Platinum Metal Thioether Macrocyclic Complexes: Synthesis, Electrochemistry, and Single-crystal X-Ray Structures of *cis*-[RhCl₂L²]PF₆ and *trans*-[RhCl₂L³]PF₆ (L² = 1,4,8,11-tetrathiacyclotetradecane, L³ = 1,5,9,13-tetrathiacyclohexadecane)[†]

Alexander J. Blake, Gillian Reid, and Martin Schröder*

Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ

Reaction of RhCl₂ with 1 mol equivalent of L [1,4,7,10-tetrathiacyclododecane (L^1) , 1,4,8,11-tetrathiacyclotetradecane (L²), and 1,5,9,13-tetrathiacyclohexadecane (L³)] in refluxing MeOH affords the rhodium(III) complex cations [RhCl₂L]⁺. The complex *cis*-[RhCl₂L²]PF₆ crystallises in the monoclinic space group C2/c, with a = 10.746(8), b = 11.298(5), c = 15.708(8)Å, $\beta = 92.00(5)^\circ$, and Z = 4. A single-crystal X-ray structure shows the cation sitting on a crystallographically imposed C_2 axis with octahedral Rh¹¹¹ bound to two mutually *cis* chloro ions [Rh-Cl 2.383 6(12) Å]. The tetrathia macrocycle adopts a folded conformation with S(1) and S(8) trans to chloride, Rh-S(1) 2.287 0(12) and Rh-S(4) 2.327 5(12) Å. The trans isomer has not been detected spectroscopically in reactions of Rh¹¹¹ with L¹ and L²; the tendency of these ligands to coordinate to second- and third-row transition-metal ions to form cis complexes is ascribed to the large radii of these metal ions relative to the cavity size of the 12-and 14-membered rings. This is confirmed by structural analysis of [RhCl₂L³]PF₆ which shows mutually trans chloro ligands, Rh-Cl 2.339 1 (22) Å. The complex trans-[RhCl₂L³]PF₆ crystallises in the monoclinic space group C2/c, with a = 11.950 7(20), b = 11.105 5(15), c = 16.206 7(18) Å, $\beta = 95.197(21)^\circ$, and Z = 4. The single-crystal X-ray structure shows Rh¹¹¹ on an inversion centre with the six-membered chelate rings of the macrocycle adopting alternate chair and twist-boat conformations, Rh–S(1) 2.348 3(25) and Rh–S(5) 2.348 3(27) Å.

As part of a study of the binding of polythioether macrocycles to platinum-group metal ions,1 we have investigated the incorporation of Rh^{III} into the 12-, 14-, and 16-membered ring tetrathia macrocycles 1,4,7,10-tetrathiacyclododecane (L¹), 1,4,8,11tetrathiacyclotetradecane (L²), and 1,5,9,13-tetrathiacyclohexadecane (L^3) . The insertion of Rh^{III} into L^2 has been reported previously by Travis and Busch² to afford a dichloro complex assigned as cis-[RhCl₂L²]⁺. The solid-state structure of the metal-free ligand L^2 shows the lone pairs on S directed away from the macrocyclic hole suggesting a tendency to exodentate binding of metal ions.³ Indeed, exodentate coordination of the ligand has been observed in $[Nb_2Cl_{10}L^2]$,⁴ $[Hg_2Cl_4L^2]^5$ and $[M_2Cl_2(C_5Me_5)_2L^2]^{2+}$ (M = Rh or Ir),¹ while endodentate binding occurs in the square-planar complexes of Ni^{II} , Cu^{II} , and Pd^{II} . The copper(I) species $[CuL^2]^+$ shows a chain structure with the tetrahedral metal centre bound to three thia donors of one ligand and one thia donor of another macrocycle.8

In view of the observation that cyclam (1,4,8,11-tetraazacyclotetradecane) binds Rh^{III} to afford *cis*- and *trans*-[RhCl₂(cyclam)]⁺ depending upon the reaction conditions,⁹ we wished to determine whether it might be possible to generate the complex *trans*-[RhCl₂L²]⁺. In addition, the synthesis of macrocyclic complexes incorporating two mutually *cis* labile sites is of particular interest with respect to potential carbonyl¹⁰ and hydride¹¹ insertion reactions at a metal template.

Related 16-membered tetrathia macrocycles have been shown recently to bind Mo^0 and Mo^{II} to give the *trans* complexes [MoL(CO)₂] and [MoX₂L] (X = Cl or Br;

 \dagger cis-Dichloro(1,4,8,11-tetrathiocyclotetradecane- $S^1S^4S^8S^{11}$)-

rhodium hexafluorophosphate and *trans*-dichloro(1,5,9,13-tetrathia-cyclohexadecane-S¹S⁵S⁹S¹³)rhodium hexafluorophosphate.

L = 3,3,7,7,11,11,15,15-octamethyl-1,5,9,13-tetrathiacyclohexadecane).¹² In view of the smaller ionic radius of Rh^{III} relative to Mo⁰ and Mo^{II}, we argued that the 16-membered macrocycle 1,5,9,13-tetrathiacyclohexadecane, L³, would be capable of binding Rh^{III} to yield a *trans* complex.

