Silver(I) complexation of linked 2,2'-dipyridylamine derivatives. Synthetic, solvent extraction, membrane transport and X-ray structural studies[†]‡

Bianca Antonioli,^{*a,b*} David J. Bray,^{*b*} Jack K. Clegg,^{*b*} Kerstin Gloe,^{*a*} Karsten Gloe,^{*a*} Olga Kataeva,^{*a,c*} Leonard F. Lindoy,^{**b*} John C. McMurtrie,^{*b*} Peter J. Steel,^{**d*} Christopher J. Sumby^{*d*} and Marco Wenzel^{*a*}

Received 10th July 2006, Accepted 31st August 2006

First published as an Advance Article on the web 12th September 2006 DOI: 10.1039/b609738c

Synthesis of the 2,2'-dipyridylamine derivatives di-2-pyridylaminomethylbenzene 1, 1,2-bis(di-2-pyridylaminomethyl)benzene 2, 1,3-bis(di-2-pyridylaminomethyl)benzene 3, 2,6-bis(di-2-pyridylaminomethyl)pyridine 4, 1,4-bis(di-2-pyridylaminomethyl)benzene 5, and 1,3,5-tris(di-2-pyridylaminomethyl)benzene 6 are reported together with the single-crystal X-ray structures of 2, 3, and 5. Reaction of individual salts of the type AgX (where $X = NO_3^-$, PF_6^- , CIO_4^- , or BF_4^{-}) with the above ligands has led to the isolation of thirteen Ag(I) complexes, nine of which have also been characterised by X-ray diffraction. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a range of coordination arrangements. A series of liquid-liquid $(H_2O/CHCl_3)$ extraction experiments of Ag(I) with varying concentrations of 1-6 in the organic phase have been undertaken, with the counter ion in the aqueous phase being respectively picrate, perchlorate and nitrate. In general, extraction efficiencies for a given ionophore followed the Hofmeister order of picrate > perchlorate > nitrate; in each case the tris-dpa derivative **6** acting as the most efficient extractant of the six systems investigated. Competitive seven-metal bulk membrane transport experiments $(H_2O/CHCl_3/H_2O)$ employing the above ligands as the ionophore in the organic phase and equimolar concentrations of Co(II), Ni(II), Zn(II), Cu(II), Cd(II), Pb(II) and Ag(I) in the aqueous source phase were also undertaken, with transport occurring against a pH gradient. Under the conditions employed 1 and 5 yielded negligible transport of any of the metals present in the source phase while sole transport selectivity for Ag(1) was observed for 2-4 and 6.

Introduction

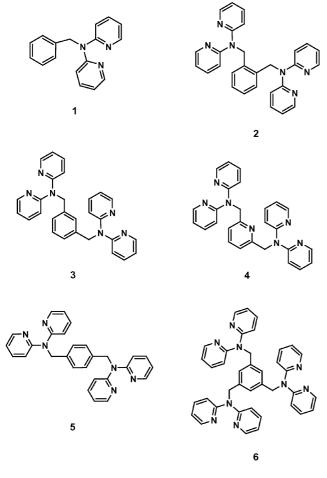
The coordination chemistry of 2,2'-dipyridylamine (dpa) and its derivatives has been the focus of a considerable number of investigations. For example, mono-, di- and tri-dpa derivatives have been reported in which the secondary nitrogen of each dpa is directly bound to an aryl core with such species being employed in studies that range from metal coordination and supramolecular chemistry^{1,2} to the synthesis of new luminescent materials.³⁻⁵ Pd(II) and Pt(II) complexes of such dpa derivatives have also been investigated as potential anticancer agents due to their structural similarity to cisplatin.⁶⁻⁸ The use of Ag(I) in a range of metal complex and supramolecular materials has received increasing attention, in part due to the coordination flexibility of this d¹⁰ ion and its well documented tendency to form strong complexes with nitrogen donor ligands.⁹ Further, the silver centres in such materials have frequently been associated with 'supramolecular' interactions (including silver– π interactions)^{10,11} and in some instances give rise to unusual electronic and photophysical properties.¹²

In the above context, the dpa moiety has been demonstrated to coordinate to Ag(1) and the solid-state structure of [Ag(deprotonated dpa)]_n has been reported.¹³ Under the synthetic conditions employed, deprotonation of the central amine nitrogen occurs resulting in a charge-neutral, one-dimensional polymeric chain, with the backbone of the chain defined by weak Ag–Ag interactions; each silver ion is coordinated to an amido nitrogen as well as two pyridyl nitrogens from three different dpa ligands. Under other reaction conditions, neutral dpa has also been shown to form discrete complexes with silver.¹⁴ In each of these latter systems the secondary amine nitrogen does not coordinate to silver and each dpa unit acts as a bidentate ligand, coordinating through both pyridyl nitrogens to form a six-membered chelate ring. Coordination to silver solely through pyridyl nitrogen donors is also typical of other substituted dpa ligands.^{2,4,15}

In contrast to the above systems, examples of linked di- and tri-dpa derivatives in which the linking groups between the dpa fragments are flexible have not been extensively studied.^{7,8,16} Nevertheless, complexes of such flexible poly-dpa derivatives bound to Cu(II),¹⁶ as well as Pd(II) and Pt(II),^{7,8} have been investigated for use in biological applications. However, no silver complexes of dpa derivatives of this type have been described previously and this, in part, provided one motivation for the present study.

^aDepartment of Chemistry, Technical University Dresden, 01062, Dresden, Germany

^bCentre for Heavy Metals Research, School of Chemistry, University of Sydney, NSW, 2006, Australia


^eA. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan, 420088, Russia

^dDepartment of Chemistry, University of Canterbury, Christchurch, New Zealand

[†] The HTML version of this article has been enhanced with colour images. ‡ Electronic supplementary information (ESI) available: Additional crystallographic parameters and ORTEP diagrams. See DOI: 10.1039/b609738c

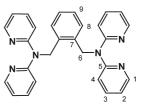
View Article Online

We now report a comparative solid state and solution investigation of the interaction of the linked 2,2'-dipyridylamine ligand systems 1-6 with Ag(1).

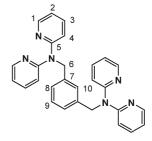
Experimental

Physical methods

HRMS were determined on samples dissolved in dichloromethane and run in an acetonitrile matrix. Column chromatography was performed on silica gel 60 (0.040–0.063 mm Merck) or neutral Al₂O₃ (FH 300 mm, HNS 29 Por.0). Melting points are uncorrected. NMR spectra were determined on a DRX-500 Bruker spectrometer or on Varian 300 and 500 MHz spectrometers.


Ligand synthesis

Di-2-pyridylaminomethylbenzene (1). This synthesis was based on literature procedures.¹⁷ Benzyl bromide (1.0 g, 5.88 mmol) in DMF (3 mL) was added dropwise to 2,2'-dipyridylamine (1.0 g, 5.85 mmol) and KOH (1.33 g, 23.7 mmol) in DMF (5 mL). The resulting solution was stirred at room temperature for 15 h and then taken to dryness under reduced pressure. The residue was washed with excess water and extracted with chloroform (3 × 50 mL). The chloroform extracts were dried over anhydrous sodium sulfate, filtered, and the filtrate taken to dryness under reduced pressure. The residue was chromatographed on silica gel by elution with CHCl₃–MeOH (5 : 1). The crude yellow product obtained was recrystallised from an acetone–water mixture. Yield, 0.25 g (16%); mp 76.5 °C. Found: C, 78.01; H, 5.72; N, 16.12. Calc. for $C_{17}H_{15}N_3;$ C, 78.13; H, 5.79; N, 16.08%.


¹H NMR (500 MHz, CDCl₃, 298 K) δ 8.40 (2H, d, py), 7.60 (2H, t, py), 7.37 (2H, d, py), 7.27 (2H, d, ph), 7.20 (1H, t, ph), 7.16 (2H, d, ph), 6.94 (2H, t, py), 5.55 (2H, s, CH₂). MS (ESI): m/z 262.1 [M + H]⁺.

1,2-Bis(di-2-pyridylaminomethyl)benzene (2). Di-2-pyridylamine (1.00 g, 5.84 mmol) and potassium hydroxide (1.33 g, 23.7 mmol) were stirred in DMSO (5 mL) for 1 h; 1,2bis(bromomethyl)benzene (0.70 g, 2.65 mmol) was added and the reaction mixture was stirred for a further 40 h. Water was then added until the solution turned cloudy. The yellow precipitate that formed was isolated and recrystallised from an ethyl acetate–petroleum ether (bp 30–60 °C) solution to yield yellow crystals. Yield, 0.29 g (25%); mp 144–146 °C. Found: C, 75.37; H, 5.38; N, 19.04. Calc. for C₂₈H₂₄N₆: C, 75.65; H, 5.44; N, 18.91%. ¹H NMR (500 MHz, CDCl₃, 296 K) δ 8.32 (4H, d, py), 7.53 (4H, t, py), 7.27 (2H, d, ph), 7.22 (4H, d, py), 7.04 (2H, t, ph), 6.86 (4H, dd, py), 5.64 (4H, s, CH₂). ¹³C NMR (125.76 MHz, CDCl₃, 296 K) δ 157.1 (C5), 148.2 (C1), 137.2 (C7), 136.1 (C3), 126.5, 126.4 (C8, C9), 117.2 (C2), 114.6 (C4), 48.6 (C6).

MS (HR-ESI): *m*/*z* 444.2079; C₂₈H₂₄N₆ requires 444.2063.

1,3-Bis(di-2-pyridylaminomethyl)benzene (3). Di-2-pyridylamine (1.00 g, 5.84 mmol) and potassium hydroxide (1.33 g, 23.7 mmol) were stirred in DMF (30 mL) at 40 °C for 20 min. 1,3-Bis(bromomethyl)benzene (0.699 g, 2.65 mmol) was added and stirring was continued at 40 °C for a further 40 h. The solvent was removed under reduced pressure and the residue partitioned between dichloromethane (200 mL) and water (150 mL). The organic layer was washed twice with water (2 \times 150 mL) and then the combined aqueous phases washed with dichloromethane $(2 \times 100 \text{ mL})$. The combined dichloromethane layers were dried (Na_2SO_4) and then evaporated, resulting in a pale yellow solid. This was recrystallised from acetone-water yielding 980 mg (83%) of a yellow crystalline solid; mp 133-134 °C. Found: C, 75.46; H, 5.49; N, 19.03. Calc. for C₂₈H₂₄N₆: C, 75.65; H, 5.44; N, 18.91%. ¹H NMR (500 MHz, CDCl₃, 296 K) δ 8.25 (4H, d, py), 7.53 (4H, t, py), 7.27 (2H, d, ph), 7.22 (4H, d, py), 7.04 (2H, t, py), 6.86 (4H, t, py), 5.64 (4H, s, CH₂). ¹³C NMR (500 MHz, CDCl₃, 296 K) δ 157.0 (C5), 148.1 (C1), 139.3 (C7), 137.1 (C3), 128.4 (C9), 125.3 (C10), 125.1 (C8), 117.2 (C2), 114.5 (C4), 51.20 (C6).

MS (HR-ESI): m/z 444.2064; C₂₈H₂₄N₆ requires 444.2063.

2,6-Bis(di-2-pyridylaminomethyl)pyridine (4). This was synthesised and characterised as described elsewhere.¹⁸

1,4-Bis(di-2-pyridylaminomethyl)benzene (5). Di-2-pyridylamine (1.00 g, 5.84 mmol) and potassium hydroxide (1.33 g, 23.7 mmol) were stirred in DMF (30 mL) at 40 °C for 20 min. 1,3-Bis(bromomethyl)benzene (0.699 g, 2.65 mmol) was added and stirring was continued at 40 °C for a further 40 h. The solvent was removed under reduced pressure and the residue partitioned between dichloromethane (200 mL) and water (150 mL). The organic layer was washed twice with water (2 \times 150 mL) and then the combined aqueous phases washed with dichloromethane $(2 \times 100 \text{ mL})$. The combined dichloromethane layers were dried (Na_2SO_4) and then evaporated, resulting in a pale yellow solid. This was recrystallised from acetone-water yielding 780 mg (66%) as a yellow powder; mp 181-183 °C. Found: C, 75.47; H, 5.44; N, 19.01. Calc. for C₂₈H₂₄N₆: C, 75.65; H, 5.44; N, 18.91%. ¹H NMR (500 MHz, CDCl₃, 296 K) δ 8.28 (4H, d, py), 7.47 (4H, t, py), 7.22 (4H, s, ph), 7.13 (4H, d, py), 6.82 (4H, dd, py), 5.43 (4H, s, CH₂). ¹³C NMR (500 MHz, CDCl₃, 296 K) δ 157.1, 148.1, 137.6, 137.1, 126.9, 117.1, 114.5, 51.02. MS (HR-ESI): m/z 444.2078; $C_{28}H_{24}N_6$ requires 444.2063.

