PHOSPHORUS HETEROCYCLE SYNTHESIS BY RPX₂·AlX₃ ADDITION TO [1,n]DIENES—IX. THE SYNTHESIS AND STRUCTURE OF SEVERAL OXAPHOSPHABICYCLIC COMPOUNDS

A. RUDI, I. GOLDBERG and Y. KASHMAN* Department of Chemistry, Tel-Aviv University, 69 978 Tel-Aviv, Israel

(Received in UK 25 January 1985)

Abstract—Several oxaphosphabicyclic compounds were synthesized by the reaction of methyl dihalophosphane under various conditions with 1,6-diketones and $\beta\gamma$ -unsaturated ketones. The structure of one of the new compounds (11) was established by X-ray diffraction analysis. The ¹H- and ¹³C-NMR spectra of the new compounds, which, except for 11, served for their structure elucidation, are discussed.

The use of the $RPX_2 \cdot AIX_3$ complex (1a, R = Me; 1b, R = Ph) for the synthesis of new phosphaheterocycles starting from [1,n] dienes has been recently reviewed.¹ The synthesis was found to be useful for the preparation of a whole variety of new phosphaheterocycles such as substituted phospholanes, phosphorinanes, phosphetanes, 3-phosphabicyclo[3.1.0]hexanes and other phosphabicyclic systems.¹ Moreover, it was demonstrated¹ that in the presence of small amounts of water the electrophilic addition of 1 takes another course and leads to a variety of phosphorylated compounds.

Furthermore, it could also be shown that $\beta\gamma$ and $\gamma\delta$ unsaturated ketones react with 1; e.g. 2 - methylhex - 1 en - 5 - one gives with 1b 2 - oxo - 2 - phenyl - 2 - phospha -7 - oxa - bicyclo[2.2.1]heptane (2).²

1,5-Diketones, on the other hand, failed to react with 1 but did react with RPX_2 in HOAc acid under Vysotskii's conditions³ to afford a 2:1 adduct, e.g. 1,5diphenylpentan-1,5-dione yielded with $MePCl_2$ in acetic acid two isomeric crystalline compounds.⁴ The structure of one of the identified isomers (3), which was unequivocally established by an X-ray analysis, is shown in Scheme 1.

Studying the scope of the latter reaction brought us to examine the reaction between dibenzoylbutane, a 1,6-diketone, and MePX₂ in acetic acid. Following quenching of the reaction in water after 16 hr, a crystalline 1:1 adduct (4) m.p. 175°, m/z 310 (M⁺, C₁₉H₁₉PO₂, 100%) was obtained.

Based on the NMR data of 4: $\delta_{\rm H}$ 1.25 d (3H, J_{PH} = 14.4 Hz), 1.94 m (1H), 2.18 m (1H), 2.40 m (2H), 2.50 m (1H), 2.65 dd (1H, J = 6, 9 Hz), $\delta_{\rm C}$ 11.6 dq (J_{PC} = 95 Hz), 24.5 dt (J_{PC} = 7.3 Hz), 28.3 dt (J_{PC} = 13 Hz), 31.3 t, 62.9 d (J_{PC} = 81 Hz), we suggest for this compound the 1,4 - diphenyl - 2 - methyl - 2 - oxo - 3 - oxa - 2 - phosphabicyclo[3.3.0]oct-4-ene structure 4 (Scheme 1). The NMR data point clearly to the following moieties: (a) a \rightarrow^{1} C-P(O)Me-O-4C function-ality with coupling constants of J_{PC1} = 81 and J_{P-Me} = 95 Hz-characteristic for a phosphinate, (b) a \rightarrow^{1} CCH₂CH₂CH₂CH₂⁵C unit (the absence of