Results and Discussion

Reaction of RhCl₃·3H₂O with L^1 , L^2 , or L^3 in refluxing MeOH under N₂ afforded a bright yellow solution. Addition of an

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1989, Issue 1, pp. xvii—xx.

Figure 1. Single-crystal X-ray structure of cis-[RhCl₂L²]⁺ with the numbering scheme adopted. S(8)—C(14) are related to S(1)—C(7) by the crystallographic two-fold axis, as are Cl(1) and Cl(2)

Figure 2. Single-crystal X-ray structure of cis-[RhCl₂L²]⁺ with the numbering scheme adopted (alternative view)

Figure 3. Single-crystal X-ray structure of trans-[RhCl₂L³]⁺ with the numbering scheme adopted

excess of NH_4PF_6 in MeOH to the filtered solution gave a yellow precipitate which was recrystallised from MeCN. Elemental analysis of the product indicated the formation of the complexes [RhCl₂L]PF₆. Replacement of NH_4PF_6 with NaBPh₄ in the above preparation led to isolation of the corresponding BPh_4^- salts.

Fast-atom-bombardment mass spectroscopy of $[RhCl_2L^2]$ -PF₆ showed positive-ion peaks with the correct isotopic distributions at m/z 441, 406, and 370 corresponding to $[^{103}Rh^{35}Cl_2L^2]^+$, $[^{103}Rh^{35}ClL^2]^+$, and $[^{103}RhL^2 - H]^+$ respectively via successive loss of chloride ion. The ¹H n.m.r. spectrum of the BPh₄⁻ salt confirmed the ratio of one BPh₄⁻ anion to one L² ligand, while the ¹³C n.m.r. spectrum in CD₃CN showed five resonances for the methylene centres of the

Figure 4. Single-crystal X-ray structure of *trans*- $[RhCl_2L^3]^+$ with the numbering scheme adopted (alternative view)

macrocycle at δ 38.31, 30.10, 29.95, 29.85, and 23.84 p.p.m. indicating the presence of only one isomer in solution involving *cis*-dichloro ligands. The assignment of the cation as a *cis* isomer was suggested also by u.v.-visible spectral data which showed *d*-*d* absorption bands at $\lambda_{max.} = 362$ ($\varepsilon_{max.} = 949$), 319 (765), and a charge-transfer band at 260 nm ($\varepsilon_{max.} = 10$ 370 dm³ mol⁻¹ cm⁻¹). The magnitudes of the absorption coefficients for the *d*-*d* transitions are consistent with the lower-symmetry *cis* isomer; octahedral *d*⁶ complexes tend to show ⁹ lower absorption coefficients in *trans* configurations. The i.r. spectrum of the complex shows several weak bands in the range 270—350 cm⁻¹. It is difficult to assign these bands since both Rh–Cl and Rh–S stretching vibrations, v(Rh–Cl) and v(Rh–S), occur in this region of the spectrum.

In order to confirm the stereochemistry and conformation of the complex and to obtain bond-length distributions, a singlecrystal X-ray structural determination was undertaken. Single crystals of $[RhCl_2L^2]PF_6$ were obtained by recrystallisation of the complex from MeCN. Figures 1 and 2 give two views of the complex cation. The structural analysis confirms the cis configuration of the complex [Rh-Cl 2.383 6(12), Rh-S(1) 2.287 0(12), and Rh-S(4) 2.327 5(12) Å] with the Rh atom lying on a crystallographic two-fold axis. The folded tetrathia macrocycle is co-ordinated to the Rh^{III} via all four S-donors with the angles around the metal being close to octahedral. The conformation of L^2 in cis-[RhCl₂L²]⁺ is very similar to that observed in the related d^6 complexes cis-[RuCl₂L²],¹³ cis- $[IrCl_2L^2]^+$.¹⁴ The pattern of Rh–S bond lengths follows that observed for cis-[RuCl₂L²]¹³ and cis-[IrCl₂L²]⁺¹⁴ with Rh-S(1) trans to Cl(1) being 0.040(2) Å shorter than Rh-S(4) trans to S(11). This is consistent with overall π donation from Cl⁻ to Rh and through to the π -acceptor thioether donor atom.

On the basis of analytical data, and n.m.r., electronic, and mass spectroscopy, the rhodium(III) complex of L^1 is assigned as cis-[RhCl₂L¹]⁺.

Our studies on the complexation of Rh^{III} by the 12-and 14membered ring macrocycles indicate that the formation of octahedral *cis*-dichloro species is preferred. We have thus far been unable to detect the formation of *trans*-dichloro products, although such species have been isolated for rhodium(III) complexes of the tetra-aza ligands cyclam⁹ and tmc (tmc = tetramethylcyclam).¹⁵ This may reflect the smaller hole size of L² compared with tetra-aza ligands of the same ring size due to the greater van der Waals radius of S compared with N. These results suggested that tetrathia macrocycles with larger ring sizes might be required to achieve equatorial complexation of the platinum-group metal ions. We therefore undertook a spectroscopic and crystallographic study of $[RhCl_2L^3]PF_6$.

