CONDENSED HETEROCYCLIC SYSTEMS WITH A THIAZOLE RING.

11.* THIAZOLO[3,4-b]-1,2,4-TRIAZINONES

Yu. P. Kovtun and N. N. Romanov

UDC 547.789.61'873:543.422

Syntheses are reported for substituted 2-oxo-1,2-dihydrothiazolo[3,4-b]-1,2,4triazinium salts. The action of bases on these salts leads to the corresponding mesoionic compounds.

Among the reported thiazolotriazines, greatest physiological activity is found for the corresponding oxo-derivatives [2-4]. Hence, interest was found in the preparation of the new heterocyclic system reported in our previous work [1], namely thiazolo[3,4-b]-1,2,4-triazine.

I, V-VII a $R^1 = CH_3$; b $R^1 = (CH_2)_2COOH$; c $R^1 = C_6H_5$; II, VX,Y=Br, $R^2 = H$; III, VI X,Y=C_6H_5SO_3, $R^2 = C_6H_5$; VII Y=ClO₄, $R^2 = C_6H_5$

We might have expected that, similarly to the reaction of acetonitriles III with methyldithiohydrazonates of 1,2-diketones [1], substituted 4-aminothiazole IV would be formed in the first step and then cyclized to give the desired product.

However, upon heating a mixture of the starting components, dihydrothiazolotriazine salts V-VII are immediately formed. The structure of these compounds was confirmed by IR and PMR spectroscopy (Tables 1a and 2). Thus, for example, the IR spectra of V-VII have amide C=O stretching bands at 1700-1715 cm⁻¹. The action of bases on salts V-VII leads to the loss of an acid and the formation of mesoionic thiazolotriazinium oxides VIII and IX.

VIII $R^2 = H$; IX $R^2 = C_6 H_5$

The IR spectra of these compounds lack the carbonyl stretching band of the starting thiazolotriazines but show a new band at $1515-1545 \text{ cm}^{-1}$ which may be assigned to vibrations of the N=C-O⁻ group. As expected, the PMR spectra of solutions of VIIIa and VIIIc, the signal for the proton at position 8 is shifted upfield relative to the analogous values of the corresponding salts Va and Vc due to the electron-donor effect of the oxide group. In addition, we should note that, similar to other types of mesic compounds [5,6], oxides VIII and IX are more deeply colored than their salt-like analogs. The action of acids on oxides

*For communication 10, see [1].

Institute of Organic Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev 252660. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1497-1500, November, 1985. Original article submitted November 15, 1984.

TABLE 1. UV and IR Spectra of the Compounds Synthesized

Compound	λ _{max} s, nm (lgε)	v, cm ⁻¹					
Ia	317 (4,33)	1520, 1615, 1755, 2930, 3000, 3260, 3330					
lb Ic	320 (4,27) 342 (4,24)	1520, 1605, 1710, 2500, 2580, 2670, 2850, 3000, 1520, 1605, 1710, 2500, 2580, 2670, 2850, 3000, 3200					
Va Vb	272 (3,99), 365 (3,47) 271 (3,99), 361 (3,48)	1610, 1640, 1710, 2730, 2860, 2990, 3020, 3130 1605, 1625, 1710, 1740, 2750, 2930					
VC VIa	307 (4,24), 385 (2,58) 276 (4,11), 430 (3,64) 272 (4,25), 410 (2,72)	1550, 1630, 1710, 2750, 2920					
VID VIC VIIA	273 (4,26), 410 (3,72) 303 (4,39), 450 (3,52) 277 (4,10), 430 (3,64)	1495, 1615, 1640, 1715, 2840, 3000					
VIIb VIIc	273 (4,25), 411 (3,71) 303 (4,40), 450 (3,52)	1500, 1550, 1615, 1700, 1725, 2740, 3080 1500, 1560, 1580, 1630, 1700, 3100, 3200					
VIIIa VIIIc	320 (3,54), 407 (3,61) 311 (4,26), 435 (3,56)	1545, 1600, 1630, 2920, 2980, 3170 1515, 1560, 1610, 3055 1540, 1580, 1630, 2920, 2980					
IXa IXc X	$ \begin{array}{c} 453 \\ 302 \\ 298 \\ 448 \\ 434 \\ 354 $	1540, 1560, 1660, 2920, 2000 1525, 1600, 1630, 2920, 3050 1530, 1580, 1600, 2950					
XI	312 (4,33), 395 (3,51)	1495, 1565, 1590, 1625, 1705, 2950, 3020, 3060					
acetic acid, while the remaining spectra were taken in							

TABLE 2. PMR Spectra

acetonitrile.

