# **ARTICLE IN PRESS**

## Bioorganic & Medicinal Chemistry Letters xxx (2017) xxx-xxx





# Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

# Synthesis and biological evaluation of kresoxim-methyl analogues as novel inhibitors of hypoxia-inducible factor (HIF)-1 accumulation in cancer cells

Sanghyuck Lee<sup>a</sup>, Oh Seok Kwon<sup>b</sup>, Chang-Soo Lee<sup>b</sup>, Misun Won<sup>c</sup>, Hyun Seung Ban<sup>d,e,\*</sup>, Choon Sup Ra<sup>a,\*</sup>

<sup>a</sup> School of Chemistry and Biochemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan-si, Gyeongbuk 38541, Republic of Korea

<sup>b</sup> Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea

<sup>c</sup> Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea

<sup>d</sup> Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea

<sup>e</sup> Biomolecular Science, University of Science and Technology, Daejeon 34113, Republic of Korea

## ARTICLE INFO

Article history: Received 26 March 2017 Revised 6 May 2017 Accepted 8 May 2017 Available online xxxx

Keywords: Kresoxim analogues Cancer Hypoxia-inducible factor-1 inhibitor Mitochondrial respiration

## ABSTRACT

We designed and synthesized strobilurin analogues as hypoxia-inducible factor (HIF) inhibitors based on the molecular structure of kresoxim-methyl. Biological evaluation in human colorectal cancer HCT116 cells showed that most of the synthesized kresoxim-methyl analogues possessed moderate to potent inhibitory activity against hypoxia-induced HIF-1 transcriptional activation. Three candidates, compounds **11b**, **11c**, and **11d** were identified as potent inhibitors against HIF-1 activation with IC<sub>50</sub> values of 0.60–0.94  $\mu$ M. Under hypoxic condition, compounds **11b**, **11c**, and **11d** increased the intracellular oxygen contents, thereby attenuating the hypoxia-induced accumulation of HIF-1 $\alpha$  protein. © 2017 Elsevier Ltd. All rights reserved.

Most solid tumors contain hypoxic regions within the tumor microenvironment and cancer cells adapted to hypoxia are highly resistant to chemotherapy and radiotherapy.<sup>1</sup> Hypoxia-inducible factor (HIF)-1 $\alpha$  is a key regulator of the adaptation of cancer cells to hypoxia.<sup>2</sup> Under normoxic condition, hydroxylation of HIF-1 $\alpha$ by prolyl hydroxylase (PHD) allows the recruitment of ubiquitin ligase von Hippel Lindau (VHL), and then HIF-1 $\alpha$  undergoes ubiquitin and proteasome-dependent degradation.<sup>3,4</sup> Under hypoxic condition, stabilized HIF-1 $\alpha$  translocates into the nucleus and dimerizes with HIF-1 $\beta$ . The HIF-1 $\alpha/\beta$  heterodimer binds to hypoxia-response element (HRE) and induces transcription of a large number of genes implicated in tumor angiogenesis, glucose metabolism, cell survival and metastasis.<sup>2</sup> Therefore, HIF-1 is an attractive molecular target for cancer treatment, and various HIF-1 inhibitors have been developed.<sup>5,6</sup>

Strobilurins, natural products isolated from fungi, are commercial quinone outside inhibitor (Q<sub>0</sub>I) fungicides.<sup>7</sup> The strobilurin mechanism of action is an inhibition of fungal respiration by bind-

\* Corresponding authors at: Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea (H.S. Ban) and School of Chemistry and Biochemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan-si, Gyeongbuk 38541, Republic of Korea (C.S. Ra).

E-mail addresses: banhs@kribb.re.kr (H.S. Ban), csra@yu.ac.kr (C.S. Ra).

http://dx.doi.org/10.1016/j.bmcl.2017.05.024 0960-894X/© 2017 Elsevier Ltd. All rights reserved. ing to cytochrome b complex at the  $Q_0$  site of complex III in the electron transport chain (ETC) of mitochondria.<sup>8</sup> Of note, in spite of a broad spectrum of fungicidal activity through the inhibition of respiration, strobilurins induce low toxicity towards mammalian cells.<sup>8,9</sup> Various biological activities of strobilurin derivatives have been reported including antimalarial,<sup>10</sup> antimicrobial,<sup>11</sup> and anticancer activity.<sup>12</sup> Until now, several synthetic strobilurins have been developed, and among them, kresoxim-methyl is one of the most widely used strobilurin fungicides.<sup>13</sup>

Our research has been focused on the development of a small molecule-based HIF-1 inhibitor having an inhibitory activity against mitochondrial respiration. From the results of our previous studies, the inhibition of mitochondrial respiration could lead to the degradation of the HIF-1 $\alpha$  protein in cancer cells,<sup>14–16</sup> indicating that regulation of mitochondria respiration is a promising approach for treatment of hypoxic cancer. In this study, we designed and synthesized kresoxim-methyl analogues as inhibitors of HIF-1 $\alpha$  accumulation, and evaluated their HIF inhibitory activity and anti-proliferative activity in cancer cells under hypoxic condition.