The u.v.-visible spectrum of $[RhCl_2L^3]^+$ shows a d-d transition at $\lambda_{max.} = 369$ nm with $\varepsilon_{max.} = 151$ dm³ mol⁻¹ cm⁻¹. The low absorption coefficient for this absorption band is consistent with a trans configuration of the Cl⁻ ligands at Rh^{III.9} In addition, the i.r. spectrum of the complex shows peaks at 365 and 305 cm⁻¹ tentatively assigned to Rh-S and Rh-Cl stretching vibrations, v(Rh-S) and v(Rh-Cl), respectively. The structure of trans-[RhCl₂L³]⁺ was confirmed by a single-crystal X-ray structural determination. Figures 3 and 4 show views of the complex cation which has the Rh atom lying on a crystallographic inversion centre. The tetrathia ligand is bound equatorially to the Rh^{III} [Rh-S(1) 2.348 3(25) and Rh-S(5) 2.348 3(27) Å] with the six-membered chelate rings adopting alternate chair and twist-boat conformations. The Cl⁻ ligands are mutually trans to one another with Rh-Cl(1) 2.339 1(22) Å. The ¹³C n.m.r. spectrum of the complex in CD₃NO₂ shows four resonances at δ 34.42, 32.27, 23.26, and 21.85 p.p.m. confirming retention of this stereochemistry in solution.

Reaction of RhCl₃ with L^4 ($\dot{L^4} = 1,7,10,13,16$ -hexathiacyclooctadecane) in refluxing MeCN for 24 h followed by addition of an excess of NH₄PF₆ affords a product tentatively assigned as [RhCl₂L⁴]PF₆. The fast-atom-bombardment mass spectrum of the isolated product shows peaks at m/z 534, 498, and 463 assigned to $[^{103}Rh^{35}Cl_2L^4 + H]^+$, $[^{103}Rh^{35}ClL^4]^+$, and [¹⁰³RhL⁴]⁺ respectively. Molecular peaks corresponding to dimeric species have not been observed. Identification of this product has been difficult since the analytical data were intermediate between the formulations $[RhCl_2L^4]PF_6$ and $[RhClL^4][PF_6]_2$. Weak bands are observed in the i.r. spectrum at 320 and 355 cm⁻¹ assigned to Rh-S or Rh-Cl stretching vibrations. However, from our limited experimental data on this system it appears that the formation of the homoleptic cation $[RhL^4]^{3+}$ is inhibited. This may be due to conformational constraints of the sexidentate macrocycle binding to a kinetically inert second-row (3+) transition-metal ion. In addition, deprotonation and ring opening of co-ordinated L⁴ can occur in the presence of Rh^{III}, thus reducing the potential yield of $[RhL^4]^+$.

Cyclic voltammetry of cis-[RhCl₂L]⁺ (L = L¹ or L²) in MeCN (0.1 mol dm⁻³ NBu^{n_4}PF₆) at platinum electrodes shows an irreversible reduction for each complex at $E_{pc} = -1.10$ and -1.18 V respectively, while for *trans*-[RhCl₂L³]⁺ a quasi-reversible reduction is observed at $E_{\frac{1}{2}} = -0.83$ V ($E_{pc} = -1.08$ V) vs. ferrocene-ferrocenium. No oxidation was observed for these complexes in the range 0-2.0 V vs. ferroceneferrocenium. Coulometry at 298 K indicated that the reduction of cis-[RhCl₂L²]⁺ and trans-[RhCl₂L³]⁺ is, in each case, a oneelectron process affording a highly reactive radical species. The e.s.r. spectrum of the reduction product of *trans*-[RhCl₂L²]⁺, measured as a MeCN glass at 77 K, shows a weak signal with $g_1 = 2.230, g_2 = 2.090$, and $g_3 = 2.003$ tentatively assigned to the formation, in low yield, of a d^7 rhodium(II) species. These reduction products are, however, extremely reactive, and their further characterisation was inhibited by decomposition reactions in solution. Coulometry showed the reduction of cis- $[RhCl_2L^1]^+$ to involve up to two electrons, with rapid decomposition of the redox product occurring in solution. The formation of reactive rhodium(II) species via loss of Cl⁻ ions from the metal centre is likely to be involved in these redox reactions. Indeed, a Cl-/0 couple is observed in the cyclic voltammogram of the reaction solution following reduction of $[RhCl_2L^2]^+$. Interestingly, the complex cation *trans*- $[RhCl_2(tmc)]^+$ shows a quasi-reversible Rh^{II} - Rh^{II} couple at -0.99 V vs. ferrocene-ferrocenium under the same conditions.¹⁵ This again may reflect the greater cavity size of the N_4 ligand versus its S_4 analogue, coupled with destabilisation of

Rh¹ in a tetra-aza co-ordination sphere. The synthesis of $[RhL^2]^+$ has been reported previously;¹⁶ the single-crystal X-ray structure of this species shows the Rh atom lying 0.133(2) Å above the S₄ plane of the macrocycle with additional intermolecular Rh · · · Rh and Rh · · · S interactions being observed in the solid state.¹⁶ Current work is aimed at elucidating the mechanisms of reduction of $[RhCl_2L]^+$ (L = tmc, L¹, L², or L³) and to probe the intermediacy of monomeric and dimeric rhodium(II) species in these reactions.