vicinal protons to this segment was proved by double irradiations) and (c) two phenyl groups. The three unsaturations of 4 (in addition to the two phenyl and PO groups) together with the above mentioned functionalities are in full agreement with the proposed bicyclic enol-ether. As the C₄-C₅ double bond C signals overlap with the two phenyl group atoms, we have decided for clarification to synthesize the di-pmethoxyphenyl analog of 4 (5 respectively). Indeed, in contrast to the spectrum of 4 each one of the sp² C atom signals in the ¹³C-NMR spectrum of 5 was now resolved, δ 160.4 s & 160.3 s (C-4' & 4"), 129.5 d (J_{PC} = 5, C-1'), 133.5 s (C-1"), 128.2 d & 131.4 d (C-2' & 2"), 114.7 d & 114.0 d (C-3' & 3"), and the enol-ether earbons 158.9 d (J_{PC4} = 43 Hz) and 126.0 s (C-5).†

This spectrum reveals clearly the former missing enol-ether (C_4 and C_5) atom signals. In order to confirm the latter functional group both 4 and 5 were treated with acid, under mild conditions, to give 6 and 7 respectively (Scheme 1).

As the acidity of regular unpurified $CDCl_3$ was sufficient to transform 4 into 6 it was easy to monitor the formation of the latter by NMR.

Most characteristic in the ¹H-NMR spectrum of 6 were the appearance of a doublet of doublets at δ 5.10 (J_{PH} = 13.5 and J_{HH} = 8 Hz) (and at δ 5.00 in 7), an acidic proton at δ 8.30 (suggesting a P(O)O<u>H</u> group), and the low-field chemical shift of the *ortho* protons of the phenyl groups (Experimental).

Scheme 1. Reaction of diones with dihalophosphanes.

[†] The carbons of the phenyl at C-1 are designated C-1' to C-6' and the ones of the C-4 phenyl as C-1" to C-6".

The suggested MeP(O)OH moiety of 6 (and 7), was confirmed by its micro esterification with CH₂N₂ which furnished the methyl ester 6b ($\delta_{POMe} = 3.80$ d, J = 12 Hz). The ketone of 6 was confirmed by the ¹³C-NMR spectrum (δ_C 201.2d, ³J_{PC} = 15 Hz) as well as by the IR absorption at 1680 cm⁻¹ and the expected UV shift (Experimental). A SFORD experiment correlated the low-field 5.10 ppm signal with the new appearing methine (δ_C 49.3 ppm) thereby confirming the sp³ nature of this group. The outstanding low-field chemical shift of this α to CO proton is best rationalized by the vicinal phenyl and phosphinic acid. Furthermore, decomposing the enol-ether of 4 with DCl in CDCl₃, affording the 2-d₁-derivative of 6, established unequivocally the 5.10 proton signal assignment. Bromination of 6 resulted as expected in the α -bromo ketone derivative (8).

The formation of 4 (or 5) can be explained by either one of the routes described in Scheme 2. The first avenue starts with the attack of the RPK_2 on one of the carbonyls followed by ring cyclization. The second route, on the other hand, starts with the acid catalyst ring cyclisation followed in the second step by a P—O bond formation, phosphorylation of the alcohol, and then a P—O to P—C rearrangement.⁵

As mentioned above, unsaturated ketones also react with complex 1 to yield phosphaheterocycles. Thus, pmenth-8-en-3-one reacts with complex 1 to give 9 (Scheme 3).² The structure of 9, m/z 276 (M⁺, C₁₆H₂₁PO₂) was deduced from its ¹H-NMR spectrum, namely, from the appearance of a PhPO group (δ 7.0-7.5 m, 5H) and three methyls, at δ 1.05 d (J = 6 Hz) and a pair of methyls vicinal to the PO group at δ 1.38 d (J_{PH} = 16 Hz) and δ 0.84 dd (J_{PH} = 21, J_{HH} = 1 Hz). Further support for the structure came from the ¹³C-NMR spectrum; δ_C 39.7 d (J_{PC} = 81 Hz)—a carbon adjacent to the PhP(O)O- group, vide supra, and 118.2 d (J_{PC} = 5 Hz) and 146.8 s—the enol-ether C atoms. The structure of 9 suggested that menthenone isomerizes under the acidic reaction conditions to pulegone which then

Scheme 2. Suggested mechanisms for production of compound 4.

