by ¹H NMR), and finally 42 (0.32 g). The yield of 41 was 32 %, that of 42 was 28 %. The yield of 40 was

ca 10%, while ca 3% starting material was present (see Scheme 2). N-(3-Hydroxy-4-methoxyphenethyl)-2-(6-methoxyphenyl)acet-

amide (40). ¹H NMR: δ 2.59 (2H, t, J = 7 Hz, ArCH₂CH₂N), 3.40 (2H, double t, J = 6 Hz, J = 7 Hz, ArCH₂CH₂NH), 3.51 (2H, s, ArCH₂CO). GC/MS m/z (rel. int.): 315 (5), 222 (6), 166 (5), 151 (12), 150 (100), 137 (10), 135 (8), 122 (6), 121 (28).

5,6,9-Trihydro-2,10-dimethoxy-8-oxo-7H-dibenz[d,f]azonin-1ol (41). Mp 238° (from Et₂O-MeOH). ¹H NMR: δ 2.50 (2H, m), 3.08 and 4.22 (2H, AB-pattern, J = 17 Hz, ArCH₂CO), 3.1, 3.6 and 4.4 (3H, br), 3.86 (6H, s, 2 × OMe), 5.53 (1H, s, OH), 6.65-7.05 (4H, m, ArH), 7.2-7.45 (1H, m, H-12). In the pattern obtained for the aromatic protons, the AB-pattern for H-3 and H-4 (δ 6.72 and 6.88, J = 8.4 Hz) was recognisable, though somewhat obscured by the resonances of H-11 and H-13. GC/MS m/z (rel. int.): 314 (19), 313 (100), 284 (41), 257 (21), 256 (72), 255 (11), 241 (18), 225 (21), 223 (17).

5,6,9-Trihydro-2,10-dimethoxy-8-oxo-7H-dibenz[d,f]azonin-3ol (42). Mp 216° (from Et₂O-MeOH). ¹H NMR: δ 2.50 (2H, m), 3.17 and 4.20 (2H, AB-pattern, J = 18 Hz, ArCH₂CO), 3.15, 3.7 and 4.3 (3H, br), 3.79 (3H, s, OMe), 3.88 (3H, s, OMe), 5.83 (1H, br s, OH), 6.46 (1H, s, H-4), 6.74 (1H, s, H-1), 6.7-7.0 (2H, m, H-11 and H-13), 7.15-7.4 (1H, m, H-12). In DMSO-d₆ the resonances of the aromatic protons were better resolved: δ 6.43 and 6.60 (2H, 2 × s, H-4 and H-1, respectively), 6.69 (1H, dd, J = 1.3 Hz, J =7.2 Hz, H-11), 7.04 (1H, dd, J = 1.3 Hz, J = 8.4 Hz, H-13), 7.27 (1H, dd, J = 7.2 Hz, J = 8.4 Hz, H-12). GC/MS m/z (rel. int.): 314 (19), 313 (100), 284 (42), 257 (21), 256 (59), 255 (16), 241 (18), 225 (27).

5,6,8,9-*Tetrahydro*-2,10-*dimethoxy*-7H-*dibenz*[*d*,*f*]*azonin*-1-*ol* (43). Compound 41 was treated with *in situ* prepared diborane, similar to the synthesis of 33, giving 43 in 100 % yield. Mp 100°. ¹H NMR: δ 1.8–4.0 (10H, *m*), 3.84 (3H, *s*, OMe), 3.91 (3H, *s*, OMe), 6.6–7.0 (4H, *m*, ArH), 7.27 (1H, *dd*, *J* = 7.5 Hz, *J* = 8.4 Hz, H-12). GC/MS *m/z* (rel. int.): 300 (21), 299 (100), 282 (10), 268 (25), 257 (22), 256 (23), 255 (29), 253 (22), 240 (16), 239 (11), 226 (11), 225 (40), 223 (14).

5,6,8,9-Tetrahydro-2,10-dimethoxy-7-methyl-dibenz[d, f] azonin-1-ol (9). Compound 43 was N-methylated in the manner, described for the synthesis of 2 from 33, giving a quantitative yield of 9. Mp 166°. ¹H NMR: δ 2.27 (3H, s, NMe), 2.0–3.1 (8H, m, $4 \times CH_2$), 3.83 (3H, s, OMe), 3.90 (3H, s, OMe), 5.2 (1H, br s, OH), 6.73 and 6.86 (2H, AB-pattern, J = 8.3 Hz, H-3 and H-4), 6.81 (1H, dd, J = 1.5 Hz, J = 7.2 Hz, H-11 or H-13), 6.88 (1H, dd, J = 1.5 Hz, J = 8.4 Hz, H-11 or H-13), 7.25 (1H, dd, J = 7.2 Hz, J = 8.4 Hz, H-12). The observed $\Delta\delta$ (OMe) was 0.075. GC/MS m/z (rel. int.): 314 (22), 313 (100), 298 (13), 296 (28), 282 (36), 270 (14), 257 (19), 256 (45), 255 (52), 241 (13), 239 (19), 225 (18), 223 (31), 165 (12), 152 (10), 71 (12).