Experimental

Infrared spectra were measured as Nujol mulls, KBr and CsI discs using a Perkin-Elmer 598 spectrometer over the range 200-4 000 cm⁻¹. U.v.-visible spectra were measured in quartz cells using Perkin-Elmer Lambda 9 and Philips Scientific SP8-400 spectrophotometers. Microanalyses were performed by the Edinburgh University Chemistry Department microanalytical service. Electrochemical measurements were performed on a Bruker E310 Universal Modular Polarograph. All readings were taken using a three-electrode potentiostatic system in acetonitrile containing 0.1 mol dm⁻³ NBun₄PF₆ or NBun₄BF₄ as supporting electrolyte. Cyclic voltammetric measurements were carried out using a double platinum electrode and a Ag-AgCl reference electrode. All potentials are quoted versus ferrocene-ferrocenium. Mass spectra were run by electron impact on a Kratos MS 902 and by fast-atom-bombardment (f.a.b.) on a Kratos MS 50TC spectrometer. Proton and ¹³C n.m.r. spectra were obtained on Bruker WP80 and WP200 instruments.

Synthesis of cis-[RhCl₂L¹]PF₆.—Reaction of RhCl₃·3H₂O (0.043 g, 1.66 × 10⁻⁴ mol) in water (5 cm³) with L¹ (0.04 g, 1.66 × 10⁻⁴ mol) in refluxing MeOH (130 cm³) for 2 h afforded a bright yellow solution. Addition of an excess of NH₄PF₆ gave the product as a yellow precipitate which was collected and recrystallised from MeCN and dried *in vacuo*. Yield = 0.075 g, 81% {Found: C, 17.2; H, 2.90; S, 23.1. Calc. for [RhCl₂L¹]PF₆: C, 17.2; H, 2.90; S, 22.9%}. U.v.–visible spectrum (MeCN): λ_{max} 401 (ε_{max} = 1.781), 300 (sh) (1.165), and 250 nm (21.920 dm³ mol⁻¹ cm⁻¹). F.a.b. mass spectrum (matrix, 3-nitrobenzyl alcohol): Found *m*/*z* 413, 378; calc. for [¹⁰³Rh³⁵Cl₂L¹]⁺ *m*/*z* 413, for [¹⁰³Rh³⁵ClL¹]⁺ 378. N.m.r. (CD₃CN, 298 K): ¹H (80 MHz), δ 3.3—4.2 (16 H, CH₂, m); ¹³C (50.32 MHz), δ 44.41, 41.03, 36.08, and 35.16 p.p.m. (CH₂). Infrared spectrum (KBr disc): 2.990m, 2.925m, 1.410vs, 1.280m, 1.265m, 1.150w, 1.120w, 1.090m, 990w, 950w, 925m, 840vs, 555vs, 360m, 345m, 330m, 290m, and 270w cm⁻¹.

Synthesis of cis-[RhCl₂L²]PF₆.—To a refluxing solution of L^{2} (0.061 g, 2.28 × 10⁻⁴ mol) in MeOH (100 cm³) was added RhCl₃·3H₂O (0.06 g, 2.28×10^{-4} mol) in water (5 cm³). The reaction mixture was refluxed for 1 h under N₂ to afford a bright vellow solution which was filtered to remove insoluble chlorobridged polymer. Addition of an excess of NH₄PF₆ in MeOH yielded a yellow precipitate, which was collected, washed with methanol, recrystallised from MeCN, and dried in vacuo. Yield = 0.1 g, 75%. As reported by Busch and co-workers,² it is important that addition of RhCl₃ should occur to a refluxing solution of the ligand to minimise the formation of chlorobridged polymer species. Elemental analysis {Found: C, 20.4; H, 3.4; S, 21.4. Calc. for $[RhCl_2L^2]PF_6$: C, 20.4; H, 3.4; S, 21.8%]. U.v.-visible spectrum (MeCN): $\lambda_{max.} = 362$ ($\varepsilon_{max.} = 949$), 319 (765), and 260nm (10 370 dm³ mol⁻¹ cm⁻¹). Infrared spectrum (KBr disc): 3 000m, 2 940w, 2 920w, 1 430vs, 1 420vs, 1 400m, 1 360w, 1 300w, 1 280w, 1 270m, 1 240w, 1 190w, 1 160w, 1 130m, 1 100w, 1 020w, 1 010w, 985m, 930m, 840vs, 555vs, 460w, 370w, 310m, and 280m cm⁻¹.

