Cobalt-Catalyzed *ortho*-C-H Alkylation of 2-Arylpyridines *via* Ring-Opening of Aziridines

Ke Gao,^a Rupankar Paira,^a and Naohiko Yoshikai^{a,*}

 ^a Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore Fax: (+65)-6791-1961; e-mail: nyoshikai@ntu.edu.sg

Received: January 13, 2014; Revised: February 18, 2014; Published online:

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201400049.

Abstract: A cobalt–N-heterocyclic carbene catalyst, in combination with neopentylmagnesium bromide, was found to promote *ortho*-C–H functionalization of 2-arylpyridines with 1,2-diarylaziridines through ring-opening alkylation. The reaction affords 1,1-diarylethanes bearing 2-amino functional groups in moderate to good yields under mild room-temperature conditions.

Keywords: aziridines; C–C bond formation; C–H functionalization; cobalt

Transition metal-catalyzed chelation-assisted C-H bond activation has attracted considerable attention as an atom- and step-economical approach to regioselective functionalization of aromatic compounds.^[1] While C-H alkylation, alkenylation, and arylation reactions using alkenes, alkynes, and arylating agents (e.g., aryl halides, arylmetals, and arenes) have been extensively developed, exploration of other types of coupling partners is crucial for further expansion of the synthetic scope of this approach. In this context, recent years have witnessed remarkable progress in ortho-C-H functionalization reactions using carbonbased electrophiles such as alkyl halides^[2,3] and those containing polar π -bonds (e.g, aldimines, aldehydes, isocyanates).^[4,5] Recently, Li, Wan and co-workers added N-sulfonylaziridines to the repertoire of electrophiles, which served as coupling partners for Rh(III)-catalyzed ortho-C-H functionalization of 2arylpyridines.[6]

Over the past several years, our group has developed mild and cost-effective cobalt catalysts for a series of chelation-assisted C–H bond functionalization reactions, which can be classified into two types.^[7] One involves insertion of unsaturated hydrocarbons such as alkynes and alkenes into the *ortho*- C–H bond,^[8] and the other involves formal deprotonation of the *ortho*-C–H bond followed by electrophilic trapping. The feasibility of the latter type of reaction has been demonstrated for electrophiles such as aldimines,^[9] aryl chlorides,^[10] and alkyl chlorides/ bromides.^[11-13] Here, we report that aziridines also serve as viable electrophiles for this reaction manifold (Scheme 1). Thus, a cobalt–N-heterocyclic carbene catalyst, in combination with neopentyl-Grignard reagent, allows *ortho*-functionalization of 2-arylpyridines with 1,2-diarylaziridines *via* regioselective C–N bond cleavage, affording 1,1-diarylethanes bearing 2amino groups.

We chose 2-phenylpyridine **1a** and 1,2-diphenylaziridine **2a** as model substrates for a screening of the reaction conditions (Table 1). A catalytic system consisting of CoCl₂ (10 mol%), IPr·HCl (10 mol%), and *t*-BuCH₂MgBr (1.8 equiv.), which we previously used for the reaction of 2-arylpyridines and aldimines,^[9] promoted the reaction of **1a** and **2a** (2 equiv.) at room temperature to afford a 1,1-diarylethane derivative **3aa** in 70% yield (entry 1). Thus, the ring-opening of the aziridine **2a** took place regioselectively at the more hindered C-2 position. Upon brief examination of the catalyst loading, the reaction stoichiometry,

Scheme 1. Cobalt–NHC-catalyzed *ortho*-functionalization of arenes with electrophiles.

	Adv.	Synth.	Catal.	0000,	000,	0 - 0
--	------	--------	--------	-------	------	-------

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

& Co. KGaA, Weinheim Wiley Online Library These are not the final page numbers! 72^[c]

29

11

0

0

0

6

0

Table 1. Cobalt-catalyzed	ortho-alkylation	of	2-phenylpyri
dine 1a with 1,2-diphenyla	aziridine 2a . ^[a]		

t-BuCH₂MgBr

t-BuCH₂MgBr

t-BuCH₂MgBr

t-BuCH₂MgBr

t-BuCH₂MgBr

CyMgBr

PhMgBr

Me₃SiCH₂MgCl

able I. Cobalt-catalyzed	ortho-alkylation	ot	2-phenylpyri-
line 1a with 1,2-diphenyla	aziridine 2a . ^[a]		

[b] Determined by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard.