1,3,5-Tris(di-2-pyridylaminomethyl)benzene (6). This was prepared by an adaptation of a published procedure.7 Di-2pyridylamine (1.00 g, 5.84 mmol) and potassium hydroxide (1.31 g, 23.4 mmol) were stirred in DMSO (5 mL) for 1 h. 1,3,5-Tris(bromomethyl)benzene¹⁹ (0.675 g, 1.89 mmol) was then added and the solution stirred for an additional 48 h. Water was added dropwise until the solution turned cloudy. On standing, a yellow precipitate formed which was filtered off, washed with water and recrystallised from an ethyl acetate-petroleum ether (bp 30-60 °C) mixture. Yield, 0.583 g (49%); mp 158-160 °C. Found: C, 74.33; H, 5.07; N, 19.80. Calc. for C₃₉H₃₃N₉: C, 74.62; H, 5.30; N, 20.08%. ¹H NMR (500 MHz, CDCl₃, 296 K) δ 8.20 (6H, d, py), 7.37 (6H, t, py), 7.07 (3H, s, ph), 6.91 (6H, d, py), 6.78 (6H, dd, py), 5.34 (6H, s, CH₂). ¹³C NMR (125.76 MHz, CDCl₃, 296 K) δ 157.0, 148.0, 139.4, 137.0, 123.6, 116.9, 114.5, 51.18. MS (HR-ESI): m/z 628.2937. C₃₉H₃₄N₉⁺ requires 628.2953.

Complex synthesis

CAUTION. Perchlorate complexes are potentially explosive and appropriate caution should be exercised in their synthesis and handling.

[Ag(1)(NO₃)]·CH₃CN. Silver nitrate (13.3 mg, 0.078 mmol) in acetonitrile (5 mL) was added to 1 (20.5 mg, 0.078 mmol) in dichloromethane (5 mL). Colourless crystals of the title compound were obtained by slow diffusion of diethyl ether vapour into the resulting solution. The crystals were collected and washed with ether. Yield, 10.0 mg (76%); mp 160–162 °C (decomp.). Found: C, 48.17; H, 3.65; N, 14.79. Calc. for $C_{17}H_{15}N_4AgO_3$ ·CH₃CN: C, 48.32; H, 3.84; N, 14.68%.

 $[Ag_2(2)_2(NO_3)_2]\cdot 2H_2O$. Silver nitrate (0.168 g, 0.099 mmol) in methanol (5 mL) was added to 2 (0.201 g, 0.045 mmol) in dichloromethane-methanol (1:1; 8 mL). Colourless crystals that were suitable for X-ray crystallography formed on slow evaporation of the resulting solution. These were collected, washed with dichloromethane and methanol, and dried *in vacuo*. Yield, 25.2 mg (89%); mp 233–235 °C (decomp.). Found: C, 53.32; H, 3.71; N, 15.87. Calc. for $C_{56}H_{48}Ag_2N_{14}O_6\cdot 2H_2O$: C, 53.18; H, 4.14; N, 15.50%.

 $[Ag_2(2)_2(CIO_4)_2]$ ·CH₃CN. Silver perchlorate (13.0 mg, 0.063 mmol) in acetonitrile (5 mL) was added to 2 (14.1 mg, 0.031 mmol) in dichloromethane (5 mL). Colourless crystals of the title compound were obtained by slow diffusion of diethyl ether vapour into the resulting solution. The crystals were collected, washed with ether, and dried *in vacuo*. Yield, 10.3 mg (79%); mp 230–232 °C. Found: C, 51.75; H, 3.68; N, 13.79. Calc. for C₅₆H₄₈Ag₂Cl₂N₁₂O₈·CH₃CN: C, 51.51; H, 3.82; N, 13.54%.

[Ag₂(2)₂](BF₄)₂. Silver tetrafluoroborate (18.7 mg, 0.096 mmol) in methanol was added to 2 (20.2 mg, 0.045 mmol) in dichloromethane–methanol (1 : 1; 8 mL). The colourless crystals that formed were collected, washed with dichloromethane and methanol. These crystals were suitable for X-ray crystallography. The remaining crystals were dried *in vacuo* before microanalysis. Yield, 17.4 mg (60%); mp 245 °C (decomp.). Found: C, 52.84; H, 3.97; N, 13.27. Calc. for $C_{56}H_{48}Ag_2B_2F_8N_{12}$: C, 52.61; H, 3.78; N, 13.15%.

[Ag₂(2)₂](PF₆)₂·CH₂Cl₂. Silver hexafluorophosphate (23.9 mg, 0.095 mmol) in methanol (5 mL) was added to **2** (20.3 mg, 0.046 mmol) in dichloromethane–methanol (1 : 1; 8 mL). The colourless crystals which formed were collected, washed with dichloromethane and methanol. These crystals were suitable for X-ray crystallography. The remaining crystals were dried *in vacuo* before microanalysis. Yield, 27.5 mg (68%); mp 239–240 °C (decomp.). Found: C, 41.76; H, 3.09; N, 10.27. Calc. for $C_{28}H_{24}AgF_6N_6P\cdotCH_2Cl_2$: C, 41.55; H, 3.25; N, 9.69%.

[Ag(3)(NO₃)]. Silver nitrate (15.8 mg, 0.093 mmol) in methanol (5 mL) was added to 3 (19.9 mg, 0.045 mmol) in dichloromethane-methanol (1 : 1; 8 mL). The colourless crystals which formed on slow evaporation of the above solution were collected, and washed with dichloromethane and methanol. A crystal from this crop was used for the X-ray crystallographic study. The remaining crystals were dried *in vacuo* before microanalysis. Yield, 22.6 mg (82%); mp 232–235 °C (decomp.). Found: C, 54.78; H, 3.84; N, 16.21. Calc. for $C_{28}H_{24}Ag N_7O_3$: C, 54.74; H, 3.94; N, 15.96%.

{[Ag(3)(CH₃CN)](ClO₄)}_n. Silver perchlorate (16.8 mg, 0.099 mmol) in acetonitrile (5 mL) was added to 3 (28.1 mg, 0.063 mmol) in dichloromethane solution (5 mL). Colourless crystals of the title compound were obtained by slow diffusion of ether vapour into the resulting solution. A crystal from this crop was used for the X-ray structure determination. The remaining crystals were collected, washed with ether, and dried *in vacuo*. Yield, 14.5 mg (86%); mp 233–235 °C. Found: C, 51.95; H, 3.78; N, 13.99. Calc. for C₂₈H₂₄AgClN₆O₄·CH₃CN: C, 51.99; H, 3.94; N, 14.15%.

 $\{[Ag(3)(CH_3OH)](PF_6)\cdot H_2O\}_n$. Silver hexafluorophosphate (24.4 mg, 0.097 mmol) in methanol (5 mL) was added to a dichloromethane–methanol solution (1:1; 8 mL) of 3 (20.7 mg, 0.047 mmol). On standing, colourless crystals grew in the reaction mixture. These were collected and washed with dichloromethane and methanol. A crystal from this crop was used for the X-ray

crystallography. The remaining crystals were dried in *in vacuo* before microanalysis. Yield, 11.0 mg (31%); mp 179–181 °C (decomp.). Found: C, 46.93; H, 3.87; N, 11.61. Calc. for $C_{28}H_{24}AgF_6N_6P\cdot CH_3OH\cdot H_2O: C, 46.60; H, 4.05; N, 11.24\%$.

[Ag(5)(NO₃)]. Silver nitrate (16.7 mg, 0.098 mmol) in methanol (5 mL) was added to **5** (20.5 mg, 0.046 mmol) in dichloromethane–methanol (1 : 1; 8 mL). A pale yellow crystalline solid formed following slow evaporation of the reaction mixture. This was collected, washed with dichloromethane and methanol, and dried *in vacuo*. Yield 27.5 mg (97%). Found C, 54.85; H, 3.87; N, 16.02. Calc. for $C_{28}H_{24}N_7O_3Ag: C, 54.74; H, 3.94; N, 15.96\%$.

[Ag₂(5)](BF₄)₂. Silver tetrafluoroborate (19.3 mg, 0.099 mmol) in methanol (5 mL) was added to 5 (19.8 mg, 0.045 mmol) in dichloromethane-methanol (1 : 1; 8 mL). Pale yellow crystals formed. These were collected, washed with dichloromethane and methanol, and then dried *in vacuo*. Yield 14.5 mg (39%). Found: C, 41.03; H, 2.94; N, 10.13. Calc. for $C_{28}H_{24}N_6B_2F_8Ag_2$: C, 40.33; H, 2.90; N, 10.08%.

[Ag(5)](PF₆)·CH₃OH. Silver hexafluorophosphate (25.8 mg, 0.102 mmol) in methanol (5 mL) was added to 5 (20.5 mg, 0.046 mmol) in dichloromethane–methanol (1 : 1; 8 mL). A yellow crystalline solid formed. This was collected, washed with dichloromethane and methanol, and dried *in vacuo*. Yield, 32.2 mg (95%). Found: C, 48.08; H, 4.35; N, 11.55. Calc. for $C_{28}H_{24}N_6PF_6Ag\cdotCH_3OH$: C, 47.75; H, 3.87; N 11.52%. Subsequently, further pale yellow crystals, suitable for X-ray crystallog-raphy, were isolated from the filtrate; the structure determination revealed that these have a different composition to that of the bulk sample, namely: $[Ag_3(5)_2(H_2O)_{0.5}](PF_6)_3\cdot1.5H_2O$.

[Ag(6)(NO₃)]. Silver nitrate (21.1 mg, 0.125 mmol) in acetonitrile (5 mL) was added to 6 (26.1 mg, 0.042 mmol) in dichloromethane (5 mL). Yellow crystals of the title compound were obtained by slow diffusion of diethyl ether vapour into the resulting solution. The crystals were collected and washed with ether. Yield, 7.01 mg (33%); mp 210–212 °C (decomp.). Found: C, 58.53; H, 4.13; N, 17.66. Calc. for $C_{39}H_{33}N_{10}AgO_3$: C, 58.73; H, 4.17; N, 17.56%. MS (ESI): m/z 735.3 [L + Ag]⁺.

Liquid-liquid extraction experiments

Liquid-liquid extraction experiments were performed at 23 ± 1 °C in microcentrifuge tubes (2 cm³) with a phase ratio $V_{\text{(aq)}}$: $V_{\text{(aq)}}$ of 1:1 (500 µL each) with the silver in each phase measured radiometrically by γ -emission of ^{110m}Ag by means of a NaI (TI) scintillation counter (Cobra/Canberra-Packard). The aqueous phase contained Ag(I) perchlorate (1 \times 10⁻⁴ M), a supporting anion (either sodium nitrate (5 \times 10⁻³ M), sodium perchlorate $(5 \times 10^{-3} \text{ M})$ or picric acid $(5 \times 10^{-3} \text{ M}))$ and a selected buffer. The zwitterionic buffer system, MES/NaOH, was used to maintain a pH of 6.2 in the aqueous phase; as a precaution, the pH of this phase was measured before and after each experiment using a InLab423 pH electrode. The organic phase contained a known concentration of ligand in chloroform (normally 1×10^{-3} M except where variable concentration experiments were employed). All experiments involved the mechanical shaking of the two-phase system for 30 min by which time equilibrium was reached. At the end of this time, the phases were separated, centrifuged and then

duplicate $100 \,\mu\text{L}$ samples of the aqueous and organic phases were removed for analysis.