Synthesis of cis-[RhCl₂L²]BPh₄.—The BPh₄⁻ salt was

Fable 1 .	. Bond lengths (A	Å), angles and t	orsion angles (o) with standard	deviations for cis-	RhCl ₂ L	2]+
------------------	-------------------	------------------	-----------------	------------------	---------------------	---------------------	-----

RhCl(1)	2.3836(12)	C(2)-C(3)	1.509(8)
Rh-S(1)	2.2870(12)	C(3)-S(4)	1.827(5)
RhS(4)	2.3275(12)	S(4)C(5)	1.816(6)
S(1)-C(2)	1.814(5)	C(5)-C(6)	1.525(8)
S(1)-C(14)	1.806(5)	C(6)-C(7)	1.510(8)
Cl(1)-Rh-S(1)	92.00(4)	Rh-S(1)-C(14)	108.96(18)
Cl(1) - Rh - S(4)	86.51(4)	C(2) - S(1) - C(14)	105.32(25)
Cl(1)-Rh-Cl(2)	92.01(4)	S(1) - C(2) - C(3)	107.7(4)
Cl(1)-Rh-S(8)	174.25(4)	C(2)-C(3)-S(4)	109.3(4)
Cl(1) - Rh - S(11)	88.72(4)	Rh-S(4)-C(3)	103.19(17)
S(1)-Rh-S(4)	87.40(4)	Rh-S(4)-C(5)	111.43(19)
S(1)-Rh-S(8)	84.32(4)	C(3)-S(4)-C(5)	103.1(3)
S(1)-Rh-S(11)	97.71(4)	S(4)-C(5)-C(6)	118.2(4)
S(4)-Rh-S(8)	97.71(4)	C(5)-C(6)-C(7)	115.9(5)
S(4)-Rh-S(11)	173.13(4)	C(6)-C(7)-S(8)	108.7(4)
Rh(1)-S(1)-C(2)	100.37(18)		
Cl(1)-Rh-S(1)-C(2)	60.09(18)	Cl(2)-Rh-S(4)-C(3)	175.39(18)
Cl(1)-Rh-S(1)-C(14)	-50.21(19)	Cl(2)-Rh-S(4)-C(5)	65.42(20)
S(4)-Rh-S(1)-C(2)	-26.32(18)	S(8)-Rh-S(4)-C(3)	83.55(18)
S(4)-Rh-S(1)-C(14)	-136.63(19)	S(8)-Rh-S(4)-C(5)	-26.42(21)
Cl(2)-Rh-S(1)-C(2)	-74.0(5)	S(11)-Rh-S(4)-C(3)	-138.6(4)
Cl(1)-Rh-S(8)-C(7)	175.7(4)	S(11)-Rh-S(4)-C(5)	111.4(4)
S(8)-Rh-S(1)-C(2)	-124.35(18)	C(2)-S(1)-C(14)-C(13)	-173.9(4)
S(8)-Rh-S(1)-C(14)	125.36(19)	S(1)-C(2)-C(3)-S(4)	-60.9(4)
S(11)-Rh-S(1)-C(2)	149.07(18)	C(2)-C(3)-S(4)-Rh	34.5(4)
S(11)-Rh-S(1)-C(14)	38.77(19)	C(2)-C(3)-S(4)-C(5)	150.6(4)
Cl(1)-Rh-S(4)-C(3)	-92.52(18)	Rh-S(4)-C(5)-C(6)	40.0(5)
Cl(1)-Rh-S(4)-C(5)	157.51(20)	C(3)-S(4)-C(5)-C(6)	-70.1(5)
S(1)-Rh-S(4)-C(3)	-0.36(18)	S(4)-C(5)-C(6)-C(7)	- 70.9(6)
S(1)-Rh-S(4)-C(5)	-110.33(20)	C(5)-C(6)-C(7)-S(8)	85.1(5)

Table 2. Fractional co-ordinates with standard deviations for cis-[RhCl₂L²]⁺

Atom	x	У	Z
Rh	0.0	0.453 14(4)	0.25
Cl(1)	0.078 34(11)	0.599 69(10)	0.346 99(7)
S(1)	0.056 36(11)	0.303 09(10)	0.341 15(7)
C(2)	-0.0343(5)	0.341 5(5)	0.432 5(3)
C(3)	-0.1689(5)	0.349 8(5)	0.402 5(3)
S(4)	-0.18558(12)	0.465 48(9)	0.321 58(8)
C(5)	-0.316 7(5)	0.414 5(5)	0.255 4(4)
C(6)	-0.298 5(5)	0.306 0(5)	0.199 4(3)
C(7)	-0.2169(5)	0.323 3(5)	0.124 1(3)
P(1)	0.0	0.0	0.5
F(1)	0.112 7(3)	0.070 7(3)	0.461 85(24)
F(2)	0.094 4(4)	-0.0631(3)	0.564 91(25)
F(3)	-0.018 8(4)	0.103 9(3)	0.565 01(21)

prepared by using NaBPh₄ instead of NaPF₆ in the above preparation {Found: C, 53.4; H, 5.4; Cl, 9.7; S, 16.9. Calc. for [RhCl₂L²]BPh₄: C, 53.6; H, 5.25; Cl, 9.3; S, 16.8%}. F.a.b. mass spectrum (3-NOBA matrix): found: m/z 441, 406, and 370; calc. for $[^{103}Rh^{35}Cl_2L^2]^+ m/z$ 441, for $[^{103}Rh^{35}Cl_2L^2]^+$ 406, and for $[^{103}RhL^2 - H]^+$ 370. N.m.r. (CD₃CN): ¹H (80 MHz, 298 K), δ 6.8—7.7 (20 H, BPh₄⁻, m) and 2.5—3.6 (20 H, CH₂, m); ¹³C (50.32 MHz, 333 K), δ 38.31, 30.10, 29.95, 29.85, and 23.84 p.m. (CH₂).