[c] Isolated yield.

5

5

5

5

5

5

5

5

 $IPr \cdot HCl(5)$

SIPr·HCl (5)

IMes·HCl (5)

PPh₃ (10)

PCy₃ (10)

IPr·HCl (5)

IPr·HCl (5)

IPr·HCl (5)

1

2

3

4

5

6

7

8

9

and the temperature, we found that the reaction smoothly proceeded with 5 mol% each of CoCl₂ and IPr·HCl and 1.8 equiv. of t-BuCH₂MgBr, affording 3aa in 72% isolated yield (entry 2). Reduction of the amount of either 2a or t-BuCH₂MgBr resulted in a substantial decrease in the product yield, and lower or higher temperature (0°C or 60°C) did not improve the reaction.

The reaction was very sensitive to the ligand and the Grignard reagent. Thus, the use of other NHC preligands such as SIPr·HCl and IMes·HCl resulted in much lower yields of **3aa** (entries 3 and 4), while PPh₃ and PCy_3 were entirely ineffective (entries 5 and 6). The catalytic activity was totally or significantly lost when t-BuCH₂MgBr was replaced with other Grignard reagents such as Me₃SiCH₂MgCl, CyMgBr, or PhMgBr (entries 7-9).

With the reaction conditions in entry 2 of Table 1, we explored the scope of the present ring-opening alkylation reaction. First, various 2-arylpyrdine derivatives were subjected to the reaction with 2a (Table 2). 2-Arylpyridines bearing *para*-substituents such as methoxy, fluoro, and trifluoromethyl groups on the benzene ring participated in the reaction to afford the corresponding products 3ba-3da in moderate yields, while a para-dimethylamino group made the reaction rather sluggish (see 3ea). Substituents on the 4-position of the pyridine ring did not interfere with the reaction (see 3fa and 3ga). A meta-methyl group on the benzene ring directed the reaction to take place preferentially at the less hindered position, affording the product **3ha** and its regioisomer in a ratio of 4:1,

Table 2. Reaction of various 2-arylpyridines with aziridine

[a] A mixture of regioisomers (4:1) was obtained. The major isomer is shown.

while the regioselectivity was perfect for a substrate bearing a meta-trifluoromethyl group (see 3ia). In contrast, 2-(naphthalen-2-yl)pyridine reacted at the more hindered 1-position to afford the product 3ja as a pure regioisomer. The C-3 position of 2-(thiophen-2-yl)pyridine was also alkylated albeit in a modest yield (see 3ka). The reaction proved to be rather sensitive to steric congestion of 2-arylpyridines, because those substituted at the *ortho*-position of the benzene ring (11, 1m) or the 3-position of the pyridine ring (1n) afforded only trace amounts of the desired products. A substrate bearing a C-Cl bond (10) also did not participate in the reaction for unknown reasons.

Attempts to use aromatic substrates other than 2arylpyridines have been unsuccessful. Thus, only a trace amount of the desired product was detected by GC-MS in the reaction of 1-phenylpyrazole (1q) with 2a, while 2-phenylpyrimidine (1p) and the arylimine derived from acetophenone and *p*-anisidine (1r) did not afford any of such products.

asc.wiley-vch.de

2

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

 Table 3. Reaction of 2-phenylpyridine 1a with various aziridines

^[a] 2 equiv. of *t*-BuCH₂MgBr were used.

Next, the reaction of 2-phenylpyridine **1a** and various aziridines was examined (Table 3). N-Phenylaziridines bearing a series of 2-aryl groups participated in the reaction to afford the corresponding products 3ab-3aj in moderate yields. An electron-donating or neutral substituent (i.e., methoxy, tert-butyl, or phenyl) on the 2-aryl group was beneficial for the reaction (see 3ab-3ad). In contrast, electron-withdrawing fluoro and chloro substituents made the reaction sluggish (see 3ae and 3af), and a trifluoromethyl group almost shut down the reaction (see 3ag). The N-substituent of the aziridine could be changed to other aryl groups such as 4-methoxyphenyl, 3-tolyl, and 4-fluorophenyl groups without significant decrease in the reaction efficiency (see 3ak-3am), while an N-methyl derivative did not give the desired product. Note also that an N-sulfonylaziridine, which was used for the rhodium(III)-catalyzed reaction of 2-arylpyridine,^[6] did not participate in the present cobaltcatalyzed reaction.