Membrane transport

The transport experiments employing 1-6 as ionophores were carried out using a 'concentric cell' in which the aqueous source phase (10 mL) and receiving phase (30 mL) were separated by a chloroform phase (50 mL). Details of the cell design have been published previously.20 For each experiment both the aqueous phases and the organic phase were stirred separately at 10 rpm; the cell was enclosed by a water jacket and thermostatted at 25 °C. The aqueous source phase was buffered (CH₃CO₂H-CH₃CO₂Na) at pH 4.9 (±0.1) (6.95 mL of 2 M sodium acetate solution and 3.05 mL of 2 M acetic acid made up to 100 mL) and contained an equimolar solution of the nitrate salts of Co(II), Ni(II), Zn(II), Cu(II), Cd(II), Pb(II) and Ag(I), each at a concentration of $1 \times$ 10^{-2} M. The chloroform phase contained the ligand at 1 \times 10⁻³ M. The aqueous receiving phase was buffered (HCO₂H- HCO_2Na) at pH 3.0 ± 0.1 (56.6 mL of 1 M formic acid and 10.0 mL of 1 M sodium hydroxide made up to 100 mL). All transport runs were terminated after 24 h and atomic absorption spectroscopy was used to determine the amount of metal ion transported over this period. Transport rates (J values) are in mol (24 h^{-1}). The transport results are quoted as the average values obtained from duplicate runs (error ca. $\pm 10\%$ of reported value).

X-Ray structure determinations

Crystals employed for the X-ray determinations were obtained directly from the respective reaction solutions and were used without further drying. Structures of 2, $\{[Ag(3)(CH_3CN)](ClO_4)$. CH_3CN_n and $[Ag_2(3)_2(ClO_4)_2] \cdot 2H_2O$ were collected on a Nonius Kappa CCD with ω and ψ scans to approximately 56° 2θ at 198(2) K. Data collections were undertaken with COLLECT,²¹ cell refinement with Dirax/lsq, 22 data reduction with EvalCCD 23 and structure solution with SHELXS-97.24 Structures of 5, $[Ag_2(2)_2(NO_3)_2]$, $[Ag_2(2)_2](BF_4)_2$, $\{[Ag_2(2)_2](PF_6)_2\}_3 \cdot 2CH_2Cl_2 \cdot$ $2CH_3OH$, $[Ag(3)(NO_3)]$, $\{[Ag(3)(CH_3OH)](PF_6)\}_n$ and $[Ag_3(5)_2 (H_2O)_{0.5}$](PF₆)₃·1.5H₂O, were collected at 168(2) K using a Bruker SMART 1000 diffractometer with a CCD area detector with ω and ψ scans to approximately 53° 2 θ . Data integration and reduction were undertaken with SAINT and XPREP.25 The structures were solved by direct methods using SHELXS-97.24 Structures of 3 and $[Ag(6)NO_3]$ were collected at 150(2) K with ω scans to approximately 56° 2θ using a Bruker SMART 1000 diffractometer. Data integration and reduction were undertaken with SAINT and XPREP²⁵ and subsequent computations were carried out using the WinGX-32 graphical user interface.²⁶ These structures were solved by direct methods using SIR97.27 All three diffractometers employed graphite-monochromated Mo-Ka radiation generated from a sealed tube (0.71073 Å). Multi-scan empirical absorption corrections were applied to all data sets, where appropriate, using the program SADABS.28 All structures were refined and extended with SHELXL-97.29 In general, ordered non-hydrogen atoms with occupancies greater than or equal to 0.5 were refined anisotropically. Partial occupancy carbon, nitrogen and oxygen atoms were refined isotropically. Carbon-bound hydrogen atoms were included in idealised positions and refined using a riding model. Oxygen-bound hydrogen atoms that were structurally evident in the difference Fourier map were included and refined with bond length and angle restraints.

Crystal data

Crystal and structure refinement data for all structures are summarised in Table 1. ORTEP³⁰ depictions of the crystal structures are given in Fig. 1–3 and are also provided in Fig. S2, S3 and S5 in the ESI[‡] while schematic depictions of structures are shown in Fig. 4–12, S1 and S4.[‡] Where applicable, additional details relating to the X-ray crystal structure refinement are given in the ESI[‡] (along with tables of selected bond lengths and angles).

CCDC reference numbers 614167–614178.

For crystallographic data in CIF or other electronic format see DOI: 10.1039/b609738c

 Table 1
 Crystal data for the ligands 2, 3 and 5 and some of their complexes with Ag(1)

