Alcohol Decomposition by Reverse Spillover ### BAOSHU CHEN AND JOHN L. FALCONER Department of Chemical Engineering, University of Colorado, Boulder, Colorado 80309-0424 Received February 22, 1993; revised June 6, 1993 Temperature-programmed desorption (TPD) was used to study methanol, ethanol, and 1-propanol decomposition on Al_2O_3 and Ni/Al_2O_3 catalysts. These alcohols adsorb on the Al_2O_3 support of Ni/Al_2O_3 and dehydrogenate by reverse spillover to the Ni surface. Thus, the presence of Ni dramatically increases their decomposition rates. Methanol adsorbed on Al_2O_3 alone decomposes to form $(CH_3)_2O$ at lower temperature and CO, H_2 , and CO_2 above 600 K. On Ni/Al_2O_3 , most CH_3OH dehydrogenates to form CO and H_2 . Ethanol adsorbed on Al_2O_3 mostly dehydrates to form C_2H_4 and $(C_2H_3)_2O$, but C_2H_4O and H_2 are also observed. On Ni/Al_2O_3 , C_2H_3OH dehydrogenation to CO, H_2 , and surface carbon is the main reaction. 1-Propanol decomposes on Al_2O_3 to form C_3H_6 , H_2 , $(C_3H_7)_2O$, and C_3H_6O . When Ni is present, propanol decomposition to H_2 , H_2 , H_3OH demonstrates are in the order H_2 - H_3OH and H_3 - #### INTRODUCTION Alcohols dehydrate on Al₂O₃ surfaces to form ethers and olefins (for higher alcohols) (1, 2), and a recent study by Narayanan et al. (3) concluded that isopropanol dehydration takes place by surface diffusion to a small concentration of active sites on the Al₂O₃ surface. They varied the active site concentration, and thus the dehydration rate, by using a series of Al₂O₃ catalysts with different concentrations of impurities. In the present study, we show that a similar process occurs for methanol, ethanol, and 1-propanol dehydrogenation on Ni/Al₂O₃ catalysts. Temperature-programmed desorption (TPD) was used to compare dehydrogenation rates on Al₂O₃ and on Ni/Al₂O₃. These experiments show that the presence of Ni dramatically increases the rate of alcohol decomposition. TPD allows for a direct comparison between the two catalysts because the alcohols mostly adsorb on the Al₂O₃ surface for both catalysts. The TPD was carried out to sufficiently high temperature that the dehydrogenation rates were measured for both catalysts. On Al₂O₃ catalysts, alcohols dehydrate to form ethers, olefins, and aldehydes (for higher alcohols), but dehydrogenation is also observed (4). On nickel, alcohols dehydrogenate much more readily, so that both the reaction rate and the reaction products formed during TPD can be used to determine how important surface diffusion is for alcohol decomposition on supported nickel. Nickel surfaces in UHV are so active for alcohol decomposition that methanol decomposes to CO and H2 at 290 K, and the appearances of CO and H₂ in the gas phase are then limited by their desorption properties (5, 6). Since most of the alcohols adsorbed at 300 K are on the Al₂O₃ support in the current study, the Ni can only be important in the reaction process if the alcohols diffuse to the Ni particles and undergo reverse spillover. To determine the fate of the hydroxyl hydrogen in methanol, TPD of CH₃OD adsorbed on Ni/ Al₂O₃ was also carried out. #### EXPERIMENTAL METHODS Temperature-programmed desorption (TPD) experiments were carried out on a 5.7% Ni/ Al₂O₃ catalyst and on Kaiser A-201 Al₂O₃ at ambient pressure in a flow system that has been described previously (7–9). A 100mg catalyst sample (60-80 mesh) was supported on a quartz frit in a 1-cm OD quartz reactor, which