Scheme 3. Reaction of $\alpha\beta$ -unsaturated ketones with RPX₂.

reacts with 1 to afford the product. Indeed, it was found that $AlCl_3$ isomerizes menthenone to pulegone and, secondly, that pulegone gives with 1b the same product (9) as it gives with PhPCl₂ alone (without $AlCl_3$).

In order to avoid menthenone from isomerising it was alkylated to the 4-methyl derivative 10.⁶ Successively, reacting 10 with MePCl₂ · AlCl₃ in CH₂Cl₂ under the usual conditions (1-2 hr at r.t.) gave no product. However, prolonging the reaction time for 5-6 days, afforded, although in low yield, after quenching in H₂O, a crystalline product (11); m/z 228 (C₁₂H₂₃PO₃-H₂O, 17%). The ¹H-NMR revealed five Me groups; δ 0.85 d (J_{HH} = 6 Hz), 1.08 s, 1.18 d (J_{PH} = 15 Hz), 1.43 d (J_{PH} = 14 Hz) and 1.65 d (J_{PH} = 11 Hz).

The ¹³C-NMR spectrum of 11 showed only nine C atom signals. Even after applying a 10 sec delay between the RF pulses not more than two signals doubled in intensity. One C-atom was still missing and no structure could have been proposed. It was at this stage that it was decided to undertake an X-ray analysis.

An ORTEP view of the molecular structure of 11 is shown in Fig. 1. Table 1, summarizes the bond distances and bond angles of 11.

The bicyclic framework is considerably strained, which is best reflected in the stretched $C(sp^3)$ - $C(sp^3)$ bonds around C6:1.552, 1.553 and 1.578 Å (Table 1).

Table 1. Bond distances (Å) and bond angles (°) of 11

C1-C2	1.518(3)	C6C7	1.578(3)
C1-C6	1.552(3)	C6C11	1.524(3)
C1	1.470(3)	C7—P8	1.843(2)
C1O16	1.389(3)	C7-C12	1.529(3)
C2C3	1.518(3)	C7—C13	1.538(3)
C3-C4	1.522(3)	P8-09	1.595(2)
C3C10	1.522(4)	P8C14	1.786(2)
C4C5	1.526(3)	P8-015	1.477(3)
C5-C6	1.553(3)		
O9-C1-O16	108.1(2)	C1-C6-C7	105.6(2)
C6-C1-O16	110.0(2)	C7-C6-C11	112.2(2)
C6-C1O9	104.7(2)	C6C7C13	113.3(2)
C2C1O16	111.3(2)	C6-C7-C12	114.3(2)
C2-C1-O9	106.9(2)	C6-C7-P8	100.2(1)
C2-C1-C6	115.3(2)	C12-C7-C13	106.7(2)
C1C2C3	114.7(2)	P8-C7-C13	111.6(1)
C2-C3-C10	110.5(2)	P8-C7-C12	110.7(2)
C2C3C4	109.0(2)	C7—P8—O15	115.6(1)
C4-C3-C10	111.6(2)	C7-P8-C14	112.6(1)
C3-C4-C5	110.6(2)	C7-P8-O9	98.3(1)
C4C5C6	114.5(2)	C14—P8—O15	111.7(1)
C1-C6-C5	108.3(2)	O9P8O15	112.9(1)
C5-C6-C11	109.5(2)	O9-P8-C14	104.6(1)
C5-C6-C7	109.5(2)	C1	112.8(1)
C1C6C11	111.6(2)		

Fig. 1. ORTEP view of 11.