Compound	2	3	5	$[Ag_2(2)_2(NO_3)_2]$	[Ag(3)(NO ₃)]	$ \{ [Ag(3)(CH_3CN)] \}_n $
Formula	$C_{28}H_{24}N_6$	$C_{28}H_{24}N_6$	$C_{28}H_{24}N_6$	$C_{56}H_{48}Ag_2N_{14}O_6$	C28H24AgN7O3	C32H30AgClN8O4
M _r	444.53	444.53	444.53	1228.82	614.41	733.96
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	$P\overline{1}$	C2	$P2_1/n$	$P2_1/n$	$P\overline{1}$	$P2_1/c$
ı/Å	9.218(1)	14.635(3)	8.483(2)	12.659(5)	8.8253(18)	8.522(1)
b/Å	11.011(1)	9.2483(19)	16,999(4)	12.417(5)	10.437(2)	22.118(1)
c/Å	12.294(1)	16.571(3)	8.759(2)	17.195(5)	14.732(3)	17.633(1)
a/°	104.89(1)	1010/1(0)	01/03(2)	1,11,90(0)	85.759(2)	1/1055(1)
β/°	95.32(1)	90.094(3)	115.643(3)	106.291(5)	84.787(2)	103.41(1)
γ/°	108.07(1)	50.051(5)	115.615(5)	100.201(0)	70.861(2)	105.11(1)
V/Å ³	1126.08(18)	2243.0(8)	1138.6(5)	2594.3(16)	1275.2(4)	3233.0(4)
$D_c/g \text{ cm}^{-3}$	1.311	1.316	1.297	1.573	1.600	1.508
Z	2	4	2	2	2	4
z Crystal size/mm	$0.83 \times 0.26 \times 0.24$	$0.39 \times 0.31 \times 0.21$	$0.61 \times 0.53 \times 0.35$	$0.70 \times 0.55 \times 0.40$	$0.60 \times 0.58 \times 0.21$	$^{+}$ 0.33 × 0.16 × 0.1
		Colourless	Pale yellow	Colourless	Colourless	Colourless
Crystal colour	Light yellow		Block	Block		Block
Crystal habit	Block	Multi-face			Block	
T/K	198(2)	150(2)	168(2)	168(2)	168(2)	198(2)
$\mathcal{A}(Mo-K\alpha)$	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
$(Mo-K\alpha)/mm^{-1}$	0.081	0.081	0.080	0.822	0.836	0.756
T(Empirical) _{min,max}	0.9360, 0.9809	N/A	0.7672, 1.0000	0.8558, 1.0000	0.6367, 1.0000	0.9282, 0.7885
$2\theta_{\rm max}/^{\circ}$	54.80	56.58	52.80	52.72	52.76	56.00
hkl Range	-11 to 11, -14 to	19 to 18, -11 to	-10 to 10, -21 to	-15 to 15, -15 to	-10 to 10, -13 to	-11 to $11, -29$ to
	14, -15 to 15	12, -21 to 21	21, -5 to 10	15, 21 to 21	6, -18 to 18	29, -23 to 23
N	35395	10605	14413	31748	16279	73465
N _{ind} (R _{merge})	5013 (0.0376)	2821 (0.0268)	2292 (0.0160)	5275 (0.0191)	5067 (0.0211)	7770 (0.0380)
$N_{\rm obs} (I > 2\sigma(I))$	3900	2684	2102	4891	4815	6170
$R1^a (I > 2\sigma(I)),$	0.0395,	0.0313,	0.0403,	0.0235,	0.0234,	0.0266,
$wR2^a$ (all)	0.1037	0.0800	0.1024	0.0597	0.0626	0.0626
A^a, B^a	0.0534, 0.2205	0.0446, 0.4092	0.0481, 0.3332	0.0256, 1.8526	0.0398, 0.6586	0.0279, 1.7272
GoF	1.024	0.987	1.063	1.092	1.026	1.009
$\Delta \rho / e^- \text{ Å}^{-3}$	0.218, -0.244	0.147, -0.177	0.147, -0.161	0.574, -0.391	0.284, -0.688	0.363, -0.377
Compound	$\begin{array}{l} [Ag_{3}(\textbf{5})_{2}(H_{2}O)_{0.5}]\textbf{-} \\ (PF_{6})_{3}\textbf{\cdot} 1.5H_{2}O \end{array}$	$[Ag_2(2)_2](BF_4)_2$	$ \{ [Ag_2(2)_2](PF_6)_2 \}_3 \cdot \\ 2CH_2Cl_2 \cdot 2CH_3OH $	$[Ag_2(2)_2(ClO_4)_2] \cdot 2H_2O$	${[Ag(3)(CH_3OH)-(PF_6)]}_n$	[Ag(6)NO ₃]
Formula	$C_{56}H_{52}Ag_3F_{18}N_{12}O_2P_3\\$	$C_{56}H_{48}Ag_2B_2F_8N_{12}\\$	$C_{172}H_{156}Ag_6Cl_4F_{36}N_{36}O_2P_6\\$	$C_{56}H_{52}Ag_2Cl_2N_{12}O_{10}\\$	$C_{29}H_{28}AgF_6N_6OP \\$	C ₃₉ H ₃₃ AgN ₁₀ O ₃
$M_{\rm r}$	1683.62	1278.42	4418.16	1339.74	729.41	797.62
			4418.16 Triclinic		729.41 Monoclinic	797.62 Triclinic
M _r	1683.62	1278.42	4418.16	1339.74	729.41	797.62
<i>M</i> r Crystal system	1683.62 Monoclinic	1278.42 Monoclinic	4418.16 Triclinic	1339.74 Orthorhombic	729.41 Monoclinic	797.62 Triclinic
<i>M</i> r Crystal system Space group	1683.62 Monoclinic $P2_1/c$	1278.42 Monoclinic $P2_1/n$	4418.16 Triclinic <i>P</i> 1	1339.74 Orthorhombic Pccn	729.41 Monoclinic <i>C</i> 2/ <i>c</i>	797.62 Triclinic <i>P</i> Ī
M _r Crystal system Space group a/Å b/Å	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9)	1278.42 Monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.618(4) 12.798(4)	4418.16 Triclinic <i>P</i> 1 14.361(5) 17.001(6)	1339.74 Orthorhombic <i>Pccn</i> 20.973(1) 29.544(1)	729.41 Monoclinic <i>C2/c</i> 8.623(3) 25.164(9)	797.62 Triclinic <i>P</i> 1 9.1320(15) 12.801(2)
M _r Crystal system Space group a/Å b/Å c/Å	1683.62 Monoclinic $P2_1/c$ 14.7918(9)	1278.42 Monoclinic $P2_1/n$ 12.618(4)	4418.16 Triclinic PĪ 14.361(5) 17.001(6) 20.092(7)	1339.74 Orthorhombic <i>Pccn</i> 20.973(1)	729.41 Monoclinic <i>C</i> 2/ <i>c</i> 8.623(3)	797.62 Triclinic <i>P</i> 1 9.1320(15) 12.801(2) 15.264(3)
M _r Crystal system Space group //Å //Å c/Å a/° &/°	1683.62 Monoclinic P21/c 14.7918(9) 14.7643(9) 29.0604(17)	1278.42 Monoclinic P21/n 12.618(4) 12.798(4) 17.110(6)	4418.16 Triclinic <i>P</i> Ī 14.361(5) 17.001(6) 20.092(7) 69.969(4)	1339.74 Orthorhombic <i>Pccn</i> 20.973(1) 29.544(1)	729.41 Monoclinic <i>C2/c</i> 8.623(3) 25.164(9) 14.262(5)	797.62 Triclinic <i>P</i> 1 9.1320(15) 12.801(2) 15.264(3) 81.910(3)
M _r Crystal system Space group //Å //Å //Å // ⁰ 8/°	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9)	1278.42 Monoclinic <i>P</i> 2 ₁ / <i>n</i> 12.618(4) 12.798(4)	4418.16 Triclinic <i>P</i> I 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4)	1339.74 Orthorhombic <i>Pccn</i> 20.973(1) 29.544(1)	729.41 Monoclinic <i>C2/c</i> 8.623(3) 25.164(9)	797.62 Triclinic <i>P</i> I 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.998(3)
Mr Crystal system Space group ArÅ b/Å c/Å ArÅ 3/° s/°	1683.62 Monoclinic <i>P</i> 2 ₁ / <i>c</i> 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1)	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4)	4418.16 Triclinic <i>P</i> Ī 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5)	1339.74 Orthorhombic <i>Pccn</i> 20.973(1) 29.544(1) 17.798(1)	729.41 Monoclinic <i>C2/c</i> 8.623(3) 25.164(9) 14.262(5) 94.626(4)	797.62 Triclinic <i>P</i> 1 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.998(3) 71.440(3)
Mr Crystal system Space group 1/Å ://Å ://Å ://Å 3/° ./° V/Å ³	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7)	1278.42 Monoclinic $P_{2_1/n}$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15)	$\begin{array}{c} 4418.16 \\ \text{Triclinic} \\ P\overline{1} \\ 14.361(5) \\ 17.001(6) \\ 20.092(7) \\ 69.969(4) \\ 73.690(4) \\ 86.817(5) \\ 4419(2) \end{array}$	1339.74 Orthorhombic <i>Pccn</i> 20.973(1) 29.544(1) 17.798(1)	729.41 Monoclinic <i>C</i> 2/ <i>c</i> 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18)	797.62 Triclinic <i>P</i> 1 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.998(3) 71.440(3) 1666.2(5)
M_r Crystal system Space group u/Å v/Å v/Å v/Å u° y° $v/(Å)^{\circ}$ $v/(Å)^{\circ}$ $D_c/g \text{ cm}^{-3}$	1683.62 Monoclinic P21/c 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768	1278.42 Monoclinic P21/n 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602	$\begin{array}{c} 4418.16\\ Triclinic\\ P\overline{1}\\ 14.361(5)\\ 17.001(6)\\ 20.092(7)\\ 69.969(4)\\ 73.690(4)\\ 86.817(5)\\ 4419(2)\\ 1.660\end{array}$	1339.74 Orthorhombic <i>Pccn</i> 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614	729.41 Monoclinic <i>C2/c</i> 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\end{array}$
M _r Crystal system Space group $\pi/Å$ J/Å J/Å Λ'' $J/^{0}$ $V/Å^{3}$ $D_{0}/g cm^{-3}$ Z	1683.62 Monoclinic P21/c 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4	1278.42 Monoclinic P21/n 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2	$\begin{array}{c} 4418.16 \\ \text{Triclinic} \\ p_{\overline{1}} \\ 14.361(5) \\ 17.001(6) \\ 20.092(7) \\ 69.969(4) \\ 73.690(4) \\ 86.817(5) \\ 4419(2) \\ 1.660 \\ 1 \end{array}$	1339.74 Orthorhombic <i>Pccn</i> 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8	729.41 Monoclinic <i>C2/c</i> 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4	797.62 Triclinic <i>P</i> 1 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.998(3) 71.440(3) 1666.2(5) 1.590 2
Mr Crystal system Space group //Å //Å //Å //° //° V/Å ³ 0/g cm ⁻³ Z Crystal size/mm	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20	$\begin{array}{l} 4418.16\\ \text{Triclinic}\\ P\overline{1}\\ 14.361(5)\\ 17.001(6)\\ 20.092(7)\\ 69.969(4)\\ 73.690(4)\\ 86.817(5)\\ 4419(2)\\ 1.660\\ 1\\ 0.46\times 0.44\times 0.08 \end{array}$	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times 0.123\times 0.09\end{array}$
Mr Crystal system Space group //Å //Å //Å //° //Å ³ D _c /g cm ⁻³ Crystal size/mm Crystal colour	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown	1278.42 Monoclinic $P_{2_1/n}$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless	$\begin{array}{l} 4418.16 \\ \text{Triclinic} \\ P\overline{1} \\ 14.361(5) \\ 17.001(6) \\ 20.092(7) \\ 69.969(4) \\ 73.690(4) \\ 86.817(5) \\ 4419(2) \\ 1.660 \\ 1 \\ 0.46 \times 0.44 \times 0.08 \\ \text{Colourless} \end{array}$	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless	797.62 Triclinic $P\overline{1}$ 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.998(3) 71.440(3) 1666.2(5) 1.590 2 0.138 \times 0.123 \times 0.09 Yellow
Mr Crystal system pace group /Å /Å /Å /Å /° //Å Do/o g cm ⁻³ Z Crystal size/mm Crystal size/mm Crystal size/mm Crystal size/mm	1683.62 Monoclinic $P_{2_1/c}$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block	1278.42 Monoclinic $P_{2_1/n}$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block	$\begin{array}{c} 4418.16 \\ \text{Triclinic} \\ P\overline{1} \\ 14.361(5) \\ 17.001(6) \\ 20.092(7) \\ 69.969(4) \\ 73.690(4) \\ 86.817(5) \\ 4419(2) \\ 1.660 \\ 1 \\ 0.46 \times 0.44 \times 0.08 \\ \text{Colourless} \\ \text{Plate} \end{array}$	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless Rod	797.62 Triclinic $P\overline{1}$ 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.998(3) 71.440(3) 1666.2(5) 1.590 2 0.138 \times 0.123 \times 0.09 Yellow Block
Mr Crystal system Space group //Å //Å //Å //Å //° //° //° //°	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2)	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2)	4418.16 Triclinic $P\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2)	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2)	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 $0.70 \times 0.29 \times 0.28$ Colourless Rod 168(2)	797.62 Triclinic $P\overline{1}$ 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.910(3) 81.998(3) 71.440(3) 1666.2(5) 1.590 2 0.138 × 0.123 × 0.09 Yellow Block 150(2)
Mr Crystal system Space group //Å //Å //Å //° //° //° //° //°	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073	4418.16 Triclinic $P\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless Rod 168(2) 0.71073	797.62 Triclinic $P\overline{1}$ 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.998(3) 71.440(3) 1666.2(5) 1.590 2 0.138 × 0.123 × 0.09 Yellow Block 150(2) 0.71073
Mr Crystal system Space group //Å //Å //Å //° //Å ³ 2c/g cm ⁻³ 2c Crystal size/mm Crystal colour Crystal habit //K ((Mo-Ka)/mm ⁻¹	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819	$\begin{array}{c} 4418.16\\ \text{Triclinic}\\ P\overline{1}\\ 14.361(5)\\ 17.001(6)\\ 20.092(7)\\ 69.969(4)\\ 73.690(4)\\ 86.817(5)\\ 4419(2)\\ 1.660\\ 1\\ 0.46\times0.44\times0.08\\ \text{Colourless}\\ \text{Plate}\\ 168(2)\\ 0.71073\\ 0.870\\ \end{array}$	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless Rod 168(2) 0.71073 0.775	797.62 Triclinic $P\overline{1}$ 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.998(3) 71.440(3) 1666.2(5) 1.590 2 0.138 \times 0.123 \times 0.09 Yellow Block 150(2) 0.71073 0.663
M_r Trystal system Space group 1/Å 1/Å 1/Å 1/Å 1/Å 1/Å' 1/° 1	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000	4418.16 Triclinic $p\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073 0.870 0.7133, 1.0000	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times0.123\times0.09\\ \text{Yellow}\\ \text{Block}\\ 150(2)\\ 0.71073\\ 0.663\\ 0.745, 0.938\\ \end{array}$
M_r Crystal system Space group $\lambda'\hat{A}$ $b'\hat{A}$ $\lambda'\hat{A}$ λ'° β'° γ'° $V'\hat{A}^3$ $D_c/g cm^{-3}$ Z Crystal size/mm Crystal colour Crystal	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70	4418.16 Triclinic $P\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073 0.870 0.7133, 1.0000 50.00	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574 50.80	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 $0.70 \times 0.29 \times 0.28$ Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times 0.123\times 0.094\\ Yellow\\ Block\\ 150(2)\\ 0.71073\\ 0.663\\ 0.745, 0.938\\ 56.80\\ \end{array}$
M_r Trystal system space group /Å /Å /Å /Å $/^{o}$ $/^{o$	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78 -12 to 18, -18 to 17,	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70 -15 to 14, -15 to	$\begin{array}{l} 4418.16\\ \text{Triclinic}\\ P\overline{1}\\ 14.361(5)\\ 17.001(6)\\ 20.092(7)\\ 69.969(4)\\ 73.690(4)\\ 86.817(5)\\ 4419(2)\\ 1.660\\ 1\\ 0.46\times0.44\times0.08\\ \text{Colourless}\\ \text{Plate}\\ 168(2)\\ 0.71073\\ 0.870\\ 0.7133, 1.0000\\ 50.00\\ -12\text{ to } 17, -18\text{ to } 20, -23\text{ to } \end{array}$	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574 50.80 -23 to 25, -35 to 35,	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76 -10 to 10, -30 to	$\begin{array}{c} 797.62 \\ \hline Triclinic \\ P\overline{1} \\ 9.1320(15) \\ 12.801(2) \\ 15.264(3) \\ 81.910(3) \\ 81.998(3) \\ 71.440(3) \\ 1666.2(5) \\ 1.590 \\ 2 \\ 0.138 \times 0.123 \times 0.09 \\ \mbox{Yellow} \\ \mbox{Block} \\ 150(2) \\ 0.71073 \\ 0.663 \\ 0.745, 0.938 \\ 56.80 \\ -12 \ to \ 12, -16 \ to \ 17 \end{array}$
Mr Crystal system Space group (/Å //Å //Å //° //° //Å 2 Crystal size/mm Crystal colour Crystal size/mm Crystal colour Crystal babit //K ((Mo-Ka)/mm ⁻¹ 7(Empirical) _{min,max} $2\theta_{max}/°$ bit Range	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78 -12 to 18, -18 to 17, -27 to 36	1278.42 Monoclinic $P_{2_1/n}$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70 -15 to 14, -15 to 15, -21 to 21	4418.16 Triclinic $P\overline{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073 0.870 0.7133, 1.0000 50.00 -12 to 17, -18 to 20, -23 to 22	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574 50.80 -23 to 25, -35 to 35, -16 to 21	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 $0.70 \times 0.29 \times 0.28$ Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76 -10 to 10, -30 to 31, -10 to 17	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times0.123\times0.09\\ Yellow\\ Block\\ 150(2)\\ 0.71073\\ 0.663\\ 0.745, 0.938\\ 56.80\\ -12\ to\ 12,\ -16\ to\ 17\\ -20\ to\ 20\\ \end{array}$
M_r Crystal system Space group $\lambda' \hat{A}$ $b' \hat{A}$ $b' \hat{A}$ $\lambda' \hat{A}$ λ'' $\beta'' \hat{A}$ $\lambda'' \hat{A}$ $\lambda'' \hat{A}$ $\beta'' \hat{A}$ $\beta'' \hat{A}$ $\beta'' \hat{A}$ $\beta'' \hat{A}$ $\beta'' \hat{A}$ $\beta'' \hat{A}$ $\beta'' \hat{A}$ $\beta'' \hat{A}$ $\beta'' \hat{A}$ $\lambda'' A$	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78 -12 to 18, -18 to 17, -27 to 36 47897	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70 -15 to 14, -15 to 15, -21 to 21 32363	4418.16 Triclinic $P\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1. 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073 0.870 0.7133, 1.0000 50.00 -12 to 17, -18 to 20, -23 to 22 51734	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574 50.80 -23 to 25, -35 to 35, -16 to 21 44563	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 $0.70 \times 0.29 \times 0.28$ Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76 -10 to 10, -30 to 31, -10 to 17 17476	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times0.123\times0.09\\ \mbox{Yellow}\\ Block\\ 150(2)\\ 0.71073\\ 0.663\\ 0.745, 0.938\\ 56.80\\ -12\ to\ 12,\ -16\ to\ 17\\ -20\ to\ 20\\ 16508\\ \end{array}$
M_r Trystal system $Space group 1/\hat{A}1/\hat{A}1/\hat{A}1/\hat{A}1/\hat{A}1/\hat{P}1/P$	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78 -12 to 18, -18 to 17, -27 to 36 47897 12819 (0.0328)	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70 -15 to 14, -15 to 15, -21 to 21 32363 5348 (0.0374)	4418.16 Triclinic $P\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073 0.870 0.7133, 1.0000 50.00 -12 to 17, -18 to 20, -23 to 22 51734 15404 (0.0952)	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 $0.30 \times 0.20 \times 0.05$ Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574 50.80 -23 to 25, -35 to 35, -16 to 21 44563 9832 (0.0380)	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76 -10 to 10, -30 to 31, -10 to 17 17476 3121 (0.0289)	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times0.123\times0.09\\ Yellow\\ Block\\ 150(2)\\ 0.71073\\ 0.663\\ 0.745, 0.938\\ 56.80\\ -12\ to\ 12,\ -16\ to\ 17\\ -20\ to\ 20\\ 16508\\ 7771\ (0.0352) \end{array}$
M_r Crystal system Space group $\lambda'\hat{A}$ $b'\hat{A}$ $z'\hat{A}$ $b'\hat{A}$ z'/\hat{A} $b'\hat{A}$ z'/\hat{A} $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ $b'\hat{A}$ crystal colour Crystal size/mm Crystal colour Crystal colou	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78 -12 to 18, -18 to 17, -27 to 36 47897 12819 (0.0328) 9727	1278.42 Monoclinic P_{21}/n 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70 -15 to 14, -15 to 15, -21 to 21 32363 5348 (0.0374) 4246	$\begin{array}{c} 4418.16\\ \text{Triclinic}\\ P\overline{1}\\ 14.361(5)\\ 17.001(6)\\ 20.092(7)\\ 69.969(4)\\ 73.690(4)\\ 86.817(5)\\ 4419(2)\\ 1.660\\ 1\\ 1\\ 0.46\times0.44\times0.08\\ \text{Colourless}\\ \text{Plate}\\ 168(2)\\ 0.71073\\ 0.870\\ 0.71073\\ 0.870\\ 0.7133, 1.0000\\ 50.00\\ -12 \text{ to } 17, -18 \text{ to } 20, -23 \text{ to } 22\\ 51734\\ 15404 (0.0952)\\ 9767\end{array}$	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574 50.80 -23 to 25, -35 to 35, -16 to 21 44563 9832 (0.0380) 6090	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76 -10 to 10, -30 to 31, -10 to 17 17476 3121 (0.0289) 2833	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times0.123\times0.09\\ Yellow\\ Block\\ 150(2)\\ 0.71073\\ 0.663\\ 0.745, 0.938\\ 56.80\\ -12\ to\ 12,\ -16\ to\ 17\\ -20\ to\ 20\\ 16508\\ 7771\ (0.0352)\\ 5892 \end{array}$
M_r Crystal system Space group $i/Åb/Åi/Åi/Åi/Åi/Oj/Oi/Oj/Oi/O$	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78 -12 to 18, -18 to 17, -27 to 36 47897 12819 (0.0328) 9727 0.0488,	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70 -15 to 14, -15 to 15, -21 to 21 32363 5348 (0.0374) 4246 0.0278,	4418.16 Triclinic $p\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073 0.870 0.7133, 1.0000 50.00 -12 to 17, -18 to 20, -23 to 22 51734 15404 (0.0952) 9767 0.0496,	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574 50.80 -23 to 25, -35 to 35, -16 to 21 44563 9832 (0.0380) 6090 0.0628,	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 $0.70 \times 0.29 \times 0.28$ Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76 -10 to 10, -30 to 31, -10 to 17 17476 3121 (0.0289) 2833 0.0572,	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times0.123\times0.09\\ Yellow\\ Block\\ 150(2)\\ 0.71073\\ 0.663\\ 0.745, 0.938\\ 56.80\\ -12\ to\ 12,\ -16\ to\ 17\\ -20\ to\ 20\\ 16508\\ 7771\ (0.0352)\\ 5892\\ 0.0424, \end{array}$
M_r Trystal system J/Å J/Å J/Å J/Å J/Å J/Å J/O	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78 -12 to 18, -18 to 17, -27 to 36 47897 12819 (0.0328) 9727 0.0488, 0.1418	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70 -15 to 14, -15 to 15, -21 to 21 32363 5348 (0.0374) 4246 0.0278, 0.0663	4418.16 Triclinic $P\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073 0.870 0.71073 0.870 0.7133, 1.0000 50.00 -12 to 17, -18 to 20, -23 to 22 51734 15404 (0.0952) 9767 0.0496, 0.1377	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574 50.80 -23 to 25, -35 to 35, -16 to 21 44563 9832 (0.0380) 6090 0.0628, 0.1747	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76 -10 to 10, -30 to 31, -10 to 17 17476 3121 (0.0289) 2833 0.0572, 0.1457	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times0.123\times0.09\\ Yellow\\ Block\\ 150(2)\\ 0.71073\\ 0.663\\ 0.745, 0.938\\ 56.80\\ -12\ to\ 12,\ -16\ to\ 17\\ -20\ to\ 20\\ 16508\\ 7771\ (0.0352)\\ 5892\\ 0.0424,\\ 0.0921\\ \end{array}$
$M_{\rm r}$ Crystal system Space group i/\hat{A} D/\hat{A} i/\hat{A} D/\hat{A}	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78 -12 to 18, -18 to 17, -27 to 36 47897 12819 (0.0328) 9727 0.0488, 0.1418 0.0702,19.7685	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70 -15 to 14, -15 to 15, -21 to 21 32363 5348 (0.0374) 4246 0.0278, 0.0663 0.0332, 1.5060	4418.16 Triclinic $P\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073 0.870 0.7133, 1.0000 50.00 -12 to 17, -18 to 20, -23 to 22 51734 15404 (0.0952) 9767 0.0496, 0.1377 0.3640, 0.0000	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 $0.30 \times 0.20 \times 0.05$ Colourless Plate 198(2) 0.71073 0.879 0.7785, $0.957450.80-23$ to 25, -35 to 35, -16 to 21 44563 9832 (0.0380) 6090 0.0628, 0.1747 0.0597, 87.2719	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 $0.70 \times 0.29 \times 0.28$ Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76 -10 to 10, -30 to 31.21 (0.0289) 2833 0.0572, 0.1457 0.0449, 17.7216	$\begin{array}{c} 797.62\\ Triclinic\\ P\overline{1}\\ 9.1320(15)\\ 12.801(2)\\ 15.264(3)\\ 81.910(3)\\ 81.998(3)\\ 71.440(3)\\ 1666.2(5)\\ 1.590\\ 2\\ 0.138\times0.123\times0.09\\ Yellow\\ Block\\ 150(2)\\ 0.71073\\ 0.663\\ 0.745, 0.938\\ 56.80\\ -12\ to\ 12,\ -16\ to\ 17\\ -20\ to\ 20\\ 16508\\ 7771\ (0.0352)\\ 5892\\ 0.0424,\\ 0.0921\\ 0.0433,\ 0.0000 \end{array}$
M_r Crystal system Space group $\lambda'\hat{A}$ $b'\hat{A}$ $z'\hat{A}$ λ'^{o} β'^{o} $V'\hat{A}^{3}$ $D_o/g \ cm^{-3}$ Z Crystal size/mm Crystal colour Crystal colour	1683.62 Monoclinic $P2_1/c$ 14.7918(9) 14.7643(9) 29.0604(17) 94.881(1) 6323.5(7) 1.768 4 0.45 × 0.45 × 0.30 Brown Block 168(2) 0.71073 1.102 0.7908, 1.0000 52.78 -12 to 18, -18 to 17, -27 to 36 47897 12819 (0.0328) 9727 0.0488, 0.1418	1278.42 Monoclinic $P2_1/n$ 12.618(4) 12.798(4) 17.110(6) 106.394(4) 2650.8(15) 1.602 2 0.45 × 0.36 × 0.20 Colourless Block 168(2) 0.71073 0.819 0.7998, 1.0000 52.70 -15 to 14, -15 to 15, -21 to 21 32363 5348 (0.0374) 4246 0.0278, 0.0663	4418.16 Triclinic $P\bar{1}$ 14.361(5) 17.001(6) 20.092(7) 69.969(4) 73.690(4) 86.817(5) 4419(2) 1.660 1 0.46 × 0.44 × 0.08 Colourless Plate 168(2) 0.71073 0.870 0.71073 0.870 0.7133, 1.0000 50.00 -12 to 17, -18 to 20, -23 to 22 51734 15404 (0.0952) 9767 0.0496, 0.1377	1339.74 Orthorhombic Pccn 20.973(1) 29.544(1) 17.798(1) 11028.1(9) 1.614 8 0.30 × 0.20 × 0.05 Colourless Plate 198(2) 0.71073 0.879 0.7785, 0.9574 50.80 -23 to 25, -35 to 35, -16 to 21 44563 9832 (0.0380) 6090 0.0628, 0.1747	729.41 Monoclinic C2/c 8.623(3) 25.164(9) 14.262(5) 94.626(4) 3084.7(18) 1.571 4 0.70 × 0.29 × 0.28 Colourless Rod 168(2) 0.71073 0.775 0.8307, 1.0000 52.76 -10 to 10, -30 to 31, -10 to 17 17476 3121 (0.0289) 2833 0.0572, 0.1457	797.62 Triclinic $P\overline{1}$ 9.1320(15) 12.801(2) 15.264(3) 81.910(3) 81.910(3) 81.998(3) 71.440(3) 1666.2(5) 1.590 2 0.138 × 0.123 × 0.094 Yellow Block 150(2) 0.71073 0.663 0.745, 0.938 56.80 -12 to 12, -16 to 17, -20 to 20 16508 7771 (0.0352) 5892 0.0424, 0.0921