was placed in an electric furnace. A 0.5-mm OD, chromel-alumel shielded thermocouple, which was centered in the catalyst bed, was connected to a temperature programmer to control the furnace to provide a constant heating rate of 1 K/s. The carrier gases (He, H₂, and Ar) at atmospheric pressure flowed over the catalyst at a flowrate of 100 cm²/min (STP). Immediately downstream, the gas was analyzed with a UTI quadrupole mass spectrometer located in a turbopumped ultrahigh-vacuum system. A computer allowed detection of multiple mass signals. The reduced and passivated Ni/Al₂O₃ catalyst was pretreated for 2 h at 773 K in H₂ flow, and then the carrier gas was switched to He before the catalyst was cooled to room temperature. For consistency, the Al₂O₃ catalyst was also pretreated for 2 h at 773 K in H₂ flow and cooled in He flow. Alcohol (2 µl liquid) was injected slowly at 300 K by a liquid syringe into the He carrier gas upstream of the reactor. After the catalyst was held for 30 min at 300 K in He flow for equilibration, TPD was carried out by heating the catalyst in He flow at a rate of 1 K/s. In one series of experiments, CH₃OD (3 μl) was adsorbed at 300 K on Ni/Al₂O₃, and TPD was carried out in Ar flow so that D₂ signals could be detected. The final temperature during TPD was 900 K for Al₂O₃ and 773 K for Ni/Al₂O₃. In one experiment, however, following C₂H₅OH adsorption on Ni/Al_2O_3 , the temperature was increased to 950 K, but the catalyst was not used further because of sintering. During TPD following CH₃OH adsorption, H₂, CH₄(m/z = 15,16), H₂O, CO, CH₂O(29), CH₃OH(31,32), CO₂, and (CH₃)₂O(45,46) were detected. The mass 31 signal was first corrected for cracking of (CH₃)₂O, and the remaining mass 31 signal was due to CH₃OH. The cracking fractions at mass 28 from CO₂, CH₃OH, and (CH₃)₂O were subtracted from the mass 28 signal to obtain the CO signal. Similarly, the signals at masses 2, 15, and 29 were corrected for cracking of CH₃OH and (CH₃)₂O to obtain H₂, CH₄, and CH₂O signals, respectively. Masses 16 and 32 were also monitored to identify the formation of CH₄ and CH₃OH, respectively. During TPD of CH₃OD, H₂, HD(3), D₂(4), CH₄, CH₃D(17), H₂O, HDO(19), CO, CH_3OH , $CH_3OD(33)$, CO_2 , and $(CH_3)_2O$ were monitored. The mass 17 signal was corrected for cracking of H₂O to obtain the CH₃D signal. The corrections for masses 15, 28, and 31 are similar to those during TPD of CH₃OH. For TPD of C₂H₅OH, in addition to signals for H₂, CH₄, H₂O, CO and CO₂, signals for $C_2H_4(26)$, $C_2H_6(30)$, $C_2H_4O(29,43)$, $C_2H_5OH(31,46)$, and $(C_2H_5)_2O(59,74)$ were also detected. Mass 28 signals were corrected for cracking of CO₂, C₂H₄, C₂H₆, and C₂H₅OH to obtain CO signals. Mass 32 was also monitored to determine if CH₃OH forms and contributes to the mass 31 signal. For TPD of 1-C₃H₇OH, H₂, CO, CH_4 , CO_2 , H_2O , $C_3H_6(41)$, $C_3H_6O(29)$, and $(C_3H_7)_2O(43,73)$ were detected. To calibrate the mass spectrometer, known volumes of pure gases or liquids were injected into the He or Ar carrier gas, downstream of the reactor. The calibration factor for CO was used to estimate the C₂H₄O and C₃H₄O desorption rates, and the calibration factor for $(CH_3)_2O$ was used to estimate $(C_2H_5)_2O$ and $(C_3H_7)_5O$ formation rates. The Al₂O₃, Kaiser A-201, was heated at 773 K in air for 10 h prior to loading in the TPD reactor. The 5.7% Ni/Al₂O₃ catalyst was prepared by impregnating Kaiser Al₂O₃ (A-201) to