SYNTHESIS OF 5-AMINO-4-CYANOPYRAZOLES VIA RING OPENING-RING CLOSURE OF 5-AZIDO-4-IMINOMETHYLPYRAZOLES ISOLATION OF THE INTERMEDIATE

Wim Dehaena and Jan Becher*b

^aDepartment of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.

^bDepartment of Chemistry, University of Odense, DK-5230 Odense M, Denmark.

<u>Abstract</u>: 5-Amino-4-cyanopyrazoles are prepared by thermolysis from 5-azido-4-iminomethylpyrazoles in fair yields. The reaction occurs via a ring opening-ring closure mechanism. The intermediate azocompound was isolated.

Heterocyclic azides are of interest because of their ability to form nitrenes¹. In the course of our work² on 5-azidopyrazoles we observed³ the formation of the hydroxynitriles 3 as side products in the reaction of 5-chloro-4-formylpyrazoles 1 with sodium azide in DMSO. Nitrile 3 was also formed by thermolysis of azide 2 in toluene³:

$$R^3$$
 CHO
 i
 R^3
 CHO
 i
 R^3
 CHO
 R^3
 R^3
 CHO
 R^3
 R^3

i: NaN3, DMSO, heating. ii. Toluene, heating.

The initially formed nitrene ring opens to an azo compound, which then ring closes to give nitrile 3. The formation of an azo intermediate is consistent with a general pattern for fragmentation of azoles^{1,4}.

In the present work we have investigated the generality of this reaction scheme by thermolysing the readily available⁵ imines 4, which could be cleanly converted to the *o*-aminonitriles 5⁶ in high yields. The half life $(\tau_{1/2})$ of imines 4 in refluxing deuterochloroform were measured (¹H NMR) and the results summarised in the scheme:

R ³	Ar τ	_{1/2} (hours)	Yield (%)	
CH ₃	4-CH ₃ -C ₆ H ₂	, 3	83	
C_6H_5	4-CH ₃ -C ₆ H	4 7	80	
CH ₃	4-CH ₃ O-C ₆ l	H_4 3	72	
		•		

From this result it appears that the N-aryl moiety does not influence the rate of conversion, whereas the 3-substituent has some influence.

A double rearrangement was also carried out, thus heating of the bisiminoethylene derivative 6 yielded the diaminodinitrile 7 in high yield, compounds of this type might be useful as starting materials for heterocyclic ligands:

$$CH_3$$
 $CH=N$
 $N=CH$
 $N=CH$

During the decomposition of imine 4c we observed formation of an unstable red coloured intermediate. This obviously points to an azo compound. Ethoxycarbonylhydrazone 8 is much more thermolabile than the imines 4 and 6 and the outcome of the reaction is strongly influenced both by solvent and reaction time. Thus heating of 8 at 60°C for 1 hour in chloroform gives 80% conversion to the azo compound 9. At the same temperature in DMSO-d₆ we initially see (¹H NMR and TLC) the emergence of compound 9⁷. Later the new isomer 10 appeared at the expense of 9 and after 2 hours all of the starting material 8 was consumed and a 40:60 mixture of 9 and 10 was obtained. Finally when the reaction was carried out in acetonitrile at 60°C we first observed the formation of a mixture of 9 and 10 followed by complete conversion to the cyanopyrazole 11 after 6 hours at 60°C. These results therefore confirm our previously proposed² mechanism:

$$\begin{array}{c} H_3C \\ CH=N-NHCO_2Et \\ CN \\ CH=N-NHCO_2Et \\ \hline \\ GH=N-NHCO_2Et \\ \hline \\ GH=N-NHCO_2$$

i: CHCl₃, 60°C, 1 hour. ii: DMSO-d₆, 60°C, 2 hours. iii: CH₃CN, 60°C, 6 hours.

The results described here, opens up the possibility for related rearrangements in the same area. Further investigations are in progress.

Acknowledgement: A postdoctoral grant from Odense University to W. Dehaen is gratefully acknowledged.

References and notes

- 1. Azides and Nitrenes, E. F. V. Scriven Ed., 1984, Academic Press.
- 2. J. Becher, K. Brøndum, N. Krake, K. Pluta, O. Simonsen, P. Molina and M. Begtrup, J. Chem Soc. Chem. Commun., 1988, 541.
 - 3. J. Becher, K. Pluta, P. L. Jørgensen, N. Krake and B. Falt-Hansen, unpublished results.
 - 4. P. A. S. Smith, G. J. W. Green, M. D. Hajek and D. V. C. Awang, J. Org. Chem., 1970, 35, 2215.
 - 5. P. Molina, A. Arques, M. V. Vinader, J. Becher and K. Brøndum, J. Org. Chem., 1988, 53, 4654.
- 6. For example: **5a**; mp 173°C (EtOH/H₂O); IR (KBr) 3276 (NH), 2218 (CN); ¹H NMR (CDCl₃) δ 2.35 (3H, s, CH₃), 2.45 (3H, s, CH₃), 5.90 (1H, s, NH, exchange D₂O), 6.92 (2H, d, J = 9 Hz, H_{arom}), 7.10 (2H, d, J = 9 Hz, H_{arom}), 7.35 7.60 (5H, m, H_{arom}); ¹³C NMR (CDCl₃) δ 12.87 (CH₃, pyrazole), 20.66 (CH₃, aryl), 80.71 (C4, pyrazole), 113.46 (CN), 119.87, 124.32, 128.53, 129.62, 129.86, 133.78, 136.45, 137.04, 146.45, 151.98; Mass spectrum, m/z: 288 (M⁺, 100), 272 (10), 141 (6), 91 (15), 77 (25); Peak match for C₁₈H₁₈N₄: 288.13749, Found: 288.13485; Anal. calcd. for C₁₈ H₁₈N₄1/2 H₂O: C, 72.71; H, 5.76; N, 18.84. Found: C, 72.56; H, 5.56; N, 18.70.
- 7. 9; yield 60%, mp 172°C (CHCl₃/ether); IR (KBr) 2230 (CN), 1719 (CO), 1542, 1240 cm⁻¹; 1 H NMR (DMSO-d₆) δ 1.25 (3H, t, J = 8 Hz, CH₃), 2.22 (3H, s, CH₃), 4.20 (2H, q, J = 8 Hz CH₂O), 7.60 (3H, m, H_{arom}), 7.90 (2H, m, H_{arom}), 8.40 (1H, s, CH=N), 11.65 (1H, s, NH, exchange D₂O); 13 C NMR (DMSO-d₆) δ 11.23, 14.38, 113.62 (CN), 119.28 (CH₃-C=C), 123.45, 129.71, 133.18, 138.83, 151.96, 152.83 (CO), 163.04 (CH₃-C=C); Mass spectrum m/z: 285 (M⁺, 17), 197 (16), 184 (34), 77 (100); Peak match for C₁₄H₁₅N₅O₂: 285.12257; Found: 285.1187; Anal. calcd. for C₁₄H₁₅N₅O₂: C, 58.93; H, 5.30; N, 24.55. Found: C, 58.54; H, 5.26; N, 24.66.

(Received in UK 30 April 1991)