 ${}^{a}R1 = \sum ||F_{\circ}| - |F_{c}|| / \sum |F_{\circ}| \text{ for } F_{\circ} > 2\sigma(F_{\circ}) \text{ and } wR2 = \{\sum [w(F_{\circ}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{c}^{2})^{2}] \}^{1/2} \text{ where } w = 1 / [\sigma^{2}(F_{\circ}^{2}) + (AP)^{2} + BP], P = (F_{\circ}^{2} + 2F_{c}^{2}) / 3 \text{ and } A \text{ and } B \text{ are listed in the crystal data information supplied.}$

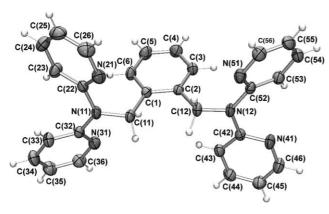
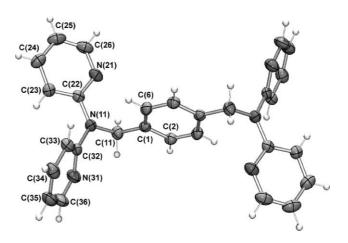



Fig. 1 ORTEP plot of 2 shown with 50% probability ellipsoids.

Results and discussion

The 2,2'-dipyridylamine ligands 1-3 and 5-6 were prepared by the reaction of 2,2'-dipyridylamine with the appropriate alkyl halide derivative in the presence of base; while the synthesis of 4 has been reported elsewhere by our group.¹⁸ In order to investigate the silver ion chemistry of 1-6 and make structural comparisons between these derivatives and their resulting silver complexes, an attempt was made to obtain crystalline products suitable for X-ray diffraction of both the ligands and their corresponding complexes. Solid complexes of type [Ag(1)(NO₃)]·CH₃CN, $[Ag_{2}(2)_{2}(NO_{3})_{2}] \cdot 2H_{2}O, [Ag_{2}(2)_{2}(ClO_{4})_{2}] \cdot CH_{3}CN, [Ag_{2}(2)_{2}](BF_{4})_{2},$ $[Ag_2(2)_2](PF_6)_2 \cdot CH_2Cl_2, [Ag(3)(NO_3)], {[Ag(3)(CH_3CN)]ClO_4)_n,$ ${[Ag(3)(CH_{3}OH)]PF_{6} \cdot H_{2}O}_{n}, [Ag(5)NO_{3}], [Ag_{3}(5)_{2}(H_{2}O)_{0.5}](PF_{6})_{3} \cdot$ $1.5H_2O_1[Ag_2(5)](BF_4)_2, [Ag(5)]PF_6 \cdot CH_3OH and [Ag(6)NO_3] were$ isolated following the reaction of the appropriate silver salt in methanol or acetonitrile with the required ligand in dichloromethane and/or methanol. We have also recently reported the synthesis of the related complex, [Ag₂(4)CH₃CN]₂[Ag₂(NO₃)₆]· $0.75CH_3CN \cdot 0.25CH_2Cl_2$.¹⁸

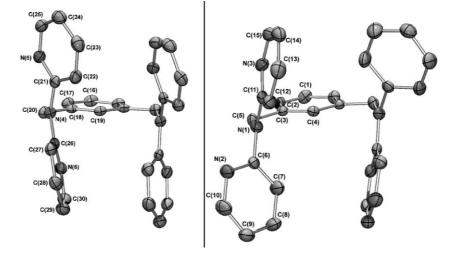


Fig. 3 ORTEP plot of **5** shown with 50% probability ellipsoids. Symmetry operator used to generate equivalent atoms: -x + 1, -y, -z + 1.