Adjacent molecules displaced along b H-bond to each other through the OH donor and P = O acceptor, thus forming a continuous chain with the crystal lattice. Geometric parameters of this interaction are: 016-H16 = 0.90 Å, 016...015 = 2.723(3) Å, H16...015 = 1.85 Å and 016-H16...015 = 163°.

The synthesis of 11 (Scheme 3) is anticipated to start by electrophilic attack of the $RPX_2 \cdot AlX_3 \cdot H_2O$ complex on the isopropylidene double bond of menthenone as described by us earlier.¹

The absence of C-3 from the ¹³C-NMR spectrum of 11 results most likely from a long relaxation time of the tert C-atom which can be further elongated by a possible equilibrium of 11 with its open keto form (Scheme 3). Finally, treatment of 11 with CH_2H_2 gave in low yield the methyl ester identified by its characteristic P—OMe group ($\delta 3.80 \text{ d}$, J_{PH} = 12 Hz).

EXPERIMENTAL

For general directions see ref. 1.

1,4 - Diphenyl (and 1,4 - di - p - methoxyphenyl) - 2 - methyl - 2 oxo - 3 - oxa - 2 - phosphabicyclo[3.3.0]oct - 4 - ene (4 and 5)

In the course of 5 min with stirring, 0.05 mol of the 1,6diphenyl (or 1,6-di-p-methoxyphenyl)pentan-1,6-dione was added in small portions to 0.01 mol of CH_3PCl_2 at 60°. Then, at the same temp 3 ml of HOAc (gla) was added. The mixture was kept for 2 hr at 60°, then cooled down to r.t. and stirred for additional 16 hr. The mixture was then poured onto ice, extracted with CHCl₃ (3 × 30 ml), washed with NaHCO₃ aq, dried over MgSO₄, evaporated and finally submitted to a silica gel column for chromatography.

Compound 4 was obtained in 10% yield, m.p. (acctone) 175°; $v_{max}^{CHC1} 2960, 1630, 1590, 1480, 1440, 1300, 1050, 1040, 1030, 960, 880 cm⁻¹; ¹H-NMR (270 MHz), <math>\delta$ (CDCl₃): 1.25 d (3H, J_{PH} = 14.4 Hz), 1.94 m (1H), 2.18 m (1H), 2.40 m (2H), 2.50 m (1H), 2.65 dd (1H, J = 6, 9 Hz); ¹³C-NMR: δ 11.6 dq (J_{PC} = 95 Hz), 24.5 dt (J_{PC} = 7.3 Hz), 28.3 dt (J_{PC} = 13 Hz), 31.3 t, 62.9 d (J_{PC} = 81 Hz); m/z 310 (M⁺, 100%), suitable elemental analysis; $\lambda_{max}^{MeOH} 264 (\varepsilon = 12,606)$. Compound 5 was obtained in 10% yield; ¹H-NMR (300 MHz), δ (CDCl₃): 1.25 d (3H, J_{PH} = 13.8 Hz), 2.00 m (1H), 2.14 m (1H), 2.48 m (1H), 2.48 dt (1H, J = 3, 11 Hz), 2.60 d(1H, J = 9 Hz), 38.1 s (3H, OCH₁), 38.5 s (3H.

Compound 5 was obtained in 10% yield; ¹H-NMR (300 MHz), δ (CDCl₃): 1.25 d (3H, J_{PH} = 13.8 Hz), 2.00 m (1H), 2.14 m (1H), 2.34 m (1H), 2.48 dt (1H, J = 3, 11 Hz), 2.60 d (1H, J = 9 Hz), 2.57 d (1H, J = 9 Hz), 3.81 s (3H, OCH₃), 3.85 s (3H, OCH₃), 6.80, 7.52 ABquar (4H, J_{AB} = 9 Hz), 6.85 and 7.18 ABquar (4H, J_{AB} = 9 Hz, J_{BP} = 3 Hz). ¹³C-NMR, δ (CDCl₃): 11.7 dq (J_{PC} = 97 Hz), 24.3 dt (J_{PC} = 85 Hz), 114.0 d, 123.6 s, 128.2 d, 129.5 d (J_{PC} = 5 Hz), 131.4 d, 133.5 s, 158.9 d (J_{PC} = 43

Hz), 160.3 s, 164.0 s; *m*/z: 370 (M⁺, C₂₁H₂₃PO₄, 10%), 307 (28%), 291 (61%), 263 (30%), 235 (15%), 135 (50%).