_		R ²	v	Solvent	Chemical shift, δ, ppm				
Comp.	R'				SCH₃	Rª	8-H	Ar-H	
Va /	СН₃	н	Br	CF ₃ COOH D ₂ O ^a	2,47 2,41	2,17 2,85	6,88 7,08		
Vþ	(CH₂)₂ČO₂H	н	Br	CF₃COOH_	2,50	2,60 t (2H); 2,90 t (2H)	6,93		
Vç	C ₆ H ₅	н	Br	CF₃COOH	2,52		6,93	7,0—7,3 (3H),	
Ĩ				D ₂ O ^a	2,96		7,20	7,6-7,8 (2H) 7,4-7,6 (3H), 80-82 (2H)	
				DMSO-d ₆	2,97		7,14	7,4—7,6 (3H), 7,8—8,0 (2H)	
VIь	(CH ₂) ₂ CO ₂ H	C ₆ H₅	C ₆ H ₅ SO ₃	CF₃COOH	2,50	2,60 t (2H); 2,90 t (2H)		6,9—7,2 (8H), 7,3—7,5 (2H)	
VIIa	CH₃	C ₆ H ₅	CIO ₄	CF₃COOH	2,52	2,20		7,12 (5H)	
VIIc	C ₆ H₅	C ₆ H ₅	CIO₄	CF₃COOH	2,50	2 2 -		6,9—7,2 (8H), 7,6—7,8 (4H)	
VIIIa	CH3	н		D_2O^a	2,40	2,83	6,84		
VIIIç	C ₆ H ₅	н		DMSO-de	2,81		6,71	7,5—8,1 (5H)	
X	C ₆ H ₅	C ₆ H₅	CIO₄	CF₃CO₂Ĥ	2,50; 3,82b			7,0—7,3 (6H), 7,5—7,8 (4H)	
XI	C ₆ H ₅	C ₆ H ₅	C1 O ₄	CF₃COOH	2,45 2,80°			7,0—7,2 (8H), 7,6—7,8 (2H)	

VIII and IX gives the corresponding salts, while the action of dimethyl sulfate gives the products of the O- and N-alkylation, X and XI. While both the O-isomer and a significant amount of the N-isomer is obtained upon heating in DMF, salt X is the major product in the absence of solvent.

Com-	mn °C	Found, %		Chomical formula	Calc., %		Yield,	
pound	mp, C	N(Hal) S		Chemical formula	N(Hal)	S	%	
la Ib	144—145 155—156 (157—158	14,8 11,2	33,0 25,0	$C_5H_8N_2O_2S_2$ $C_7H_{10}N_2O_4S_2$	14,6 11,2	33,3 25,6	70 80	
Ic Va Vb Via Vib Vic Vila Vilb Vilc Villa Villa XXc X	$\begin{array}{c} 135-136\\ 228-230\\ 203-204\\ 212-213\\ 243-244\\ 241-242\\ 256-257\\ 255-253\\ 265-266\\ >170 \ (dec.)\\ >170 \ (dec.)\\ 247-248\\ 223-224\\ 242-243\\ \end{array}$	11,3 (27,2) (22,5) (22,3) 9,4 8,5 (9,2) (8,2) (8,2) (8,2) (8,2) 19,9 15,2 14,7 11,8 (7,8)	24,7 22,0 18,0 17,7 21,3 18,5 18,6 16,2 14,3 14,0 30,2 23,0 22,3 18,1 13,5	$\begin{array}{c} C_{10}H_{10}N_2O_2S_2\\ C_7H_8BrN_3OS_2\\ C_9H_{10}BrN_3OS_2\\ C_{12}H_{10}BrN_3OS_2\\ C_{12}H_{10}BrN_3OS_2\\ C_{21}H_{19}N_3O_6S_3\\ C_{21}H_{19}N_3O_6S_3\\ C_{24}H_{19}N_3O_6S_3\\ C_{34}H_{12}ClN_3O_5S_2\\ C_{15}H_{14}ClN_3O_7S_2\\ C_{16}H_{14}ClN_3O_5S_2\\ C_{7}H_7N_3OS_2\\ C_{7H}T_N_3OS_2\\ C_{12}H_9N_3OS_2\\ C_{13}H_{11}N_3OS_2\\ C_{18}H_{13}N_3OS_2\\ C_{18}H_{13}N_3OS_2\\ C_{19}H_{16}ClN_3O_5S_2\\ \end{array}$	$\begin{array}{c} 11,0\\(27,2)\\(22,7)\\(23,4)\\9,4\\8,3\\8,2\\(9,1)\\(7,9)\\(7,8)\\19,7\\15,3\\14,5\\11,9\\(7,6)\end{array}$	25,2 21,8 18,2 18,0 21,5 19,0 16,4 14,3 14,2 30,1 23,3 22,2 18,2 13,8	79 61 40 52 82 87 63 90 92 76 72 78 89 89 84 30	
XI	273-274	(7,4)	13,6	$C_{19}H_{16}CIN_{3}O_{5}S_{2}$	(7,6)	13,8	90	

TABLE 3. Characteristics of Compounds Synthesized 1, V-XI

The IR spectrum of perchlorate XI shows a G=0 stretching band at 1705 cm⁻¹ lacking in the spectrum of salt X which displays only a G=N band at 1580-1600 cm⁻¹. Due to the shield-ing effect of the ring current of the phenyl ring at $C_{(8)}$ in thiazolotriazinone XI, the signal of the nearby N-CH₃ group is at higher field than usually observed.