X-Ray structures of ligands 2, 3 and 5

Suitable crystals for X-ray structure analysis of the isomeric bis(di-2-pyridylaminomethyl)benzenes 2, 3 and 5 were obtained. The structure of 2 is presented in Fig. 1. The aliphatic nitrogen atoms associated with each of the dpa moieties in this structure are considerably distorted from the usually observed trigonal pyramidal arrangement for simple tertiary amines towards a more trigonal planar geometry, undoubtedly reflecting electron-pair delocalisation that also involves the attached aromatic rings, resulting in the nitrogens showing some sp² character. Thus, the angles between the bonds to the pyridyl rings from the aliphatic nitrogen atoms (N(11) and N(12)), are 124 and 122°, respectively.

The two pyridyl rings of each dpa moiety are not co-planar. In the N(11)-containing dpa moiety the two pyridyl rings are 'reversed' (that is approaching a '*trans*' orientation) with respect to each other so that the ring nitrogens are not adjacent, while in the N(12)-containing fragment the two rings are oriented so that the nitrogen atoms are somewhat closer. Adjacent molecules pack

Fig. 2 ORTEP plots of **3** shown with 50% probability ellipsoids. The asymmetric unit contains two crystallographically independent but chemically identical molecules, each with crystallographic C_2 symmetry. Symmetry operators used for generating equivalent atoms: left: -x + 1, y, -z + 1; right: -x + 1, y, -z.

View Article Online

in two-dimensional sheets which propagate *via* a combination of phenylene to pyridyl nitrogen interactions and edge to face π - π interactions (Fig. S1, ESI[‡]).

The structure of 3 is shown in Fig. 2. Again the tertiary amines are considerably closer to a trigonal planar than a tetrahedral geometry with, for example, the angle between the bonds from N(1) to the N(2)- and N(3)-containing rings in one dpa moiety being 121° while in the other (the N(4)-containing dpa fragment) the corresponding angle is 123° . Like the structure of 2 there are two arrangements of the dpa pyridyl rings present in this structure. The N(1)-containing moiety is arranged in a generally similar manner to that in the N(11)-containing moiety in the structure of 2. The conformation of the N(4)-containing moiety is similar to the N(12)-containing fragment in the above structure, once again stabilised by the presence of weak nitrogen to hydrogen interactions in the structure. However, in contrast to 2 there is also evidence for π - π stacking in this structure. An intermolecular edge-to-face π -interaction occurs between the N(3)- and N(5)containing rings, reflected by a H(25) to C(15) distance of 2.7 Å; a similar interaction, given by a H(28) to C(24) distance of 2.8 Å, also indicates the presence of an edge-to-face interaction between the N(5)- and N(6)-containing rings.

As shown in Fig. 3, the structure of **5** also contains tertiary amines that are almost planar, with the pyridyl moieties again oriented in a similar manner to those in the structures of **2** and **3**. Some edge-to-face π - π stacking is present between the N(21)- and N(31)-containing rings as well as between the N(21)containing ring and the central arene ring. These are reflected by distances of 2.7 Å (H(36A)–C(26)) and 2.9 Å (H(26A)–C(6)), respectively. Again there are weak nitrogen–hydrogen interactions present which presumably aid in reducing the flexibility of the structure (see below).

A common feature of each of the above ligand structures is that the tertiary nitrogens almost lie in the plane of the central substituted phenyl ring. This leads to close contacts between the aliphatic nitrogen atoms and adjacent aryl hydrogen atoms present on the phenylene cores. Namely, in 2 inter-atomic distances of 2.5 Å (H(6)–N(11)) and 2.5 Å (H(3)–N(12)) occur, in 3 distances of 2.5 Å (H(4)–N(1)) and 2.5 Å (H(19)–N(4)) are present while in 5 a distance of 2.6 Å (H(6A)–N(11)) occurs. Such distances are typical of interactions between phenyl hydrogens and amine nitrogens. Interactions of this type are well documented to play a role in structure stabilisation in other systems^{31,32} and this also appears to be the case in the present solid state arrangements of 2, 3 and 5. Taken together with the tendency towards sp^2 hybridisation of the aliphatic nitrogens, such interactions will act to restrict the flexibility in these ligand systems. Any such decreased flexibility serves to add a degree of preorganisation to the respective structures which is also evident in the structures of the corresponding Ag(I) complexes in particular instances (see below).

X-Ray crystal structures of Ag(I) complexes

Each Ag(1) ion in $[Ag_2(2)_2(NO_3)_2]$ (Fig. 4), has a four-coordinate, pseudo-tetrahedral geometry with a coordination sphere consisting of two pyridine N-donors from different ligands and a chelating nitrate anion. Thus only one of the pyridyl groups from each dpa unit is bound to a Ag(1) ion, while the second remains

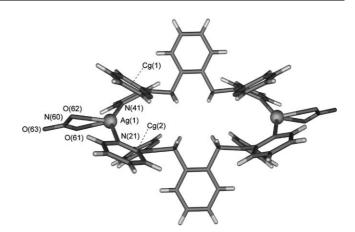


Fig. 4 A schematic representation of the X-ray crystal structure of $[Ag_2(2)_2(NO_3)_2]$. Ag(1) ions are shown as spheres; Ag(1)–Cg(1) 3.1 Å and Ag(1)–Cg(2) 3.3 Å (Cg = ring centroid).

uncoordinated. This results in the formation of a discrete [2 + 2] metallacyclic structure. Other examples of dpa moieties failing to chelate to Ag(I) have also been documented.^{4,5,33} Two weak silver– arene π -interactions involving the non-coordinated pyridine rings are present in the structure, these presumably aid stabilisation of the complex and contribute to the overall rigidity of the system.

As observed for free 2, the tertiary nitrogen groups of each dpa moiety are again distorted from ideal tetrahedral geometry towards trigonal planar and are similar to those observed in the crystal structure of free ligand 2. There are also short contacts between phenylene hydrogen atoms and both tertiary amines, again stiffening the structure.

An investigation of the effect of variation of the anion on the resulting structure adopted in the solid state was carried out. Thus an analogous synthesis to that used to obtain $[Ag_2(2)_2(NO_3)_2]$ was repeated in which silver perchlorate was substituted for the nitrate salt. Reaction of two equivalents of $AgClO_4$ with 2 again resulted in a discrete [2 + 2] macrocyclic product of stoichiometry $[Ag_2(2)_2(ClO_4)_2] \cdot 2H_2O$ (Fig. 5). Despite the addition of Ag(1) to 2 in a 2 : 1 ratio, only the above 2 : 2 complex was isolated. The X-ray structure of this product shows that each silver is bound to two pyridine N donors from different ligands and to one oxygen atom of the perchlorate in a trigonal planar geometry. The latter

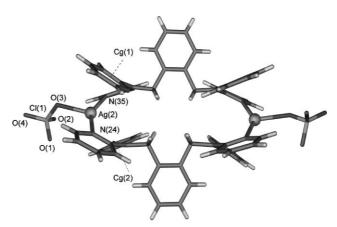


Fig. 5 A schematic representation of the X-ray crystal structure of $[Ag_2(2)_2(ClO_4)_2]$ -2H₂O. Ag(1) ions are shown as spheres. Water molecules are not shown; Ag(1)–Cg(1) 3.2 Å, Ag(1)–Cg(2) 3.2 Å (Cg = ring centroid).

contrasts with the distorted tetrahedral geometry obtained with the nitrate anion. Nevertheless, the structure shows remarkable similarity to that of $[Ag_2(2)_2(NO_3)_2]$.

In the presence of the non-coordinating anions, tetrafluoroborate or hexafluorophosphate, the complexes $[Ag_2(2)_2](BF_4)_2$ and $[Ag_2(2)_2]_3(PF_6)_6\cdot 2CH_2Cl_2\cdot 2CH_3OH$ were obtained. These were synthesised directly by the reaction of two equivalents of $AgBF_4$ or $AgPF_6$ with 2 and, as was observed for the nitrate and perchlorate salts, gave 2:2 complexes. As expected, the X-ray analysis of each species revealed that neither anion coordinates to a Ag(1) centre (Figs. 6 and 7). In each case the silver ions are each formally

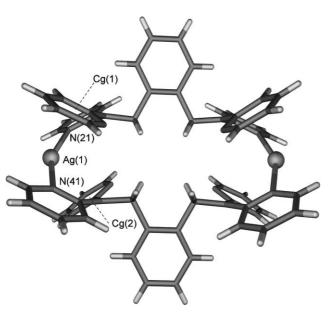


Fig. 6 A schematic representation of the X-ray crystal structure of $[Ag_2(2)_2](BF_4)_2$. Ag(1) ions are shown as spheres. Tetrafluoroborate anions are not shown; Ag(1)–Cg(1) 3.1 Å, Ag(1)–Cg(2) 3.2 Å (Cg = ring centroid).

two-coordinate, again forming a [2 + 2] metallacycle with each silver bound to a pyridine donor from a different ligand. In the tetrafluoroborate case, the coordination to each silver involves a 'bent' two-coordinate geometry with, for example, the N(21A)–Ag(1)–N(41) bond angle being 152.84(7)°. Interestingly, there are some short-range interactions present between both Ag(I) ions and a disordered tetrafluoroborate anion, with the presence of silver–fluorine distances of 2.681(2) and 2.686(2) Å.

Unlike the above structure, there are no silver–anion interactions present in $[Ag_2(2)_2]_3(PF_6)_6\cdot 2CH_2Cl_2\cdot 2CH_3OH$. However, pyridine coordination of the silver atom (and hence the stability of the system) is complemented by intermolecular silver– π interactions between each silver and the uncoordinated pyridine rings of adjacent [2 + 2] metallacycles. These Ag– π interactions appear significant^{11,34} and have Ag–ring centroid distances of 3.3 Å. Their presence results in the formation of an infinite sheet-like twodimensional network (Fig. 7). Once again the arrangement of the ligands in this complex shows similarities to that adopted by the free ligand.

Overall, the X-ray investigations show that all four of the complexes of **2** form 2 : 2 metallacyclic structures in which each dpa moiety bridges two silver ions irrespective of the anion present. Minor differences in the ring structure arise due to the coordination of NO_3^- or ClO_4^- anions to the silver centres while in the case of the BF_4^- and PF_6^- derivatives, (as expected) these anions do not coordinate, while essentially the same metallacyclic structural motif is maintained.

The reaction of **3** with AgX salts ($X = NO_3^-$, ClO_4^- and PF_6^-) resulted in crystals suitable for X-ray analysis in each case. Variation of the reaction conditions (solvent type, anion present and/or ratio of metal ion to ligand employed) resulted in two very different structures forming; namely, a discrete [1 + 1] metallacycle and an infinite one-dimensional, polymeric chain species.

Discrete $[Ag(3)NO_3]$ was obtained from the reaction of $Ag(NO_3)$ with 3 in a 2 : 1 ratio in methanol-dichloromethane.

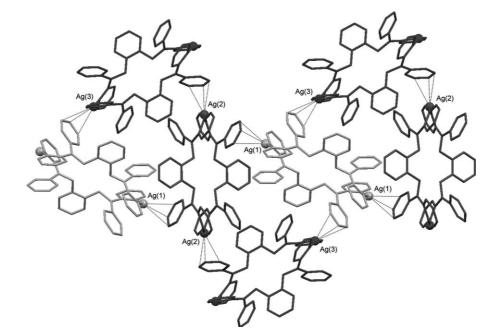


Fig. 7 A schematic representation of the Ag_{π} interactions in $[Ag_2(2)_2]_3(PF_6)_6$ -2CH₂Cl₂-2CH₃OH, giving rise to a two-dimensional network.