Despite the significant development of C–C bond forming reactions with cobalt catalysts in the past decades,^[14] to the best of our knowledge, aziridines have

(a)

Scheme 2. Competition experiments.

not been utilized as electrophiles for the cobalt-catalyzed cross-coupling.^[15] To gain insight into the aziridine ring-opening step, competition experiments were performed (Scheme 2a, b). The reaction of **1a** with an equimolar mixture of aziridines 2b and 2e having 2-(4-methoxyphenyl) and 2-(4-fluorophenyl) groups, respectively, preferentially afforded the product of the former aziridine (i.e., **3ab**; Scheme 2a). This observation sounds reasonable if one invokes the development of a partial positive charge on the C-2 position during the ring-opening process. On the other hand, aziridines 2k and 2m bearing N-(4-methoxyphenyl) and N-(4-fluorophenyl) groups, respectively, afforded the corresponding products 3ak and 3am in nearly equal yields in the same type of competition (Scheme 2b). Note also that a competition of 2-arylpyridines bearing meta-methyl and meta-trifluoromethyl groups (1h and 1i) resulted in predominant formation of the alkylation product of the latter (3ia), indicating that the cobalt catalyst prefers to activate more acidic/electron-poor the C-H bond (Scheme 2c).^[13]

A putative catalytic cycle of the present ring-opening alkylation reaction is shown in Scheme 3. A lowvalent alkylcobalt species generated from the cobalt salt, the NHC preligand, and the Grignard reagent undergoes oxidative addition of the *ortho*-C–H bond of 2-phenylpyridine, which is followed by reductive elimination to afford a cyclometallated intermediate.^[16] This intermediate then undergoes nucleophilic

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

3

These are not the final page numbers! 77

Scheme 3. A possible catalytic cycle.

attack on 1,2-diarylaziridine, resulting in ring-opening alkylation of the *ortho*-position. Possible pathways for this step may involve S_N^2 -type displacement, singleelectron transfer-radical coupling, and oxidative addition–reductive elimination. Further mechanistic experiments, e.g., those using enantioenriched 1,2diarylaziridines,^[17] are necessary to distinguish these possibilities. Transmetallation of the resulting cobalt amide and the Grignard reagent affords the product bearing a magnesium amide moiety and regenerates the alkylcobalt species.

In summary, we have demonstrated that a cobalt– IPr catalyst, in combination with *t*-BuCH₂MgBr, efficiently promotes the *ortho*-alkylation of 2-arylpyridines through regioselective ring-opening of *N*-arylaziridines under mild conditions to afford 1,1-diarylethane derivatives in moderate to good yields. With the present study and previous studies by us and Ackermann et al.,^[9–11,13] the combination of a cobalt salt, an NHC ligand, and a Grignard reagent now appears to offer versatile catalytic systems for *ortho*-C– H functionalization of arenes with electrophiles. Efforts to further expand the scope of this chemistry are currently ongoing.

Experimental Section

General Remarks

Unless otherwise noted, materials were purchased from Aldrich, Alfa Aesar, or other commercial suppliers and used as received. Anhydrous cobalt(II) chloride (>99%) was purchased from Alfa Aesar and used as received. THF was distilled over Na/benzophenone. Grignard reagents were prepared from the corresponding halides and magnesium turnings in anhydrous THF and titrated before use. 2-Arylpyridine derivatives were prepared either by nickel-catalyzed cross-coupling of 2-halopyridines and aryl-Grignard reagents^[18] or by copper-catalyzed condensation of oxime acetates and α,β -unsaturated aldehydes.^[19] 1,2-Diarylaziridines were prepared by Corey–Chaykovsky reaction of dimethylsulfonium methylide and the corresponding *N*-arylaldimines.^[20] NMR spectra were recorded on Bruker AV-300 (300 MHz) and AV-400 (400 MHz) spectrometers, where tetramethylsilane (¹H) and CDCl₃ (¹³C) were employed as internal standards. Gas chromatographic (GC) analysis was performed on a Shimadzu GC-2010 system equipped with an FID detector and a capillary column DB-5 (Agilent J&W, 0.25 mm i.d. × 30 m, 0.25 µm film thickness). High-resolution mass spectra (HR-MS) were recorded on a Waters Q-Tof Premier LC HR mass spectrometer.