Chemical shifts and differences in chemical shifts of methoxyl resonances, for 1:1 mixtures of dibenz[d,f]azonine alkaloids. Natural mixture of 1 and 2: a, 3.78 (3H), b, 3.84 (3H), c, 3.90 (6H), c -b, 0.067, b - a, 0.057, c - a, 0.124. 1: a, 3.78 (3H) [C - 12 OMe], b, 3.90 (3H) [C - 2 OMe], b - a, 0.125. Artificial mixture of 1 and 2: a, 3.78 (3H) [C -12 OMe 1], b, 3.84 (3H) [C - 11 OMe 2], c, 3.90 (6H) [C-2 OMe 1 + C-2 OMe 2], c - b, 0.068, b - a, 0.057, c - a, 0.125. 1 and 9: a, 3.78 (3H) [C - 12 OMe 1], b, 3.83 (3H) [C - 10 OMe 9], c, 3.90 (6H) [C-2 OMe 1 + C-2 OMe 1], b, 3.83 (3H) [C - 10 OMe 9], c, 3.90 (6H) [C-2 OMe 1 + C-2 OMe 9], c - b, 0.075, b - a, 0.050, c - a, 0.125.

GC data. 1, a 0.68, b 0.80; 2, a 0.70, b 0.82; 3, a 0.68, b 0.82; 4, a 0.71, b 0.82; 6, a 0.52, b 0.62; 7, a 0.95, b 0.99; 9, a 0.64, b 0.80; 10, a 1.19, b 1.23; Isolated mixture of natural alkaloids 1 + 2, a 0.69 (broad), b 0.80 (sharp); artificial mixture of 1 + 2, a 0.69 (broad) b 0.80 (sharp); 1 + 9, a 0.64 and 0.68, b 0.80 (sharp).

TLC data. 1, a 0.83, b 0.17, c 0.10; 2, a 0.83, b 0.17, c 0.10; 3, a 0.85, b 0.22, c 0.32; 4, a 0.50, b 0.11, c 0.01; 6, a 0.83, b 0.35, c 0.38; 7, a 0.37, b 0.07, c 0.00; 9, a 0.83, b 0.17, c 0.10; 10, a 0.87, b 0.17, c 0.23;

11, a 0.51, b 0.10, c 0.01.

Acknowledgements-Thanks are due to Dr. D. S. Bhakuni, Central Drug Research Institute, Lucknow, India, for a generous gift of natural laurifinine, and to Ir. E. Buurman, Diosynth B. V., Apeldoorn, The Netherlands, for supplying thebaine and Omethylflavinantine. We also thank Mr. E. J. Vlietstra and Dr. J. W. Zwikker, Organic Chemical Laboratory, State University of Utrecht, for preparation of the latter compound by electrochemical oxidation of laudanosine. The substance protostephanine, Lot 1848-65, was supplied by Dr. B. Pecherer of the Chemical Research Department of Hoffmann-La Roche Inc., Nutley, N.J. 07110, U.S.A. We are indebted to Professor Dr. A. R. Battersby, University Chemical Laboratory, Cambridge, England, for synthetic advice. Thanks are due to Miss G. F. La Vos and Ir. M. C. ten Noever de Brauw, Central Institute for Nutrition and Food Research, Zeist, The Netherlands, for capillary GC/MS measurements, and to Mr. C. Versluis and Dr. H. J. W. Spronck, Analytical Chemical Laboratory, State University of Utrecht, for recording GC/MS spectra. We are indebted to Mr. A. V. E. George, Drs. R. H. A. M. Janssen and Dr. H. W. A. Biessels, Organic Chemical Laboratory, State University of Utrecht, for recording ¹H NMR and performing shift experiments. Thanks are due to Mr. P. Wijkens for synthetic help. The 'Arya II' plants, used in this research, were cultivated by Ir. W. J. M. Meyer, Agricultural University, Wageningen, The Netherlands. This work is part of the thesis by H. G. Theuns (in preparation) and was initiated as a consultant to the United Nations Division of Narcotic Drugs.

