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An Enantiomeric Discrimination In Aqueous Mixed Chiral
Micelles Through Hydrogen Bonding
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Abstract: Self-assembling molecular receptor comprising a chiral surfactant amide placed
in a rigid micellar environment recognizes the different amide enantiomeric forms in water
solution by means of hydrogen bonding.

Hydrogen bonding is a fundamental force in molecular recognition by biological
macromolecules.l-3 Since it is known that amide enantiomeric discrimination is caused
by hydrogen bonding? and that weak hydrogen bonding occurs in micellar environmentsS.6
we reasoned that a self-assembling molecular receptor consisting of a chiral amide in a
micellar environment? might recognize the different enantiomeric forms by means of
hydrogen bonding. Here we report these results.
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Figure 1

The compounds studied {Figure 1)8 1-8 are chiral and possess surfactant properties.
Their aqueous solutions show change of chemical shift in 1H NMR spectra® around 10-2 M
with little or no change within a range of concentrations 10-3 to 10-4 M. This behavior is
characteristic for surfactant molecules in water media.6 Typical physical properties of
surfactant molecules 1-3 are shown with 3R in Figure 2. and 18 in Figure 3. The drastic
change in signals shape (aromatic protons) and chemical shift (aliphatic protons) is
observed around the critical micellar concentration (10mM). A similar effect was observed
at rather low concentration (~0.5 mM) of 18 in equimolar aqueous counterion surfactant
{(Figure 3). In our previous study we discovered that mixed micelles formed
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Figure 2. Chemical shifts of
aromatic and methyl protons of
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much stronger aggregates and the physical effects of critical micellar concentration can be
observable at significantly lower concentration.1! This two spectroscopic characteristics
of chiral molecules 1-8 undoubtedly demonstrate their surfactant ability.

Figure 3. Chemical shifts of
aromatic and methyl protons of
18 (0.5 mM) in water (A) and
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As a probe for studying hydrogen bond formation, and consequently enantiomeric
recognition in micellar media, amide 4 was chosen because the chemical shift of the
proton on the chiral center is in a clear region of the !H NMR spectra. We were not able
to see any difference in the 1H NMR spectra of water solutions (20 mM) of various ratios
of optically active surfactants 1R-18, 2R-2S, or 3R-3S.

Attempts to determine any kind of chiral recognition between racemic chiral probe 4
(3mM) in various aqueous solutions of 1R, 18, 2R, 28, 3R, and 38 were unsuccessful. A
possible explanation is that micellar structures thus formed are too loose to protect
against penetration of water molecules into the micellar structure.l0 Therefore, the
formation of hydrogen bonding between the amides (4 and 1R, 18, 2R, 28, 3R, or 3S) and
water molecules will be much more favored over amide-amide hydrogen bonds. To
overcome this problem chiral micelles of enantiomericly pure surfactants and achiral
counterion surfactants, sodium dodecyl sulfate (SDS) or cetyltrimethylammonium
bromide (CTAB), were employed. It is well documented that so formed micelles have more
rigid structures which exclude high concentrations of water from the micellar
aggregates.6.11 The chemical shifts for the hydrogen on the chiral center of 4R and 4§
(3:2) in water solutions of 1R (20 mM) and SDS (20 mM)!2 are shown in Figure 4.
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Figure 4. Chemical shifts
(ppm) of the hydrogen on the chiral

center of 4 (3 mM of 60% 4R and 40% 48) in

T L] L) T 1
(a) 20 mM CTAB and 20 mM 1R, (b) 20 mM 1R, (d) | 6.10 6.00 5.90 &ppm)
(c) 20 mM 1R and 20 mM SDS, and (d) 20 mM 1S and 20 mM SDS.

The micelle between cationic chiral surfactant 1R and cationic CTAB is open allowing
penetration of water molecules deep into the micellar core and resulting in a downfield
shift of 4.13 The hydrogen bonding between the probe molecule and chiral micelle is
precluded and only one signal for 4R and 48 is observed (Figure 4, case a). The micelle
formed solely from 1R is slightly rigid but still the microenvironment is too polar to
provide enantiomeric recognition (Figure 4, case b). Only the micelle between SDS and 1R
provides the proper microenvironment for enantiomeric recognition through hydrogen
bonding (Figure 4, case ¢). Two signals for the enantiomers of 4 (ratio of R/S is 3/2) are
observed with A§ = 0.045 ppm and their integrals correspond to the enantiomeric
composition. Similar results were also observed for micelles for all the other chiral
surfactants (1S, 2R, 28, 3R, and 38) with the counterion achiral SDS or CTAB
respectivelly. The enantiomeric signals for 4 exchange places when changing from the
SDS-1R to SDS-1S micelle (Figure 4, case d). The enantiomeric recognition of
nonracemic 4 was not observed in either aqueous nonchiral surfactant (CTAB or SDS), or
their mixture.

Our data support a model in which the chiral micelles formed between the chiral
surfactant and achiral counterion surfactant exclude bulk water from the hydrogen
bonding part of the chiral surfactant, thus providing a chiral microenvironment for
enantiomeric recognition via hydrogen bonding between a chiral micelle and the dissolved
enantiomeric compound. This effect is not observed in either aqueous achiral micelles
(the lack of a chiral environment) or in aqueous chiral micelles (the structure is too loose
to provide nonaqueous microenvironment).
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UV studies of 4 in water and aqueous 1-3 with and without corresponding coun
terionic surfactant showed that the compound goes deep into the micellar core.
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