Chemical synthesis of a precursor **5**, (2-bromomethylphenyl) methoxyiminoacetic acid methyl ester, leading to kresoximmethyl analogues was made using a well-known literature

S. Lee et al./Bioorganic & Medicinal Chemistry Letters xxx (2017) xxx-xxx



Scheme 1. Reagents and conditions: (a) NaCN, Aliquat 336, DCM, H<sub>2</sub>O, rt, 2 h; (b) 85% H<sub>2</sub>SO<sub>4</sub>, NaBr, rt, 2 h; MeOH, 65 °C, 2 h; (c) MeONH<sub>2</sub>·HCl, MeOH, 65 °C, 12 h; (d) NBS, AIBN, CCl<sub>4</sub>, 80 °C, 12 h, 70%.



Scheme 2. Reagents and conditions: (a) o-methoxyamine hydrochloride, MeOH, 65 °C, 12 h; (b) 5, K<sub>2</sub>CO<sub>3</sub>, acetone, 60 °C, 12 h.



Scheme 3. Reagents and conditions: (a) R-Br, K<sub>2</sub>CO<sub>3</sub>, acetone, 60 °C, 12 h; (b) 5, K<sub>2</sub>CO<sub>3</sub>, acetone, 60 °C, 12 h.

procedure.<sup>17</sup> In these sequences, commercially available *o*-toluoyl chloride was converted to **5** via a four-step route on a multigram scale without column chromatography (Scheme 1). Cyanation of *o*-toluoyl chloride **1** with sodium cyanide and aliquat 336 in dichloromethane and water (1:1 v/v) quantitatively yielded benzoyl cyanide **2**, which was converted to keto ester **3** by treatment with a methanolic solution of sodium bromide and sulfuric acid. Reaction of **3** with *o*-methylhydroxylamine hydrochloride gave the corresponding imine in a mixture of E/Z = 85:15, and following recrystallization from dichloromethane and hexane to afford (*E*)-methyl 2-methoxyimino-2-*o*-tolylacetate **4**. The benzylic radical bromination of **4** using the Wohl–Ziegler procedure with *N*-bromosuccinimide (NBS) yielded **5** in a good yield.

Reaction of phenolic carbonyl compounds **6** with *o*-methoxyamine hydrochloride in methanol gave their corresponding oximes **7** in good yields and resorcinol was converted into its benzylic derivatives **10** in modest to good yields. Finally oximes **7**, resorcinol (**9**) and its benzylic derivatives **10** were reacted with **5** in the presence of potassium carbonate in acetone to afford kresoximmethyl analogues **8** and **11**, respectively, in modest yields (Schemes 2 and 3).

We next evaluated the biological activity of the synthesized kresoxim-methyl analogues. First, we examined the effects on hypoxia-induced transcriptional activation of HIF-1 using a cell-based HRE reporter gene assay in human colorectal cancer HCT116 cells; the results are shown in Table 1. Under hypoxic conditions, 2-hydroxy compound (**11f**) showed moderate inhibitory activity against HIF-1 activation. Replacement of the hydroxyl group to methyl oxime significantly increased the HIF-1 inhibitory activity (**8a** and **8b**). However, introduction of methoxy group into R<sup>1</sup> position (**8c**) resulted in reduction of the inhibitory activity. Furthermore, the addition of benzyloxy substituents on R<sup>2</sup> position (**11a–11d**) also showed significant inhibitory activity. Among

#### Table 1

Effects of kresoxim-methyl analogues on the hypoxia-induced HIF transcriptional activation and cancer cell growth.



| Cmpd      | R <sup>1</sup>   | R <sup>2</sup>                             | HRE-Luc <sup>a</sup> $IC_{50} (\mu M)^b$ |
|-----------|------------------|--------------------------------------------|------------------------------------------|
| 11f<br>8a | H<br>H           | OH<br>N−O                                  | 9.16 ± 0.95<br>3.40 ± 0.20               |
| 8b        | Н                | N-O                                        | 4.52 ± 0.15                              |
| 8c        | OCH <sub>3</sub> | N−0<br>-€                                  | $14.88 \pm 0.19$                         |
| 11a       | Н                | 20                                         | $1.12 \pm 0.57$                          |
| 11b       | Н                | 2 V V CI                                   | 0.60 ± 0.25                              |
| 11c       | Н                | 20                                         | $0.87 \pm 0.28$                          |
| 11d       | Н                | CF <sub>3</sub>                            | $0.94 \pm 0.15$                          |
|           |                  | <sup>3</sup> <sup>2</sup> <sup>0</sup> CF₃ |                                          |
| 11e       | Н                | λ <sub>2</sub> Ο∕CN ,                      | >20                                      |

<sup>a</sup> HIF transcriptional activity was determined using HCT116 cells stably transfected with HRE-Luc.

