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A variation of Mattox rearrangement mechanism under
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Abstract—A variation of the Mattox rearrangement, a key degradation pathway under acidic conditions for corticosteroids possess-
ing the 1,3-dihydroxyacetone side chain, has been found to occur for the 17,21-diesters of these corticosteroids but under the alka-
line condition. The mechanism of this variation of the original Mattox rearrangement is proposed.
� 2007 Published by Elsevier Ltd.
Mattox rearrangement is an important chemical trans-
formation that occurs at the 1,3-dihydroxyacetone side
chain of a group of corticosteroids such as betametha-
sone, dexamethasone, cortisol, prednisone, and related
compounds. During the Mattox process (Scheme 1),1

using betamethasone (1) as a typical example, the side
chain of betamethasone DD-ring would undergo dehydra-
tion to form the corresponding enol aldehyde [betameth-
asone 20-hydroxy-17(20)-en-21-aldehyde, which has
Z- and E-isomers (3 and 4)] through a presumed enol
intermediate (2).2 The process is catalyzed under acidic
conditions by either strong acids such as sulfuric acid3

and methanolic HCl4 or weak acids such as acetic
acid.5,6 Although the enol aldehyde formed is relatively
stable, it can further degrade into various secondary
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Scheme 1. Formation of betamethasone enol aldehyde from betamethasone
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degradants under chemical as well as biochemical condi-
tions. For example, enol aldehyde was proposed as the
intermediate leading to the formation of 17-deoxy acid
metabolites in patients who were administered cortisol;5

the mechanism was supported by in vitro metabolism
studies using mouse liver by which the Z-isomer was
converted into 17-deoxy acids (Scheme 2).7 Therefore,
the enol aldehyde, formed via Mattox rearrangement,
is a key intermediate not only in chemical degradation
of the relevant corticosteroids but also in their biotrans-
formation (metabolism).

During the forced degradation studies of betamethasone
and related compounds, we found that betamethasone
enol aldehyde can also be generated directly from
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Scheme 2. In vitro metabolization of cortisol enol aldehyde (Z-isomer) by mouse liver homogenates according to Singer et al.7

3902 M. Li et al. / Tetrahedron Letters 48 (2007) 3901–3905
betamethasone 17,21-dipropionate under alkaline condi-
tion; significant yields of enol aldehyde can be produced
instantaneously. This alkaline process, which has not
been reported in the literature according to our survey,
cannot be explained by the known Mattox rearrange-
ment mechanism. Therefore, formation of enol aldehyde
under alkaline condition must occur with a somewhat
different mechanism than the original Mattox rearrange-
ment. In this Letter, we propose the mechanism that is a
variation of the original Mattox rearrangement based
on the evidence obtained from our studies.