X-Ray Structure Determination of cis-[RhCl₂L²]PF₆.—A bright yellow crystal ($0.50 \times 0.50 \times 0.30$ mm) suitable for X-ray analysis was obtained by recrystallisation from MeCN.

Crystal data. $C_{10}H_{20}Cl_2RhS_4^+PF_6^-$, M = 587.284, monoclinic, space group C2/c, a = 10.746(8), b = 11.298(5), c = 15.708(8) Å, $\beta = 92.00(5)^\circ$, U = 1.905.92 Å³ [from diffractometer angles for 12 centred reflections with $2\theta = 30-33^\circ$ ($\lambda =$ 0.710 73 Å)], $D_c = 2.047$ g cm⁻³, Z = 4, F(000) = 1.168, $\overline{\lambda}(M_0-K_{\alpha}) = 0.710$ 73 Å, $\mu = 16.5$ cm⁻¹.

Data collection and processing. Stoë STADI-4 four-circle diffractometer. After determination of an accurate orientation matrix, 1 320 independent data (h - 12 to 12, k 0 to 12, l 0 to 17) were collected to $2\theta = 45^{\circ}$ using $\omega - \theta$ scans with ω scan width $(2.0 + 0.35 \tan \theta)^{\circ}$. Data reduction yielded 1 161 reflections with $F \ge 6\sigma(F)$ which were used for solution and refinement of the structure. No significant crystal decay, no absorption correction.

Structure analysis and refinement. The position of the Rh atom was obtained from a Patterson synthesis. Subsequent iterative rounds of least-squares refinement and difference Fourier synthesis¹⁷ located all remaining atoms, including H atoms which were then refined positionally but with a fixed, isotropic thermal parameter ($U = 0.08 \text{ Å}^2$). All non-H atoms were refined anisotropically. Both the PF_6^- counter ion and the $[RhCl_2L^2]^+$ cation were ordered. The weighting scheme $w^{-1} =$ $\sigma^2(F) + 0.000\ 076F^2$ gave satisfactory analyses. At convergence, R, R' = 0.0311 and 0.0461 respectively for 141 parameters, S = 1.191. The maximum and minimum residues in the final ΔF synthesis were +0.84 and -0.50 e Å⁻³ respectively. The Rh atom lies on a crystallographic two-fold axis while the P of the PF_6^- counter ion occupies a crystallographic inversion centre. Illustrations were prepared using ORTEP,¹⁸ molecular geometry calculations utilised CALC,¹⁹ and scattering factor data were taken from ref. 20. Bond lengths, angles, torsion angles, and fractional co-ordinates are given in Tables 1 and 2.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates and thermal parameters.

Synthesis of trans-[RhCl₂L³]PF₆.—Reaction of RhCl₃·3H₂O (0.035 g, 1.35×10^{-4} mol) in water (5 cm³) with L³ (0.04 g, 1.35×10^{-4} mol) in refluxing EtOH (150 cm³) for 1 h afforded a

Table 3. Bond lengths (Å), angles and torsion angles (°) with standard deviations for *trans*- $[RhCl_2L^3]^+$

Rh–Cl(1)	2.339 1(22)	S(5)-C(6)	1.800(14)
Rh-S(1)	2.348 3(25)	C(2)-C(3)	1.517(21)
Rh-S(5)	2.348 3(27)	C(3) - C(4)	1.514(22)
S(1) - C(2)	1.811(13)	C(6)-C(7)	1.507(22)
S(1)-C(8')	1.832(14)	C(7)-C(8)	1.501(22)
S(5)-C(4)	1.807(15)		
Cl(1)-Rh-S(1)	92.88(8)	C(4)-S(5)-C(6)	97.2(6)
Cl(1)-Rh-S(5)	92.72(8)	S(1)-C(2)-C(3)	112.1(10)
S(1)-Rh-S(5)	90.31(9)	C(2)-C(3)-C(4)	114.8(13)
Rh-S(1)-C(2)	110.1(4)	S(5)-C(4)-C(3)	115.1(11)
Rh-S(1)-C(8')	104.5(5)	S(5)-C(6)-C(7)	111.8(10)
C(2)-S(1)-C(8')	97.1(6)	C(6)-C(7)-C(8)	115.0(13)
Rh-S(5)-C(4)	110.0(5)	S(1')-C(8)-C(7)	112.4(10)
Rh-S(5)-C(6)	105.1(4)		
Cl(1)-Rh-S(1)-C(2)	45.3(4)	Rh-S(1)-C(2)-C(3)	65.6(10)
Cl(1)-Rh-S(1)-C(8')	- 58.0(5)	C(8')-S(1)-C(2)-C(3)	173.9(11)
S(5)-Rh-S(1)-C(2)	-47.5(4)	Rh-S(1')-C(8)-C(7)	80.5(11)
S(5)-Rh-S(1)-C(8')	-150.8(5)	C(2')-S(1')-C(8)-C(7)	166.6(11)
Cl(1)-Rh-S(1')-C(8)	- 122.0(5)	Rh-S(5)-C(4)-C(3)	-61.7(12)
S(5)-Rh-S(1')-C(8)	-29.2(5)	C(6)-S(5)-C(4)-C(3)	-170.7(11)
Cl(1)-Rh-S(5)-C(4)	-47.9(5)	Rh-S(5)-C(6)-C(7)	81.4(10)
Cl(1)-Rh-S(5)-C(6)	55.8(5)	C(4)-S(5)-C(6)-C(7)	-165.5(11)
S(1)-Rh-S(5)-C(4)	45.0(5)	S(1)-C(2)-C(3)-C(4)	-76.1(14)
S(1)-Rh-S(5)-C(6)	148.7(5)	C(2)-C(3)-C(4)-S(5)	74.9(15)
S(1')-Rh-S(5)-C(4)	-135.0(5)	S(5)-C(6)-C(7)-C(8)	-42.8(16)
S(1')-Rh-S(5)-C(6)	- 31.3(5)	C(6)-C(7)-C(8)-S(1')	-44.0(16)