Please cite this article in press as: Lee S., et al. Bioorg. Med. Chem. Lett. (2017), http://dx.doi.org/10.1016/j.bmcl.2017.05.024

<sup>&</sup>lt;sup>b</sup> The drug concentrations required to inhibit HIF activation by 50% ( $IC_{50}$ ) was determined from the semilogarithmic dose-response plots, and the results are means ± SD of triplicate samples.

S. Lee et al./Bioorganic & Medicinal Chemistry Letters xxx (2017) xxx-xxx



**Fig. 1.** Effects of kresoxim-methyl analogues on intracellular oxygen tension. HCT116 cells were treated with the indicated concentration of compound **11b** (A) or  $5 \mu$ M compounds **11c**, **11d**, and **11e** (B) for 6 h under hypoxic conditions. The intracellular oxygen tension was detected by hypoxia-sensitive probe MAR (0.5  $\mu$ M). Nuclei were stained with NUCLEAR-ID Red DNA stain. The scale bar indicates 100  $\mu$ m. (C) The fluorescence intensity ratios of MAR probe to NUCLEAR-ID are shown by vertical bars. Statistical significance: <sup>\*\*</sup>P < 0.01, compared with hypoxia control.

them, compound **11b** containing 4-chloro-benzyloxy exerted the most potent inhibitory activity with an IC<sub>50</sub> value of 0.6  $\mu$ M. However, cyanide (**11e**) did not show any influence on hypoxia-induced HIF activation.

To assess ability of the synthesized compounds to regulate intracellular oxygen, we determined the oxygen level in cancer cells using a hypoxia-sensitive fluorescence probe, mono azo rhodamine (MAR).<sup>18</sup> The results are shown in Fig. 1. Under normoxia, the MAR probe is non-fluorescent, but it turns fluorescent due to the reduction of the azo group when exposed to hypoxic conditions. Effects of kresoxim-methyl analogues on the change of intracellular oxygen levels were determined. As shown in Fig. 1A, compound **11b** at 1–5  $\mu$ M attenuated the reduction of the MAR probe, indicating that the intracellular oxygen level increased in a concentration-dependent manner. In addition, compounds **11c** 

and **11d** at 5  $\mu$ M potently enhanced the oxygen level, but compound **11e** at 5  $\mu$ M did not (Fig. 1B). The fluorescent intensity ratio of MAR probe to NUCLEAR-ID is presented in Fig. 1C. Furthermore, other kresoxim-methyl analogues at 5  $\mu$ M also regulated the intracellular oxygen levels in parallel with the HIF inhibition (Supplementary Fig. S1). These results indicate that the inhibitory effect of HIF activation by kresoxim-methyl analogues is mediated by regulation of intracellular oxygen tension.

We next explored whether the increased oxygen by kresoximmethyl analogues lead to degradation of the HIF-1 $\alpha$  protein in hypoxic cells. As shown in Fig. 2, incubation of HCT116 cells under hypoxia for 6 h significantly induced accumulation of HIF-1 $\alpha$  protein. Under these conditions, treatment with compounds **11b**, **11c**, and **11d** at 1 to 5  $\mu$ M suppressed the hypoxia-induced HIF-1 $\alpha$  accumulation in a concentration-dependent manner, while compound

# **ARTICLE IN PRESS**

S. Lee et al. / Bioorganic & Medicinal Chemistry Letters xxx (2017) xxx-xxx



**Fig. 2.** Effects of kresoxim-methyl analogues on the hypoxia-induced accumulation of HIF-1 $\alpha$  protein. HCT116 cells were incubated for 6 h in the presence of each compound. The protein levels of HIF-1 $\alpha$  and  $\beta$ -tubulin were detected by immunoblot analysis with specific antibodies.



**Fig. 3.** Effects of kresoxim-methyl analogues on cancer cell viability. HCT116 cells were incubated for 72 h in the presence of each kresoxim-methyl analogue. The cell viability was determined by a methylene blue assay.