When a solution of betamethasone 17,21-dipropionate
in acetonitrile was treated with a small aliquot of 1 N
NaOH aqueous solution at room temperature, the Z-
and E-isomers of the enol aldehyde were formed imme-
diately and quickly reached yields of �30% and �10%
within approximately 20 min, respectively, as revealed
by LC–MS analysis of the reaction solution.8 The enol
aldehyde isomers thus formed were found to be identical
to those produced from betamethasone under acidic
conditions.9 For example, they displayed the two
characteristic UV absorbance maxima at �240 and
�275 nm regions (Fig. 1). In addition, their retention
times, MS/MS fragmentation patterns, and NMR spec-
tra were the same as those of enol aldehyde isomers gen-
erated under acidic conditions (Fig. 2 and Table 1).
Under the same alkaline condition, no enol aldehyde
was formed from either of the monoesters of betameth-
asone, that is, betamethasone 17-propionate and beta-
methasone 21-propionate, or from betamethasone
itself. On the other hand, treatment of betamethasone
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Figure 1. Photodiode array UV scans of the Z- and E-isomers of betamethaso
acidic stress condition as outlined in the legend of Figure 3. Enol aldehyde is
17,21-dipropionate under acidic conditions at room
temperature for 20 h resulted in the formation of 17-
monopropionate, 21-monopropionate, and betametha-
sone; no sign of enol aldehyde was observed, as revealed
by the HPLC monitoring of the reaction (Chromato-
gram B in Fig. 3).10 This clearly indicates a sequential
degradation pathway under the acidic conditions in
which the diester was first hydrolyzed into the two
monoesters and then betamethasone. Apparently, the
enol aldehyde was not formed until an appreciable
amount of betamethasone was built up in the reaction
solution, from which point enol aldehyde could start
to form in significant quantities from betamethasone.
Based on these results, a variation of the Mattox rear-
rangement mechanism is proposed in Scheme 3. Similar
to the original Mattox rearrangement under acidic con-
ditions, a presumed dipropionate enol or enolate inter-
mediate (6, Scheme 3) would be a prerequisite for this
variation of the Mattox rearrangement. The rearrange-
ment under the alkaline condition would then be trig-
gered by attack of a hydroxyl anion at the carbonyl of
21-propionyl moiety, followed by the rearrangement of
the enol double bond from the 20(21)-en position to
17(20)-en position which should result in the departure
of 17-oxygen in the form of propionate. In this revised
version of Mattox rearrangement, the 21-propionyl
apparently activates the molecule, which makes it sus-
ceptible to attack by a nucleophile at the carbonyl
group, while the 17-propionyl provides a good leaving
group for the 17-oxygen/hydroxyl. Based on this mech-
anism, both propionyl groups are critical for the rear-
rangement to occur, which can satisfactorily explain
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ne enol aldehyde (left and right scans, respectively) generated under the
omers generated under the alkaline condition showed identical spectra.



Table 1. 1H and 13C NMR Signal assignment for the Z- and E-isomers of betamethasone enol aldehyde1
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Z-Isomer (3)
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OHC

E-Isomer (4) 

No.2 Proton d (ppm) Carbon d (ppm) Proton d (ppm) Carbon d (ppm)

1 7.28, d, 10.1 Hz 152.71 7.28, d, 10.1 Hz 152.53
2 6.19, dd, 10.1, 1.9 Hz 129.01 6.20, dd, 10.1, 1.9 Hz 129.01
3 185.22 185.19
4 5.99, dd, 1.9, 1.2 Hz 124.16 5.99, dd, 1.9, 1 Hz 124.16
5 166.84 166.72
6 2.33, 2.63, m, m 30.13 2.33, 2.63 m, m 30.13
7 1.36, 1.85, m, m 27.05 1.36, 1.85 m, m 27.05
8 2.47, m, 2JHF = 30.3 Hz 33.04, 2JCF = 19.2 Hz 2.47, m, 2JHF = 30.4 Hz 32.84, 2JCF = 19.3 Hz
9 100.60, 1JCF = 174.3 Hz 100.77, 1JCF = 174.5 Hz
10 47.78 47.96
11 4.07, d, 3JHF = 10.6 Hz, 5.38

(OH), dd 4.1, 1.9 Hz
70.97, 2JCF = 37.1 Hz 4.10, d, 3JHF = 10 Hz 5.44

(OH), d, 3.8 Hz
70.28, 2JCF = 36.9 Hz

12 1.61, 2.60, dt 14.3, 3.5, 3.5 Hz;
dd 14.3, 2.2 Hz

41.01, 3JCF = 1 Hz 1.88, 2.29, d, 13 Hz; dd,
13, 2.3 Hz

44.61, 3JCF = 1 Hz

13 45.37 44.09
14 1.46, m 47.42, 3JCF = 1.5 Hz 1.48, m 47.72, 3JCF = 1.5 Hz
15 1.16, 1.96, m, m 33.83 1.12, 1.91, m, m 32.60
16 3.21, m 32.48 2.82, m 36.41
17 152.12 154.06
18 1.23, s 17.84 1.29, s 21.63
19 1.49, s 22.87 1.49, s 22.92
20 7.68 (OH), s 142.55 7.87 (OH), s 143.58
21 9.61, s 187.27 9.71, s 185.34
22 1.26, d, 7 Hz 27.05 1.21, d, 6.9 Hz 19.50