Compound 6. Compound 4 (20 mg) was left for 5 hr in acidic CHCl₃ (10 ml). The solvent was then removed by evaporation and the compound (20 mg) crystallized from acetone; m.p. 187°; $v_{max}^{CHCl_3}$ (2940, 1680, 1450, 1300, 1220, 980, 880 cm⁻¹. ¹H-NMR (270 MHz), δ (CDCl₃): 1.17 d (3H, J_{PH} = 13.5 Hz), 1.94 dd (1H, J = 10 Hz, J = 11 Hz), 1.86 bq (1H, J = 10 Hz), 2.00 m (1H), 2.35 m (2H), 2.65 m (1H), 5.10 dd (J_{PH} = 13.5, J_{HH} = 8 Hz). ¹³C-NMR, δ (CDCl₃): 1.17 d (J_{PC} = 97 Hz), 23.4 t, 30.9 t, 32.4 t, 49.3 d, 58.0 d (J_{PC} = 86 Hz), 201.2 d (J_{PC} = 15 Hz); *m*/z 310 (M⁺ - H₂O, 5), 247 (26), 230 (62), 223 (M⁺ - PhCO); λ_{max}^{MeCH} 264 (ϵ = 15,990), 258 (20,500), 252 (22,140).

Compound **6b** was obtained with CH_2N_2 ; m/z 342(M⁺, 5%), δ 3.80 d (J = 12 Hz).

Compound 7 was obtained in the same manner as 6; ¹H-NMR (P-decoupled), δ (CDCl₃): 1.18 s (3H), 1.90-3.00 m (6H), 3.60 s (3H), 3.80 s (3H), 5.00 dd (1H, J_{PH} = 15 Hz, J_{HH} = 9 Hz, disappears when DCl in CDCl₃ is used), 6.55 and 7.85 two ABquart (8H, J_{AB} = 8 Hz), 9.4 s (1H); ¹³C-NMR, δ (CDCl₃): 11.7 dq (J_{PC} = 97 Hz), 23.5 t, 28.6t, 32.7 t, 54.9 q, 55.3 q, 55.5 d (J_{PC} = 85 Hz), 200.4 d (J_{PC} = 12 Hz).

1 - Phenyl - 2 - bromo - 2 - benzoyl - cyclopentylmethyl phosphinic acid (8)

Compound 4 (30 mg) in CCl₄ (5 ml) was treated with a few drops of Br₂ in CCl₄ and left at r.t. for 30 min. The solution was then washed with Na₂S₂O₄ aq, dried over MgSO₄ and evaporated to give an oily material (35 mg); ¹H-NMR (300 MHz), δ (CDCl₃): 1.32 d (3H, J_{PH} = 14.9 Hz), 2.16 m (2H), 2.60 ddt (1H, J_{PH} = 27 Hz, J = 5 Hz, J = 13 Hz), 3.00 dt (1H, J = 15 Hz, J = 8 Hz), 3.20 dt (1H, J = 15 Hz, J = 9.4 Hz), 3.38 tt (1H, J = 13 Hz, J = 5 Hz), 7.20-8.20 m (10H), 10.50 s (1H); ¹³C-NMR, δ (CDCl₃): 18.0 dq (J_{PC} = 108.7 Hz), 19.9 t, 35.1 t, 42.7 t, 65.3 d (J_{PC} = 76.9 Hz), 196.4 s.