Primed atoms are related to their unprimed equivalents by inversion through $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$.

Table 4. Atomic co-ordinates with standard deviations for *trans*- $[RhCl_2L^3]^+PF_6^-$

Atom	x	У	Z
Rh	0.5000	0.5000	0.5000
Cl(1)	0.626 75(18)	0.559 42(22)	0.405 95(12)
S(1)	0.501 37(20)	0.690 42(22)	0.563 09(16)
S(5)	0.343 48(19)	0.556 0(3)	0.410 11(14)
C(2)	0.489 2(12)	0.807 3(9)	0.484 9(8)
C(3)	0.376 5(15)	0.804 2(13)	0.433 8(11)
C(4)	0.363 9(11)	0.705 1(15)	0.369 5(8)
C(6)	0.358 1(10)	0.474 4(16)	0.315 7(6)
C(7)	0.316 8(11)	0.346 6(20)	0.320 7(10)
C(8)	0.350 9(10)	0.283 4(12)	0.400 9(10)
P(1)	0.5000	0.021 2(3)	0.2500
F(1)	0.611 8(5)	0.022 0(6)	0.205 2(4)
F(2)	0.434 0(7)	0.025 7(11)	0.164 0(5)
F(3)	0.5000	-0.1144(10)	0.2500
F(4)	0.5000	0.160 9(10)	0.2500

bright yellow solution. Addition of an excess of NH_4PF_6 gave the product as a yellow precipitate which was collected and recrystallised from MeCN and dried *in vacuo*. Yield = 0.060 g, 72% {Found: C, 23.6; H, 3.90. Calc. for [RhCl₂L³]PF₆: C, 23.4; H, 3.95%}. U.v.-visible spectrum (MeCN): $\lambda_{max.} = 369$ ($\epsilon_{max.} =$ 151), 278 (38 290), and 232 nm (18 930 dm³ mol⁻¹ cm⁻¹). F.a.b. mass spectrum (3-NOBA matrix): found *m*/*z* 469, 434, and 399; calc. for [¹⁰³Rh³SCl₂L³]⁺ *m*/*z* 469, for [¹⁰³Rh³⁵ClL³]⁺ 434, and for [¹⁰³RhL³]⁺ 399. N.m.r. (298 K): ¹H (CD₃CN, 80 MHz), δ 2.3--3.7 (24 H, CH₂, m); ¹³C (CD₃NO₂, 50.32 MHz), δ 34.42, 32.27, 23.26, and 21.85 p.p.m. (CH₂). Infrared spectrum (KBr disc): 2 980w, 2 920m, 2 840w, 1 430vs, 1 405m, 1 310m, 1 290m, 1 255w, 1 240m, 1 195w, 1 160m, 1 120w, 1 080w, 1 020m, 840vs, 555vs, 365m, 305m, and 270w cm⁻¹.

X-Ray Structure Determination of trans-[RhCl₂L³]PF₆.—A bright yellow crystal $(0.23 \times 0.15 \times 0.15 \text{ mm})$ suitable for

X-ray analysis was obtained by recrystallisation from MeCN. *Crystal data*. $C_{12}H_{24}Cl_2RhS_4^+PF_6^-$, M = 615.34, monoclinic, space group C2/c, a = 11.9507(20), b = 11.1055(15), c = 16.2067(18) Å, $\beta = 95.197(21)^\circ$, U = 2142.08 Å³ [from 20

 $c = 16.206 / (18) \text{ A}, \beta = 95.19 / (21), C = 214 2.08 \text{ A}^{\circ} [170\text{ m} 26]$ values of 30 reflections measured at $\pm \omega$ (2 $\theta = 21-30^{\circ}, \bar{\lambda} = 0.710 73 \text{ Å}$)], $D_c = 1.908 \text{ g cm}^{-3}, Z = 4, F(000) = 1 232, \bar{\lambda}(\text{Mo-}K_{\alpha}) = 0.710 73 \text{ Å}, \mu = 14.72 \text{ cm}^{-1}$.

Data collection and processing. Stoë STADI-4 four-circle diffractometer. After determination of an accurate orientation matrix, 1 549 independent data (h - 12 to 12, k 0 to 11, l 0 to 17) were collected to $2\theta = 45^{\circ}$ using $\omega - 2\theta$ scans with ω scan width (1.20 + 0.347 tan θ)°. Data reduction yielded 1 067 reflections with $F \ge 6\sigma(F)$ which were used for solution and refinement of the structure. No significant crystal decay, no absorption correction.