Notes: (1) 1H and 13C NMR spectra were obtained on a Varian Inova 500 spectrometer operating at a proton frequency of 500 MHz (carbon
frequency of 125 MHz) with a 3 mm carbon-proton dual probe. All spectra were taken at 25 �C on DMSO-d6 solutions of the compounds. The 2D
experiments, HMQC, HMQC–TOCSY and HMBC were used to establish the connectivity of the proton and carbon nuclei. 2D NOESY experiments
were used to establish the stereochemistry of the groups around the C17–C20 double bond. (2) The numbering of the steroid rings follows the usual
convention.
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Figure 2. MS/MS fragmentation patterns of the Z- and E-isomers of betamethasone (upper and lower spectra, respectively) generated under the
acidic stress condition as outlined in the legend of Figure 3. Enol aldehyde isomers generated under the alkaline condition showed identical spectra.
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Figure 3. The study for generation of betamethasone enol aldehyde from betamethasone 17,21-dipropionate and betamethasone under acidic
conditions: the compound to be stressed was dissolved in a mixture of acetonitrile and water (1/1, v/v) at a concentration of approximately 1 mg/mL.
To the above solution was added a 1/10 volume equivalent of concentrated sulfuric acid and the resulting solution was either allowed to stand at
room temperature or heated at 60 �C for up to 20 h. An aliquot of the reaction solutions was analyzed by a Waters HPLC system consisting of a
Model 2695 Separations Module, a Model 2996 photo diode array detector, and a YMC J’sphere ODS-H80, 150 · 4.6 mm, 3 lm column. Elution
was effected with a linear gradient generated between mobile phase A (acetonitrile/water, 25/75, v/v) and mobile phase B (acetonitrile/water, 70/30,
v/v); the percentage of mobile phase B was increased from an initial 0% to 100% over a period of 25 min. The flow rate was 1.5 mL/min.
Chromatograms: (A) Betamethasone 17,21-dipropionate before mixing with H2SO4; (B) betamethasone 17,21-dipropionate, 20 h after mixing with
H2SO4 at room temperature; (C) betamethasone, 20 h after mixing with H2SO4 at room temperature; (D) betamethasone 17,21-dipropionate, 20 h
after mixing with H2SO4 at 60 �C. Identities of the peaks: (a) betamethasone; (b) betamethasone sulfate; (c) betamethasone 17-propionate; (d)
betamethasone enol aldehyde, Z-isomer, (e) betamethasone enol aldehyde, E-isomer; (f) betamethasone 21-propionate; (g) betamethasone 17,21-
dipropionate. The identity of Peak b, betamethasone sulfate, was established by LC–MS only; its MS spectrum showed a peak at m/z 473 which
corresponds to a presumed covalent adduct between betamethasone and sulfate. Peak f (betamethasone 21-propionate) eluted at approximately the
same time as Peak e (betamethasone enol aldehyde, E-isomer). However, LC–MS data indicated that Peak f was homogenous (i.e., no betamethasone
enol aldehyde).
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Scheme 3. Formation of betamethasone enol aldehyde from betamethasone 17,21-dipropionate via the variation of Mattox rearrangement under
alkaline condition. Although the intermediate 6 is shown in the enol form, the corresponding enolate form is also possible. No enol aldehyde was
formed from either of the monoesters, that is, betamethasone 17-propionate and betamethasone 21-propionate, or from betamethasone itself under
the identical alkaline condition.
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the fact that none of the monoesters of betamethasone
or betamethasone itself undergoes the rearrangement
under this alkaline condition.
In summary, we have shown that the Mattox rearrange-
ment, which is a key degradation pathway under acidic
conditions for corticosteroids possessing the 1,3-dihy-
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droxyacetone side chain, would also occur for the 17,21-
diesters of these corticosteroids but under the alkaline
condition. This variation of the original Mattox rear-
rangement proposed in this Letter should facilitate the
understanding of the degradation behavior of relevant
corticosteroid 17,21-diesters, some of which are used
as the active pharmaceutical ingredients in many mar-
keted drug products.
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