incipient wetness with an aqueous solution of nickel nitrate. After being dried in a vacuum oven for 24 h at 373–383 K, the catalyst was directly reduced in H₂ for 10 h at 773 K and passivated with 2% O₂ in N₂ at room temperature. The weight Fig. 1. TPD spectra of CH₃OH (2 μl) adsorbed at 300 K on Al₂O₃. loading was measured by inductively coupled plasma mass spectrometry. The dispersion and the surface area of Ni are 1.7% and $0.6 \text{ m}^2/\text{g}$ catalyst, respectively, and they were estimated by temperature-programmed reaction in H_2 flow of adsorbed CO (10). ### RESULTS ## Methanol Decomposition Figure 1 shows the products that formed when CH₃OH, adsorbed at 300 K in He flow on Al₂O₃, decomposed during TPD. Methanol desorbed in a broad peak from 500 to 800 K. Methanol dehydration formed (CH₃)₂O, which has a maximum rate of formation at 563 K and a high temperature tail. Water started forming near 500 K and was detected up to 900 K. Above 650 K, most of the adsorbed CH₃OH decomposed to form CO and H₂ simultaneously (peak temperature of 780 K). A small amount of CO₂ also formed above 700 K. No significant amounts of CH₄ and CH₂O were detected. The ratio of $H/(CO + CO_2)$ from the high temperature CO, H_2 , and CO_2 peaks is 3.4, and the ratio of total H to total C is 4.3. Some of the OH groups on Al₂O₃ reacted to form H₂O above the pretreatment temperature of 773 K. When Al₂O₃ was exposed to CH₃OD in Ar at 300 K, a similar decomposition process was observed during TPD in Ar flow. The CO, H₂, HD, and D₂ all formed simultaneously in single peaks with maxima at 780 K. Also, CH₃OH, CH₃OD, H₂O, and HDO were detected. When Ni/Al₂O₃ was exposed to CH₃OH at 300 K, almost all the CH₃OH adsorbed on the Al₂O₃ surface, but the reaction rate and the product distribution were quite different, as shown in Fig. 2. The main desorbing species were CO and H₂ and they formed simultaneously with a $H/(CO + CO_2)$ ratio of 3.7. Only small amounts of CH_4 , H_2O , (CH₃)₂O, and CO₂ were detected. That is, dehydrogenation of CH₃OH to CO and H₂ was the dominant decomposition process on Ni/Al₂O₃. The important point to note is that the peak temperature for CO and H₂ formation on Ni/Al₂O₃ is approximately 530 K. In contrast, the peak temperature for (CH₃)₂O formation on Al₂O₃ (Fig. 1) was 563 K, and CO and H₂ only started forming above 600 K on Al₂O₃. The CO and H₂ peaks at 780 K in Fig. 1 are absent in Fig. 2 because CH₃OH decomposed much faster when Ni was present. The amounts and peak temperatures of products are in Table 1. Fig. 2. TPD spectra of CH₃OH (2 µl) adsorbed at 300 K on 5.7% Ni/Al₂O₃. Following exposure of Ni/Al₂O₃ at 300 K to CH₃OD, TPD in Ar flow showed that HD and D₂ desorbed at almost the same temperature as H₂ and CO (Fig. 3). Some HDO desorbed from 400 to 800 K with the same peak shape as H₂O. These are not shown in Fig. 3 for clarity. The H/D and (H + D)/CO ratios are 5 and 3.5, respectively. Both CH₃OH and CH₃OD desorbed with peak temperatures of 460 K. The amount and peak shape of CH₃OD are similar to those of CH₃OH, but the CH₃OD peak TABLE 1 TPD of CH₁OH on Al₂O₃ and Ni/Al₂O₃ | Products | - | Peak
ratures (K) | Amounts
desorbed