Representative Procedure for Cobalt-Catalyzed Reaction of 2-Arylpyridine and 2-Arylaziridine

In an oven-dried Schlenk tube equipped with a magnetic stir bar were placed cobalt(II) chloride (1.9 mg, 0.015 mmol), 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride (6.4 mg, 0.015 mmol), 2-phenylpyridine (1a, 43 µL, 0.30 mmol), 1,2diphenylaziridine (2a, 117.2 mg, 0.60 mmol), and THF (0.68 mL). To the mixture was added a THF solution of neopentylmagnesium bromide (1.67 M, 0.32 mL, 0.54 mmol) dropwise at 0°C. The resulting mixture was stirred at room temperature for 24 h, diluted with ether (1 mL), and then quenched with a saturated aqueous solution of NH4Cl (1 mL). The aqueous layer was extracted with ethyl acetate $(10 \text{ mL} \times 3)$. The combined organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane/EtOAc = 10/1 to 5/1) to afford N-{2-phenyl-2-[2-(pyridin-2-yl)phenyl]ethyl]aniline (3aa) as a yellow oil; yield: 76.0 mg (72%).

Acknowledgements

This work was supported by Singapore National Research Foundation (NRF-RF2009-05), Nanyang Technological University, and JST, CREST. We thank Dr. Laksmikanta Adak for his early-stage experiments.

References

- For selected reviews, see: a) F. Kakiuchi, T. Kochi, Synthesis 2008, 3013–3039; b) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624–655; c) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169; d) L. Ackermann, Chem. Rev. 2011, 111, 1315–1345; e) K. M. Engle, T.-S. Mei, M. Wasa, J.-Q. Yu, Acc. Chem. Res. 2012, 45, 788–802; f) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879–5918; g) G. Rouquet, N. Chatani, Angew. Chem. Int. Ed. 2013, 52, 11726–11743.
- [2] L. Ackermann, Chem. Commun. 2010, 46, 4866–4877.
- [3] For selected examples, see: a) L. Ackermann, P. Novak,
 R. Vicente, N. Hofmann, *Angew. Chem.* 2009, 121, 6161–6164; *Angew. Chem. Int. Ed.* 2009, 48, 6045–6048;

4

asc.wiley-vch.de

 $\ensuremath{\mathbb{O}}$ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Adv. Synth. Catal. 0000, 000, 0-0

FF These are not the final page numbers!

b) Y.-H. Zhang, B.-F. Shi, J.-Q. Yu, Angew. Chem. 2009, 121, 6213–6216; Angew. Chem. Int. Ed. 2009, 48, 6097–6100; c) D. Shabashov, O. Daugulis, J. Am. Chem. Soc. 2010, 132, 3965–3972; d) L. Ackermann, N. Hofmann, R. Vicente, Org. Lett. 2011, 13, 1875–1877; e) Y. Zhao, G. Chen, Org. Lett. 2011, 13, 4850–4853; f) Y. Aihara, N. Chatani, J. Am. Chem. Soc. 2013, 135, 5308–5311.