As shown in Fig. 8, the resulting 1 : 1 complex has the Ag(1) in a distorted tetrahedral coordination environment composed of two pyridine N atoms from different dpa units and a chelating NO₃⁻ ion. As occurs for the other silver complex structures discussed so far, one 2-pyridyl ring from each dpa moiety does not participate in coordination; however, weak silver– π interactions with the non-coordinated pyridine rings and a silver—arene C–H interaction of 2.7 Å (involving H(2) of the central benzene core) help to stabilise the structure. Once again, short central phenylene hydrogen to tertiary nitrogen distances are present in this structure.

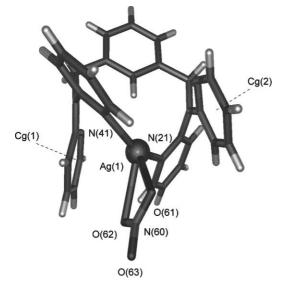
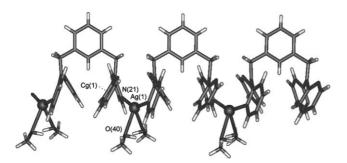



Fig. 8 A schematic representation of the X-ray crystal structure of $[Ag(3)(NO_3)]$. The silver ion is shown as a sphere; Ag(1)–Cg(1) 3.4 Å, Ag(1)–Cg(2) 3.4 Å (Cg = ring centroid).

The reaction of **3** with AgPF₆ and with AgClO₄ in a 1 : 2 ratio in methanol–dichloromethane and acetonitrile/ dichloromethane, respectively, resulted in the isolation of corresponding one-dimensional coordination polymers of stoichiometries {[Ag(**3**)(CH₃OH)](PF₆)}_n (Fig. 9) and {[Ag(**3**)(CH₃CN)]-(ClO₄)·CH₃CN}_n (Fig. 10). The Ag(1) in each case exhibits a distorted trigonal planar arrangement, with two sites coordinated to pyridyl moieties and the third to a methanol molecule (which is disordered over two sites) in the case of {[Ag(**3**)-(CH₃OH)](PF₆)}_n, or an acetonitrile molecule in the case of {[Ag(**3**)(CH₃CN)](ClO₄)·CH₃CN}_n. Again, in both products only one pyridyl group from each dpa unit coordinates to each silver

Fig. 9 The molecular structure of $\{[Ag(3)(CH_3OH)](PF_6)\}_n$. Hexafluorophosphate anions are not shown; Ag(1)–Cg(1) 3.3 Å (Cg = ring centroid).

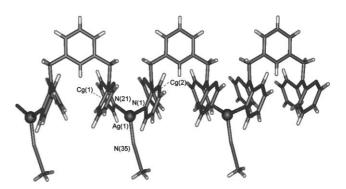


Fig. 10 The molecular structure of $\{[Ag(3)(CH_3CN)]ClO_4 \cdot CH_3CN\}_n$. The perchlorate anion and the non-coordinated acetonitrile are not shown; Ag(1)-Cg(1) 3.2 Å. Ag(1)-Cg(2) 3.4 Å (Cg = ring centroid).

ion and the structures are stabilised *via* weak offset face to face π - π and silver- π interactions.

The reaction of the 2,6-lutidinyl bridged, bis-dipyridylamine ligand **4** with silver nitrate in acetonitrile–dichloromethane results in polymeric species of type $\{[Ag_2(4)CH_3CN]_2(Ag_2(NO_3)_6) \cdot 0.75CH_3CN \cdot 0.25CH_2Cl_2\}_n$. The structure of this product incorporates a molecular ladder motif that consists of pairs of cationic $[Ag_2(4)CH_3CN]^{2+}$ units bridged by an unprecedented $[Ag_2(NO_3)_6]^{4-}$ anion.¹⁸ The silver ions in the cationic dinuclear silver species are not equivalent. Each is bound to an oxygen from a 'terminal' nitrate group in an $[Ag_2(NO_3)_6]^{4-}$ unit. The coordination sphere of Ag(1) is completed by two pyridyl nitrogens from **4** and the lutidinyl nitrogen donor in a distorted tetrahedral arrangement. Ag(2) also has a distorted tetrahedral geometry with the coordination sphere composed of the remaining (two) pyridyl nitrogens from **4** and an acetonitrile molecule.

The structure of $[Ag_3(5)_2(H_2O)_{0.5}]PF_6)_3 \cdot 1.5H_2O$, generated from the reaction of $AgPF_6$ with 5 in a 2 : 1 ratio, is shown in Fig. 11. An M_3L_2 complex is formed, where at one end of the complex the di-2-pyridylamine units coordinate in a monodentate

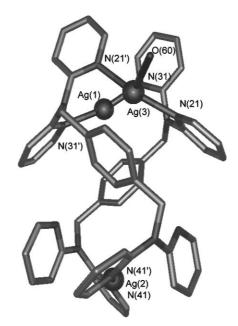


Fig. 11 The molecular structure of $[Ag_3(5)_2(H_2O)_{0.5}](PF_6)_3 \cdot 1.5H_2O$. Hexafluorophosphate anions and water molecules are not shown.

fashion towards one silver ion Ag(2), while at the opposite end, a twelve-membered dimetallacycle is formed involving two silver ions (Ag(1)/Ag(3). The ligand strands have a helical twist between the Ag(2) and the Ag(1)/Ag(3)) ends of the complex. The Ag(3) centre is also bound to a half-occupancy water molecule. The water molecule incorporating O(60) is hydrogen bonded to a nearby hexafluorophosphate anion and to a non-coordinated water molecule. Ag(3) is also involved in a silver– π interaction with an aryl ring of the ligand (Ag–C distances of 2.8 Å). Ag(1) and Ag(2) are only bound to pyridine nitrogens and show close to linear geometries; however, there are also weak contacts with the fluorine atoms of nearby hexafluorophosphate anions present. Silver-arene π -interactions involving Ag(1) and Ag(2) also occur.

The reaction of **6** with Ag(1) nitrate in a 1 : 3 ratio results in the formation of a 1 : 1 (metal : ligand) complex $[Ag(6)(NO_3)]$. Like the structures discussed above, only one pyridyl from each pair of pyridyl rings is coordinated to silver (Fig. 12). A bidentate nitrate anion is also bound such that the Ag(1) ion adopts a distorted tetrahedral geometry. No donors from the third dpa moiety are coordinated. As with the above structures, the central nitrogen of each dpa moiety exhibits a trigonal planar arrangement and lies close to the plane of the central aryl ring; the phenylene hydrogen to nitrogen interactions discussed previously are also present in this structure. The presence of the free dpa moiety suggests that this complex may be useful for the formation of extended heteronuclear structures on reaction with other metal ions.

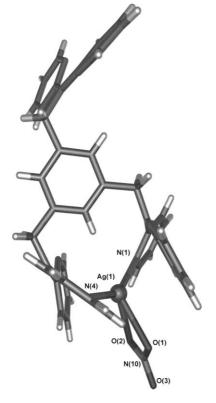
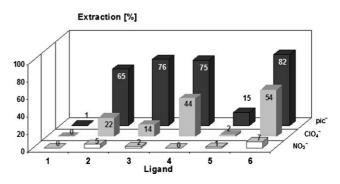



Fig. 12 The molecular structure of $[Ag(6)(NO_3)]$.

Liquid-liquid extraction studies

The extraction behaviour of the di-2-pyridylaminomethylbenzene derivatives 1-6 towards Ag(I) was studied using the radiotracer

technique.³⁵ A summary of the extraction results for each of 1-6 under comparable experimental conditions in the presence of different counterions in the aqueous phase is given in Fig. 13.

Fig. 13 Percentage Ag(1) extraction by **1–6** with nitrate, perchlorate and picrate as the anion. [AgNO₃] = 1×10^{-4} M, [NaNO₃] = 5×10^{-3} M; [AgClO₄] = 1×10^{-4} M, [NaClO₄] = 5×10^{-3} M; [AgNO₃] = 1×10^{-4} M, [Hpic] = 5×10^{-3} M; pH 6.2 (MES/NaOH buffer); [ligand] = 1×10^{-3} M in CHCl₃; shaking time 30 min; $T = 23 \pm 1$ °C.

As expected there are pronounced differences in the extraction properties between 1–6. We consider first the results obtained in the presence of perchlorate. In the case of the monosubstituted dpa derivative 1, no Ag(1) extraction was detected while the (*ortho-* and *meta-*linked) bis-dpa derivatives 2 and 3 gave extraction values of 22 and 14%, respectively and the corresponding 2,6-lutidinyl bridged, bis-dpa system 4 yielded a value of 44%. Increasing the number of dpa residues to three in 6 leads to a further enhancement of extraction efficiency, with the value now being 54%. Interestingly, the *para-*disubstituted isomer of 2 and 3, namely 5, shows only trace extraction of Ag(1) into the organic phase. Ligand 4, incorporating an additional pyridine donor function, extracted silver (44%) more efficiently when compared to its analogue ligand 3 (14%).

More lipophilic systems may aid the extraction process by inhibiting the bleeding of the amine ligand or its metal complex from the organic to the aqueous phase as well as enhancing extraction through favorable solvation effects. As is clearly evident from Fig. 13, the use of picrate improves the extraction efficiency over perchlorate which in turn yields significantly better extraction than nitrate. This is undoubtedly a reflection of the different lipophilicities of these anions and thus follows the expected anion influence on metal extraction predicted by the well-known Hofmeister series.³⁶

In order to investigate the stoichiometries of the extracted species, extraction experiments were performed in which the concentration of the ligand was varied while the metal ion concentration was maintained at 1×10^{-4} M and the anion concentration was effectively constant. The log $D_{\rm M} = [{\rm M}^{n+}]_{\rm (org)}/[{\rm M}^{n+}]_{\rm (aq)}$ was then plotted against the log of the ligand concentration. Provided a 'simple' equilibrium is involved, the slope of this plot gives the stoichiometry of the extracted species directly.³⁷

The results show linear relationships between the logarithms of the distribution ratio (D_{Ag}) and the ligand concentration (pH 6.2, ligand excess) (Fig. 14). Slopes of *ca.* 1.2 were obtained for **2**, **3**, and **4** and hence indicate approximate 1 : 1 Ag(I) : L stoichiometries in each of these cases. This stoichiometry corresponds with that observed in the X-ray crystal structures of the Ag(I)

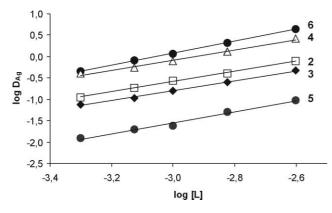


Fig. 14 Variable ligand concentration experiments for 2-6 with Ag(I) and perchlorate as the anion. $[AgClO_4] = 1 \times 10^{-4} \text{ M}, [NaClO_4] = 5 \times 10^{-3} \text{ M};$ pH 6.2 (MES/NaOH buffer); [ligand] = $(0.5-2.5) \times 10^{-3}$ M in CHCl₃; shaking time 30 min; $T = 23 \pm 1$ °C. Slopes: 6, s = 1.4; 4, s = 1.2; 2, s =1.2; 3, s = 1.2; 5, s = 1.3.

complexes of 2 and 3 in the solid state which have formulas of $[Ag_2(2)_2(ClO_4)_2] \cdot 2H_2O$ and $\{[Ag(3)(CH_3CN)](ClO_4) \cdot CH_3CN\}_n$ respectively (but not for 4 where the solid-state stoichiometry is given by $\{[Ag_2(4)CH_3CN]_2(Ag_2(NO_3)_6)\}$. In contrast, the slopes obtained for ligands 5 and 6 fall a little higher at 1.3 and 1.4, respectively, thus suggesting that species of higher metal : ligand ratio(s) make a higher contribution to extraction in these latter cases.

Bulk membrane transport studies

Competitive mixed metal transport experiments across a bulk chloroform membrane (water/chloroform/water) have been undertaken. The chloroform membrane phase contained the ionophore at 1×10^{-3} M chosen from 1-6, respectively. The aqueous source phase contained equimolar concentrations of the nitrate salts of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Ag(I) and Pb(II), with individual metal ion concentrations being 1×10^{-2} M. As mentioned in the Experimental, transport was performed against a back gradient of protons. Under the conditions employed (and ignoring any apparent transport showing J values $<15 \times$ 10^{-7} mol/24 h as being within experimental error of zero), sole selectivity for Ag(I) was observed for each of the ionophores 2, 3, 4 and 6, with no transport of any ion occurring for 1 and 5 (Fig. 15).