Structure analysis and refinement. Analysis of intensity statistics clearly indicated the position of the Rh atom; using this information as input DIRDIF²¹ successfully located the Cl, S, and P atoms. Subsequent interative rounds of least-squares refinement and difference Fourier synthesis¹⁷ located all other non-H atoms. All non-H atoms were refined anisotropically; H atoms were included in fixed, calculated positions.¹⁷ The weighting scheme $w^{-1} = \sigma^2(F) + 0.000 \, 475 F^2$ gave satisfactory analyses. At convergence, R, R' = 0.0396 and 0.0536 respectively for 121 parameters, S = 1.202. The maximum and minimum residues in the final ΔF synthesis were +0.80 and - 0.51 e Å⁻³ respectively. The Rh atom sits on an inversion centre, with the PF_6^- counter ion having a two-fold axis through the P and two F atoms. Illustrations were prepared using ORTEP,¹⁸ molecular geometry calculations utilised CALC,¹⁹ and scattering factor data were taken from ref. 20. Bond lengths, angles, torsion angles, and fractional co-ordinates are given in Tables 3 and 4.

Acknowledgements

We thank the S.E.R.C. for support, and Johnson Matthey plc for generous loans of platinum metals.

1680

- M. Schröder, *Pure Appl. Chem.*, 1988, **60**, 517; M. N. Bell, A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, A. J. Lavery, G. Reid, and M. Schröder, *J. Inclusion Phenomena*, 1987, **5**, 169 and refs. therein.
- 2 K. Travis and D. H. Busch, *Inorg. Chem.*, 1974, **13**, 2591; W. D. Lemke, K. E. Travis, N. E. Takvoryan, and D. H. Busch, *Adv. Chem. Ser.*, 1977, **150**, 358.
- 3 R. E. DeSimone and M. D. Glick, J. Am. Chem. Soc., 1976, 98, 762.
- 4 R. E. DeSimone and M. D. Glick, J. Am. Chem. Soc., 1975, 97, 942.
- 5 N. W. Alcock, N. Herron, and P. Moore, J. Chem. Soc., Chem. Commun., 1976, 886.
- 6 P. H. Davis, K. L. White, and R. L. Bedford, *Inorg. Chem.*, 1975, 14, 1753.
- 7 M. D. Glick, D. P. Gavel, L. L. Diaddario, and D. B. Rorabacher, *Inorg. Chem.*, 1976, **15**, 1190.
- 8 E. R. Dockal, L. L. Diaddario, M. D. Glick, and D. B. Rorabacher, J. Am. Chem. Soc., 1977, 99, 4530.
- 9 E. J. Bounsall and S. R. Koprich, *Can. J. Chem.*, 1970, **44**, 1481; P. K. Bhattacharya, *J. Chem. Soc., Dalton Trans.*, 1980, 810; M. E. Sosa and M. L. Tobe, *ibid.*, 1986, 427; M. J. Rosales, M. E. Sosa, and M. L. Tobe, *J. Coord. Chem.*, 1987, **16**, 59.
- 10 A. J. Blake, T. I. Hyde, R. S. E. Smith, and M. Schröder, J. Chem. Soc., Chem. Commun., 1986, 334.
- 11 A. J. Blake, T. I. Hyde, and M. Schröder. J. Chem. Soc., Dalton Trans., 1988, 1165.

- 12 T. Yoshida, T. Adachi, T. Ueda, M. Watanabe, M. Kaminaka, and T. Higuchi, *Angew. Chem.*, 1987, **99**, 1182; *Angew. Chem., Int. Ed. Engl.*, 1987, **26**, 1171.
- 13 T. F. Lai and C. K. Poon, J. Chem. Soc., Dalton Trans., 1982, 1465.
- 14 A. J. Blake, R. O. Gould, G. Reid, and M. Schröder, J. Organomet. Chem., 1988, 356, 389.
- 15 A. J. Blake, G. Reid, and M. Schröder, J. Chem. Soc., Dalton Trans., 1988, 1561.
- 16 T. Yoshida, T. Ueda, T. Adachi, K. Yamamoto, and T. Higuchi, J. Chem. Soc., Chem. Commun., 1985, 1137.
- 17 SHELX 76, Program for Crystal Structure Determination, G. M. Sheldrick, University of Cambridge, 1976.
- 18 ORTEP II, interactive version, P. D. Mallinson and K. W. Muir, J. Appl. Cryst., 1985, 18, 51.
- 19 CALC, Fortran 77 version, R. O. Gould and P. Taylor, University of Edinburgh, 1985.
- 20 D. T. Cromer and J. L. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.
- 21 DIRDIF, P. T. Beurskens, W. P. Bosman, H. M. Doesbury, Th. E. M. van den Hark, P. A. J. Prick, J. H. Noordik, G. Beurskens, R. O. Gould, and V. Parthasarathia, 'Applications of Direct Methods to Difference Structure Factors,' University of Nijmegen, 1983.

Received 8th July 1988; Paper 8/02739K