- [4] a) D. A. Colby, A. S. Tsai, R. G. Bergman, J. A. Ellman, Acc. Chem. Res. 2012, 45, 814–825; b) Y. Kuninobu, K. Takai, Chem. Rev. 2011, 111, 1938–1953.
- [5] For selected examples, see: a) Y. Kuninobu, Y. Tokunaga, A. Kawata, K. Takai, J. Am. Chem. Soc. 2006, 128, 202–209; b) Y. Kuninobu, Y. Nishina, T. Takeuchi, K. Takai, Angew. Chem. 2007, 119, 6638–6640; Angew. Chem. Int. Ed. 2007, 46, 6518–6520; c) A. S. Tsai, M. E. Tauchert, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2011, 133, 1248–1250; d) Y. Li, B.-J. Li, W.-H. Wang, W.-P. Huang, X.-S. Zhang, K. Chen, Z.-J. Shi, Angew. Chem. 2011, 123, 2163–2167; Angew. Chem. Int. Ed. 2011, 50, 2115–2119; e) K. D. Hesp, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2011, 133, 11430–11433; f) Y. Li, X.-S. Zhang, K. Chen, K.-H. He, F. Pan, B.-J. Li, Z.-J. Shi, Org. Lett. 2012, 14, 636–639.
- [6] X. Li, S. Yu, F. Wang, B. Wan, X. Yu, Angew. Chem. Int. Ed. 2013, 52, 2577–2580.
- [7] N. Yoshikai, Synlett **2011**, 1047–1051.
- [8] For example, see: a) K. Gao, P.-S. Lee, T. Fujita, N. Yoshikai, J. Am. Chem. Soc. 2010, 132, 12249–12251;
 b) K. Gao, N. Yoshikai, J. Am. Chem. Soc. 2011, 133, 400–402;
 c) K. Gao, N. Yoshikai, Angew. Chem. 2011, 123, 7020–7024; Angew. Chem. Int. Ed. 2011, 50, 6888–6892;
 d) L. Ilies, Q. Chen, X. Zeng, E. Nakamura, J. Am. Chem. Soc. 2011, 133, 5221–5223.

- [9] K. Gao, N. Yoshikai, Chem. Commun. 2012, 48, 4305– 4307.
- [10] K. Gao, P.-S. Lee, C. Long, N. Yoshikai, Org. Lett. 2012, 14, 4234–4237.
- [11] K. Gao, N. Yoshikai, J. Am. Chem. Soc. 2013, 135, 9279–9282.
- [12] Q. Chen, L. Ilies, E. Nakamura, J. Am. Chem. Soc. 2011, 133, 428–429.
- [13] a) W. Song, L. Ackermann, Angew. Chem. 2012, 124, 8376–8379; Angew. Chem. Int. Ed. 2012, 51, 8251–8254;
 b) B. Punji, W. Song, G. A. Shevchenko, L. Ackermann, Chem. Eur. J. 2013, 19, 10605–10610.
- [14] a) G. Cahiez, A. Moyeux, *Chem. Rev.* 2010, *110*, 1435–1462; b) W. Hess, J. Treutwein, G. Hilt, *Synthesis* 2008, 3537–3562; c) C. Gosmini, J. M. Begouin, A. Moncomble, *Chem. Commun.* 2008, 3221–3233; d) H. Yorimitsu, K. Oshima, *Pure Appl. Chem.* 2006, *78*, 441–449.
- [15] For nickel-catalyzed cross-coupling between aziridines and organozinc reagents, see: a) C.-Y. Huang, A. G. Doyle, *J. Am. Chem. Soc.* 2012, *134*, 9541–9544;
 b) D. K. Nielsen, C.-Y. Huang, A. G. Doyle, *J. Am. Chem. Soc.* 2013, *135*, 13605–13609.
- [16] H. F. Klein, S. Camadanli, R. Beck, D. Leukel, U. Florke, Angew. Chem. 2005, 117, 997–999; Angew. Chem. Int. Ed. 2005, 44, 975–977.
- [17] A. V. Malkov, S. Stončius, P. Kočovský, Angew. Chem.
 2007, 119, 3796–3798; Angew. Chem. Int. Ed. 2007, 46, 3722–3724.
- [18] F. Mongin, L. Mojovic, B. Guillamet, F. Trécourt, G. Quéguiner, J. Org. Chem. 2002, 67, 8991.
- [19] Y. Wei, N. Yoshikai, J. Am. Chem. Soc. 2013, 135, 3756.
- [20] E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353.

Adv. Synth. Catal. 0000, 000, 0-0

COMMUNICATIONS

6 Cobalt-Catalyzed *ortho*-C-H Alkylation of 2-Arylpyridines *via* Ring-Opening of Aziridines

Adv. Synth. Catal. 2014, 356, 1-6

🖳 Ke Gao, Rupankar Paira, Naohiko Yoshikai*