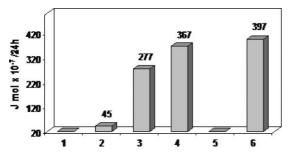


Fig. 15 Transport fluxes for Ag(I) in seven-metal competitive transport across a bulk CHCl₃ membrane employing **1–6** as ionophores (25 °C).

Transport flux values for Ag(I) are illustrated in Fig. 15. In parallel to the solvent extraction results for this ion, the monosubstituted dpa ligand 1 fails to act as ionophore for all seven metals under the conditions employed. The isomeric ligands incorporating two 2,2'-dipyridylamine units 2 ($J = 45 \times 10^{-7}$ mol/24 h) (ortho substituted) and 3 ($J = 277 \times 10^{-7} \text{ mol/24}$ h) (meta substituted) both promote significant Ag(I) transport (in parallel with their solvent extraction behaviour-although theory dictates that this need not necessarily be the case) but nevertheless they give quite different values indicating the influence of the different substitution positions on the 'linking' aryl ring. Indeed, for the corresponding para derivative 5, no metal-ion transport was observed under the conditions employed-again this parallels the extraction results where this ligand was shown to be an inferior extractant of Ag(I) relative to the ortho and meta-linked isomers 2 and 3 (see Fig. 13). Ligands 4 and 6 also yield results that broadly mimic those obtained in the corresponding solvent extraction experiments. Ionophore 4, incorporating an additional pyridine donor function relative to 3, acts as an efficient transporter of Ag(I) $(J = 367 \times 10^{-7} \text{ mol}/24 \text{ h})$ whereas the tri-substituted derivative 6 was found to show the highest transport efficiency towards this ion with a J value of 397×10^{-7} mol/24 h being obtained.

Concluding remarks

The Ag(I) chemistry of a series of linked dipyridylamine derivatives in both the solid state and solution has been explored. These ligands have been demonstrated to yield a range of new silver complex derivatives showing both discrete and polymeric architectures. In solution, structure/function relationships underlying the interaction of these species with Ag(I) have been probed. In sevenmetal competitive transport experiments across bulk chloroform membranes several of the ligands were demonstrated to show sole selectivity for Ag(I) over the remaining six transition and post transition metal ions present in the aqueous source phase.

Acknowledgements

We thank the Australian Research Council, the Royal Society of New Zealand Marsden Fund and the Deutsche Forschungsgemeinschaft for support. B. A. gratefully acknowledges the Max-Buchner-Stiftung for a research grant. O. K. acknowledges the DFG for assistance under grant 436RUS 17/20/06.

References

- 1 (a) P. Gamez, P. de Hoog, O. Roubeau, M. Lutz, W. L. Driessen, A. L. Spek and J. Reedijk, Chem. Commun., 2002, 1488; (b) P. Gamez, P. de Hoog, M. Lutz, A. L. Spek and J. Reedijk, Inorg. Chim. Acta, 2003, 351, 319; (c) P. de Hoog, P. Gamez, M. Leuken, O. Roubeau, B. Krebs and J. Reedijk, Inorg. Chim. Acta, 2004, 357, 213; (d) S. Demeshko, G. Leibeling, S. Dechert and F. Meyer, Dalton Trans., 2004, 3782; (e) C. Seward, W.-l. Jia, R.-Y. Wang and S. Wang, Inorg. Chem., 2004, 43, 978; (f) J.-S. Yang, Y.-D. Lin, Y.-H. Lin and F.-L. Liao, J. Org. Chem., 2004, 69, 3517
- 2 W.-L. Jia, D.-R. Bai, T. McCormick, Q.-D. Liu, M. Motala, R.-Y. Wang, C. Seward, Y. Tao and S. Wang, Chem. Eur. J., 2004, 10, 994.
- 3 (a) J. Pang, Y. Tao, S. Freiberg, X.-P. Yang, M. D'Iorio and S. Wang, J. Mater. Chem., 2002, 12, 206; (b) C. Seward, J. Pang and S. Wang, Eur. J. Inorg. Chem., 2002, 1390; (c) Q.-D. Liu, W.-L. Jia, G. Wu and S. Wang, Organometallics, 2003, 22, 3781; (d) L. Aubouy, P. Gerbier, N. Huby, G. Wantz, L. Vignau, L. Hirsch and J.-M. Janot, New J. Chem., 2004, 28, 1086; (e) J.-S. Yang, Y.-D. Lin, Y.-H. Chang and S.-S. Wang, J. Org. Chem., 2004, 70, 6066.

- 5 C. Seward, W.-L. Jia, R.-Y. Wang, G. D. Enright and S. Wang, *Angew. Chem.*, *Int. Ed.*, 2004, **43**, 2933.
- 6 (a) A. K. Paul, H. Mansuri-Torshizi, T. S. Srivastava, S. J. Chavan and M. P. Chitnis, *J. Inorg. Biochem.*, 1993, **50**, 9; (b) I. Puscasu, C. Mock, M. Rauterkus, A. Rondigs, G. Tallen, S. Gangopadhyay, J. E. A. Wolff and B. Krebs, *Z. Anorg. Allg. Chem.*, 2001, **627**, 1292; (c) M. J. Rauterkus, S. Fakih, C. Mock, I. Puscasu and B. Krebs, *Inorg. Chim. Acta*, 2003, **350**, 355.
- 7 C. Tu, J. Lin, Y. Shao and Z. Guo, Inorg. Chem., 2003, 42, 5795.
- 8 S. Fakih, W. C. Tung, D. Eierhoff, C. Mock and B. Krebs, Z. Anorg. Allg. Chem., 2005, 631, 1397.
- 9 (a) P. J. Steel and C. J. Sumby, Chem. Commun., 2002, 322; (b) S. Hiraoka, T. Yi, M. Shiro and M. Shionoya, J. Am. Chem. Soc., 2002, 124, 14510; (c) H.-J. Kim, W.-C. Zin and M. Lee, J. Am. Chem. Soc., 2004, 126, 7009; (d) O. B. Dolomanov, D. B. Cordes, N. R. Champness, A. J. Blake, L. R. Hanton, G. B. Jameson, M. Schröder and C. Wilson, Chem. Commun., 2004, 642; (e) J. J. M. Amoore, C. A. Black, L. R. Hanton and M. D. Spicer, Cryst. Growth Des., 2005, 5, 1255; (f) P. Blondeau, A. van der Lee and M. Barboiu, Inorg. Chem., 2005, 44, 3649; (g) C. Shimokawa and S. Itoh, Inorg. Chem., 2005, 44, 3649; (h) C. S. Purohit and S. Vema, J. Am. Chem. Soc., 2006, 128, 400; (i) M. Munakata, L. P. Wu and T. Kuroda-Sowa, Adv. Inorg. Chem., 1999, 46, 173; (j) A. N. Khlobystov, A. J. Blake, N. R. Champness, D. A. Lemenovskii, A. G. Majouga, N. V. Zyk and M. Schröder, Coord. Chem. Rev., 2001, 222, 155; (k) S.-L. Zheng, M.-L. Tong and X.-M. Chen, Coord. Chem. Rev., 2003, 246, 185; (l) C.-L. Chen, B.-S. Kang and C.-Y. Su, Aust. J. Chem., 2006, 59, 3.
- 10 (a) M. Munakata, L. P. Wu and G. L. Ning, *Coord. Chem. Rev.*, 2000, 198, 171; (b) M. O. Awaleh, A. Badia and F. Brisse, *Cryst. Growth Des.*, 2005, 5, 1897; (c) E. C. Constable, *Aust. J. Chem.*, 2006, 59, 1; (d) L. R. Hanton and A. G. Young, *Cryst. Growth Des.*, 2006, 4, 833.
- 11 Q.-M. Wang and T. C. W. Mak, Chem. Commun., 2002, 2682.
- 12 (a) T.-T. Yeh, J.-Y. Wu, Y.-S. Wen, Y.-H. Liu, J. Twu, Y.-T. Tao and K.-L. Lu, *Dalton Trans.*, 2005, 656; (b) Y.-B. Dong, Y. Geng, J.-P. Ma and R.-Q. Huang, *Inorg. Chem.*, 2005, 44, 1693; (c) H. Hou, Y. Wei, Y. Song, L. Mi, M. Tang, L. Li and Y. Fan, *Angew. Chem.*, *Int. Ed.*, 2005, 44, 6067.
- 13 J.-H. Liao, P.-L. Chen and C.-C. Hsu, J. Phys. Chem. Solids, 2001, 62, 1629.
- 14 M. Burgos, O. Crespo, M. C. Gimeo, P. G. Jones and A. Laguna, *Eur. J. Inorg. Chem.*, 2003, 2170.
- 15 C. Seward and S. Wang, Comments Inorg. Chem., 2005, 26, 103.

- 16 T. Chao, Y. Shao, N. Gan, Q. Xu and Z. Guo, *Inorg. Chem.*, 2004, 43, 4761.
- (a) L. Song and W. C. Trogler, J. Organomet. Chem., 1993, 452, 271;
 (b) Y. Oh, J. Korean Chem. Soc., 2000, 44, 507.
- 18 B. Antonioli, D. J. Bray, J. K. Clegg, K. Gloe, K. Gloe, H. Heβke and L. F. Lindoy, *CrystEngComm*, 2006, DOI: 10.1039/b611270f.
- 19 E. Diez-Barra, J. C. Garcia-Martinez, S. Merino, R. del Rey, J. Rodriguez-Lopez, P. Sanchez-Verdu and J. Tejeda, J. Org. Chem., 2001, 66, 5664.
- 20 P. S. K. Chia, L. F. Lindoy, G. W. Walker and G. W. Everett, *Pure Appl. Chem.*, 1993, 65, 521.
- 21 Nonium BV, Delft, The Netherlands, 1998.
- 22 A. J. M. Duisenberg, J. Appl. Crystallogr., 1992, 25, 92.
- 23 A. J. M. Duisenberg, L. M. J. Kroon-Batenburg and A. M. M. Schreurs, J. Appl. Crystallogr., 2003, 36, 220.
- 24 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
- 25 Bruker (1995), SMART, SAINT and XPREP. Bruker, Analytical X-ray Instruments Inc., Madison, WI, USA.
- 26 WinGX-32: System of programs for solving, refining and analysing single-crystal X-ray diffraction data for small molecules: L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
- 27 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giocavazzo, A. Guagliardi, A. G. C. Moliterni, G. Polidori and S. Spagna, J. Appl. Crystallogr., 1999, 32, 115.
- 28 G. M. Sheldrick, SADABS: Empirical Absorption and Correction Software, University of Göttingen, Germany, 1999–2003.
- 29 G. M. Sheldrick, SHELXL-97: Programs for Crystal Structure Analysis, University of Göttingen, Germany, 1997.
- 30 L. J. Farrugia, J. Appl. Crystallogr., 1999, 30, 565.
- 31 L. F. Lindoy and I. M. Atkinson, Self-assembly in Supramolecular Chemistry, RSC, Cambridge, UK, 2000.
- 32 (a) G. A. Jeffery, Cryst. Rev., 2003, 9, 135; (b) S. F. Alshahateel, R. Bishop, D. C. Craig and M. L. Scudder, CrystEngComm, 2001, 55, 1; (c) A. N. M. M. Rahman, R. Bishop, D. C. Craig and M. L. Scudder, Eur. J. Org. Chem., 2003, 72.
- 33 C. Seward, J. Chan, D. Song and S. Wang, *Inorg. Chem.*, 2003, **42**, 1112.
- 34 X.-D. Chen and T. C. W. Mak, J. Mol. Struct., 2005, 743, 1.
- 35 K. Gloe and P. Mühl, *Isotopenpraxis*, 1983, **19**, 257.
- 36 F. Hofmeister, Arch. Exp. Pathol. Pharmakol., 1888, 24, 247.
- 37 J. Rydberg, G. R. Choppin, C. Musikas and T. Sekine, Solvent Extraction Equilibria, in *Solvent Extraction Principles and Practice*, ed. J. Rydberg, M. Cox, C. Musikas and G. R. Choppin, Marcel Dekker, New York, 2004, p. 109.