1 - Hydroxy - 3,6,7,7,8 - pentamethyl - 8 - oxo - 8 - phospha - 9 - oxabicyclo[4.3.0]nonane (11)

Methyl pulegone⁶ (0.83 g) in CH₂Cl₂ (2 ml) was added to a stirred soln of AlCl₃ (0.61 g) and MePCl₂ (0.58 g) in CH₂Cl₂ (20 ml) at 0°. After stirring for 5 days at r.t. the soln was poured over ice washed to neutral, dried over MgSO₄ and evaporated to give after chromatography pure 11 (100 mg): $v_{\rm metr}^{\rm CHCl_3}$ 3200, 2950, 1500, 1380, 1300, 1220, 1190, 1150, 1100, 1040, 980, 950, 900, 880 cm⁻¹; ¹H-NMR (P-decoupled), $\delta: 0.85 d$ (3H, J = 6 Hz), 1.08 s (3H), 1.18 s (3H, J_{PH} = 15 Hz), 1.43 s (3H, J_{PH} = 14 Hz), 1.65 s (3H, J_{PH} = 11 Hz), 1.30-2.40 m (8H); ¹³C-NMR, $\delta: 14.5 d$ (J_{PC} = 89 Hz), 19.2 q, 21.5 q (2C), 23.4 q, 29.4 d, 30.5 t (2C), 34.4 t, 42.0 d (J_{PC} = 83 Hz), 44.3 s; *m*/z 228 (M⁺ - H₂O, 17%), 213 (44%), 149 (24%).

Crystal structure analysis

X-ray diffraction measurements were carried on an Enraf-Nonius CAD4 diffractometer equipped with a graphite monochromator, employing MoKa radiation ($\overline{\lambda} = 0.7107$ Å). *Crystal data*. C₁₂H₂₃PO₃, M_r = 246.3, monoclinic, a = 6.898(1), b = 6.859(4), c = 13.993(3) Å, β = 96.52(2)°, V = 657.8 Å³, Z = 2, d_c = 1.244 g cm⁻³, μ (MoKa) = 1.94 cm⁻¹, F(000) = 268, space group P2₁.

Intensity data were collected in the $\omega - 2\theta$ mode with a scan width of 0.9 + 0.3 tan θ out to $2\theta = 54^{\circ}$. The scan rate varied according to the detected intensity between 1.0 and 4.0° min⁻¹. Intensity-control reflections, monitored frequently, showed no decay of the crystal. The intensities were corrected for Lorentz and polarization effects and variable measuring time but not for absorption or secondary extinction.

The structure was solved by a combination of phase refinement, Karle recycling and weighted Fourier techniques, using the MULTAN 80 system of computer programs. Final anisotropic refinement of the nonhydrogen atoms converged at R = 0.032 and $R_w = 0.034$ for 1486 reflections with $I \ge 3\sigma(I)$. All hydrogen atoms were located in difference-Fourier maps, but neither their positions nor their isotropic

temp factors (set initially at U = 0.05 Å²) were refined. Positional and thermal atomic parameters are available as supplementary material.

REFERENCES

- ¹A. Rudi and Y. Kashman, *Tetrahedron* 37, 4269 (1981), and refs therein.
- ²Y. Kashman and A. Rudi, Tetrahedron Lett. 22, 2695 (1981).
- ³V. I. Vysotskii, J. A. Vasileva, V. N. Chernii, K. G. Chuprakova and M. N. Tilichenko, *Zh. Obshch. Khim.* 1714 (1979).
- (1979). ⁴A. Rudi, D. Reichman, I. Goldberg and Y. Kashman, *Tetrahedron* 39, 3965 (1983).
- ⁵K. Moedritzer and R. E. Miller, J. Org. Chem. 47, 1530 (1982). ⁶C. Djerassi, J. Osiecki and E. J. Eisenbroun, J. Am. Chem. Soc. 83, 4433 (1961).