**11e** did not have an effect at 5  $\mu$ M. These results indicate that the enhancement of intracellular oxygen tension by kresoxim-methyl analogues promotes the ubiquitin-dependent proteasomal degradation of HIF-1 $\alpha$ .

Next, the effects of kresoxim-methyl analogues on cell growth were examined in HCT116 cells. As shown in Fig. 3, compounds **11b**, **11c**, and **11d** induced potent inhibitory activity on cell growth and their  $IC_{50}$  values were 1.62, 1.26, and 1.36  $\mu$ M, respectively, whereas compound **11e** did not exert any effect on cancer cell growth. Furthermore, these compounds showed a similar activity under hypoxic condition (Supplementary Fig. S2).

In conclusion, we designed and synthesized kresoxim-methyl analogues that act as inhibitors of the hypoxia-mediated HIF activation. Biological experiments demonstrated that compounds **11b**, **11c**, and **11d** potently inhibited HIF activation and cell proliferation in HCT116 human colorectal cancer cells. These compounds suppressed the hypoxia-induced accumulation of HIF-1 $\alpha$  protein by increasing the intracellular oxygen level. Taken together, our results from this study could provide an impetus to further develop kresoxim-methyl analogues as anticancer agents.

#### Acknowledgements

This work was supported by Yeungnam University Research Grant (216A251117) and the KRIBB Initiative of the Korea Research Council of Fundamental Science and Technology.

# A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl.2017.05. 024.

### References

- Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist. 2004;9(Suppl 5):4–9.
- Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–732.
- Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. *Nat Cell Biol.* 2000;2:423–427.
- Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. *Science*, 2001;292:464–468.
- Hu Y, Liu J, Huang H. Recent agents targeting HIF-1alpha for cancer therapy. J Cell Biochem. 2013;114:498–509.
- 6. Ban HS, Uto Y, Won M, Nakamura H. Hypoxia-inducible factor (HIF) inhibitors: a patent survey (2011–2015). *Expert Opin Ther Pat.* 2016;26:309–322.
- Balba H. Review of strobilurin fungicide chemicals. J Environ Sci Health B. 2007;42:441–451.
- Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. The strobilurin fungicides. *Pest Manag Sci.* 2002;58:649–662.
- Miles AK, Willingham SL, Cooke AW. Field evaluation of a plant activator, captan, chlorothalonil, copper hydroxide, iprodione, mancozeb and strobilurins for the control of citrus brown spot of mandarin. *Australas Plant Pathol.* 2005;34:63–71.
- Alzeer J, Chollet J, Heinze-Krauss I, Hubschwerlen C, Matile H, Ridley RG. Phenyl beta-methoxyacrylates: a new antimalarial pharmacophore. J Med Chem. 2000;43:560–568.
- Sadorn K, Saepua S, Boonyuen N, Laksanacharoen P, Rachtawee P, Pittayakhajonwut P. Antimicrobial activity and cytotoxicity of polyketides isolated from the mushroom Xerula sp. BCC56836. RSC. Advances. 2016;6:94510–94523.
- Chai B, Wang S, Yu W, et al. Synthesis of novel strobilurin-pyrimidine derivatives and their antiproliferative activity against human cancer cell lines. *Bioorg Med Chem Lett.* 2013;23:3505–3510.
- Flampouri E, Mavrikou S, Mouzaki-Paxinou AC, Kintzios S. Alterations of cellular redox homeostasis in cultured fibroblast-like renal cells upon exposure to low doses of cytochrome bc1 complex inhibitor kresoxim-methyl. *Biochem Pharmacol.* 2016;113:97–109.
- Lee K, Ban HS, Naik R, et al. Identification of malate dehydrogenase 2 as a target protein of the HIF-1 inhibitor LW6 using chemical probes. *Angew Chem Int Ed Engl.* 2013;52:10286–10289.
- **15.** Ban HS, Xu X, Jang K, et al. A novel malate dehydrogenase 2 inhibitor suppresses hypoxia-inducible factor-1 by regulating mitochondrial respiration. *PLoS ONE.* 2016;11:e0162568.
- Ban HS, Naik R, Kim HM, et al. Identification of targets of the HIF-1 INHIBITOR IDF-11774 using alkyne-conjugated photoaffinity probes. *Bioconjug Chem.* 2016;27:1911–1920.
- Hwang IC, Kim JK, Kim HH, Kyung SH. Synthesis and SAR of methoxyiminoacetate and methoxyiminoacetamide derivatives as strobilurin analogue. *Bull Korean Chem Soc*, 2009;30:1475–1480.
- Piao W, Tsuda S, Tanaka Y, et al. Development of azo-based fluorescent probes to detect different levels of hypoxia. *Angew Chem Int Ed Engl.* 2013;52:13028–13032.

4