EXPERIMENTAL

The IR spectra were taken on a UR-10 spectrometer in KBr pellets, while the electronic absorption spectra were taken on an SF-8 spectrophotometer. The PMR spectra were taken on a BS-467 spectrometer at 60 MHz and Bruker WP-200 spectrometer with HMDS as the internal standard.

The characteristics of synthesized compounds are shown in Table 3.

Methyldithiohydrazonates (Ia-c). A mixture of 1 mmole of the corresponding α -ketoacid, 0.12 g (1 mmole) methyldithiohydrazinate and 2 ml acetic acid was heated to reflux. Upon cooling to room temperature, 2 ml water was added and the precipitate was filtered off.

 $\frac{1,2-\text{Dihydro-3-R}^1-6-\text{methylthio-2-oxothiazolo[3,4-b]-l,2,4-triazinium Bromides (Va-c).}{A \text{ mixture of 1 mmole methyldithiohydrazonate Ia-c and 0.13 g (1.1 mmole) bromoacetonitrile II was heated at 100°C for 20 min. The melt was triturated with acetone. The product was filtered off and Va was crystallized from methanol, Vb was crystallized from 5:1 CH_sCO_2H-HCO_2H and Vc was crystallized from water [8].$

<u>1,2-Dihydro-3-R¹-6-methylthio-2-oxo-8-phenylthiazolo[3,4-b]-1,2,4-triazinium Benzene-</u> sulfonates (VIa-c). A mixture of 1 mmole methyldithiohydrazonate Ia-c and 0.30 g (1.1 mmole) α -cyanobenzyl benzenesulfonate III was heated at 80°C for 10 min. The melt was triturated with acetone. The precipitate was filtered off and crystallized from 3:1 acetic acid-ethyl acetate.

<u>Perchlorates VIIa-c</u> were obtained by the addition of sodium perchlorate to an acetic acid solution of the corresponding benzenesulfonate VI with subsequent crystallization from $CH_3CO_2H-HCO_2H$.

 $3-R^{1}-8-R^{2}-6-Methylthiothiazolo[3,4-b]-1,2,4-trazinium-2 oxides (VIIIa,c and IXa,c).$ A mixture of 1 mmole of the corresponding salt and 10 ml ethanol was brought to reflux and 0.1 g (1 mmole) triethylamine was added. The precipitate was filtered off and IXa was crystallized from 1:1 ethanol-nitromethane and IXc was crystallized from nitromethane.

<u>Methylation of Oxide IXc.</u> A. A solution of 0.35 g (1 mmole) oxide IXc in 3 ml DMF and 0.25 g (2 mmoles) dimethyl sulfate was maintained at 125°C for 1 h and a solution of 0.14 g (1.1 mmole) sodium perchlorate in 20 ml water was added. The precipitate (0.41 g) was filtered off and crystallized from 4:1 $CH_3CO_2H-HCO_2H$. The precipitate formed (0.22 g) is salt

X with a trace of salt XI. The mother liquor was diluted by an equal volume of water to yield 0.14 g analytically pure salt XI.

B. A mixture of 0.35 g (1 mmole) oxide IXc and 0.25 g (2 mmoles) dimethyl sulfate was heated for 30 min at 100°C. The melt was dissolved in 10 ml acetic acid and 0.12 g (1 mmole) sodium perchlorate was added. The precipitate was filtered off and crystallization from acetonitrile and gave 0.42 g salt X.

LITERATURE CITED

- 1. Yu. P. Kovtun and N. N. Romanov, Khim. Geterotsikl. Soedin., No. 4, 498 (1985).
- E. Degener, H. Holtshmidt, and K. Swicicki, Belgian Patent No. 633,233; Chem. Abstr., 60, 13256.
- 3. E. S. A. Ibrahim, D. S. A. Shamsel, and F. S. G. Soliman, Pharmazie, <u>34</u>, 392 (1979).
- 4. H. Penner and A. Convlin, J. Heterocycl. Chem., 4, 93 (1967).
- 5. A. D. Kachkovskii, K. V. Fedotov, N. N. Romanov, and A. I. Tolmachev, Khim. Geterotsikl. Soedin., No. 6, 769 (1984).
- 6. A. D. Kachkovskii, E. K. Mikitenko, and N. N. Romanov, Ukr. Khim. Zh., 49, 1088 (1983).
- 7. J. Korosi, West German Patent No. 1,934,809; Chem. Abstr., 72, 100334.
- Yu. P. Kovtun and N. N. Romanov, USSR Inventor's Certificate No. 1,018,944; Byull. Izobr., No. 19, 68 (1983).