REFERENCES

- Küppers, F. J. E. M., Salemink, C. A., Bastart, M. and Paris, M. (1976) Phytochemistry 15, 444.
- Phillipson, J. D., Handa, S. S. and El-Dabbas, S. W. (1976) Phytochemistry 15, 1297.
- Hodges, C. C., Horn, J. S. and Rapoport, H. (1977) *Phyto-chemistry* 16, 1939.
- Theuns, H. G., van Dam, J. E. G., Luteyn, J. M. and Salemink, C. A. (1977) Phytochemistry 16, 753.
- 5. Rönsch, H. and Schade, W. (1979) Phytochemistry 18, 1089.
- 6. Neubauer, D. and Mothes, K. (1963) Planta Med. 11, 387.
- 7. Theuns, H. G., Vlietstra, E. J. and Salemink, C. A. (1983) *Phytochemistry* 22, 247.
- Uprety, H. and Bhakuni, D. S. (1975) Tetrahedron Letters 1201.
- 9. Pande, H. and Bhakuni, D. S. (1976) J. Chem. Soc. Perkin Trans. 1, 2197.
- 10. Bentley, K. W. (1967) J. Am. Chem. Soc. 89, 2464.
- Channon, R. T., Kirby, G. W. and Massey, S. R. (1969) J. Chem. Soc. (D) 92.
- 12. Fales, H. M. and Warren, K. S. (1967) J. Org. Chem. 32, 501.
- Lousberg, R. J. J. Ch., Paolillo, L., Kon, H. and Weiss, U. (1970) J. Chem. Soc. (C) 2154.
- 14. Ito, K., Tanaka, H. and Shibata, M. (1978) *Heterocycles* 9, 485.
- 15. Ito, K. and Tanaka, H. (1974) Chem. Pharm. Bull. 22, 2108.
- Küppers, F. J. E. M., Lousberg, R. J. J. Ch., Bercht, C. A. L. and Salemink, C. A. (1974) United Nations Document ST/SOA/SER. J/8.
- 17. Kondo, H. and Takeda, K. (1958) Ann. Rep. Itsuu Lab. 9, 78.
- Ito, K., Furukawa, H. and Tanaka, H. (1971) Chem. Pharm. Bull. 19, 1509.
- 19. Ito, K., Furukawa, H., Haruna, M. and Lu, S.-T. (1973) Yakugaku Zasshi 93, 1671.

- 20. Ito, K., Furukawa, H., Haruna, M. and Ito, M. (1973) Yakugaku Zasshi 93, 1674.
- 21. Ito, K., Furukawa, H. and Haruna, M. (1973) Yakugaku Zasshi 93, 1611.
- 22. Ito, K., Haruna, M. and Furukawa, H. (1975) Yakugaku Zasshi 95, 358.
- Ahmad, V. U., Najmus-Saqib, Q., Usmanghani, K. and Miana, G. A. (1980) Scientia Pharmaceutica 48, 169.
- 24. Kupchan, S. M. and Kim, C.-K. (1976) J. Org. Chem. 41, 3210.
- Kupchan, S. M. and Kim, C.-K. (1975) J. Am. Chem. Soc. 97, 5623.
- Kupchan, S. M., Kim, C.-K. and Lynn, J. T. (1976) J. Chem. Soc. Chem. Commun. 86.
- Barton, D. H. R., Boar, R. B. and Widdowson, D. A. (1970) J. Chem. Soc. (C) 1213.

- Bhakuni, D. S. and Singh, A. N. (1978) J. Chem. Soc. Perkin Trans. 1, 618.
- 29. Robinson, R. (1947-1948) Proc. R. Soc., B. 135, 14.
- 30. Thornber, C. W. (1969) Ph.D. Thesis (Liverpool, 1969).
- Battersby, A. R., Bhatnagar, A. K., Hackett, P., Thornber, C. W. and Staunton, J. (1981) J. Chem. Soc. Perkin Trans. 1 2002.
- Kupchan, S. M., Kim, C.-K. and Miyano, K. (1976) Heterocycles 4, 235.
- Hazlet, S. E. and Brotherton, R. J. (1962) J. Org. Chem. 27, 3253.
- 34. Farkas, L., Sóti, F., Incze, M. and Nógradi, M. (1974) Chem. Ber. 107, 3874.
- 35. Späth, E., Orechoff, A. and Kuffmer, F. (1934) Chem. Ber. 67, 1214.