(µmol/g catalyst) | | |----------------------|--------------------------------|-----------------------------------|--|-----------------------------------| | | Al ₂ O ₃ | Ni/Al ₂ O ₃ | Al_2O_3 | Ni/Al ₂ O ₃ | | CO | 777 | 534 | 172 | 410 | | Н | 779 | 528 | 334 | 777 | | (CH ₃),O | 563 | 514 | 133 | 10 | | CH ₄ | | 554 | | 23 | | CO | 809 | 718 | 26 | 12 | | H ₂ O | | _ | 271 | 9.5 | | Total carbon | | | 464 | 465 | | (Total H)/4 | | | 502 | 431 | is not shown in Fig. 3 for clarity. Dimethyl ether were detected with peak temperature of 520 K. A small amount of CO₂ also desorbed above 600 K. ## **Ethanol Decomposition** In contrast to CH₃OH, C₂H₅OH decomposed on Al₂O₃ almost completely by 700 K, and as shown in Fig. 4 the dominant process was dehydration to C₂H₄. A large amount of H₂O was also observed (Table 2). Smaller amounts of H₂, (C₂H₅)₂O, and C₂H₄O were detected. The amounts of CO, C₂H₆, and CH₄ were insignificant, and no unreacted C₂H₅OH desorbed. Ethanol decomposition on Ni/Al₂O₃ was quite different. On Al₂O₃, all the products were observed between 525 and 700 K, but as shown in Fig. 5 for Ni/Al₂O₃, products desorbed from 400 to 925 K. Moreover, C₂H₅OH dehydrogenation to H₂ and CO was the dominant process and this occurred over the entire temperature range. Smaller amounts of C₂H₄, C₂H₄O, CH₄, CO₂, and H₂O were also observed. The product amounts and peak temperatures are compared for the two catalysts in Table 2. ## 1-Propanol Decomposition 1-Propanol decomposition on Al_2O_3 was similar to C_2H_5OH decomposition. The Fig. 3. TPD spectra of CH₃OD (3 µl) adsorbed at 300 K on 5.7% Ni/Al₂O₃. main reaction was dehydration to form C_3H_6 and H_2O (Fig. 6). Propylene formed in a single peak with a maximum at 625 K, and H_2O started forming at 550 K and was detected up to 900 K. Smaller amounts of H_2 , $(C_3H_7)_2O$, and C_3H_6O desorbed in single peaks from 500 to 800 K (Table 3). Significant amounts of C_3 , C_3 , and C_4 , and C_4 , C_3 . On Ni/Al₂O₃, decomposition of 1-C₃ H₇OH was faster, and much more dehydrogenation took place (Fig. 7). Propylene also formed in a peak at 562 K, which is 63 K lower than on Al₂O₃. Starting near 400 K, dehydrogenation to CO and H₂ was the dominant reaction on Ni/Al₂O₃. Starting near 400 K, dehydrogenation to CO and H₂ was the dominant reaction on Ni/Al₂O₃, and Fig. 4. TPD spectra of C_2H_5OH (2 μI) adsorbed at 300 K on Al_2O_3 . | TABLE 2 | | | | | | |---------|----------------------------------|----|--------------------------------|-----|-----------------------------------| | TPD of | C ₂ H ₅ OH | on | Al ₂ O ₃ | and | Ni/Al ₂ O ₃ | | Products | _ | Peak
ratures (K) | Amounts
desorbed
(µmol/g catalyst) | | |---------------------------------|--------------------------------|-----------------------------------|--|-----------------------------------| | | Al ₂ O ₃ | Ni/Al ₂ O ₃ | Al ₂ O ₃ | Ni/Al ₂ O ₃ | | CO | | 500 | | 380 | | CH₄ | | 500 | 87 | 49 | | Н, | 648 | 523 | 87 | 683 | | $(C_2H_5)_2O$ | 600 | | 14 | | | C ₂ H ₄ | 646 | 579 | 301 | 64 | | C ₂ H ₄ O | 650 | 574 | 15 | 17 | | CO | | 750 | | 24 | | H ₂ O | | | 293 | 47 | | Total carbon | | | 775 | 615 | | (Total H)/3 | | | 837 | 660 | CO and H_2 continued to form to 773 K, the highest temperature reached. Small amounts of C_3H_6O and CO_2 were also observed. The peak temperatures and the amounts of each product are given in Table 3. ### DISCUSSION ## Reverse Spillover A comparison of the TPD results for Ni/Al₂O₃ and Al₂O₃ shows that a small concen- tration of Ni dramatically changes the decomposition properties of methanol, ethanol, and 1-propanol on Al₂O₃. As shown in Tables 1-3, the amounts of each alcohol adsorbed are similar for both catalysts because almost all the alcohol adsorbs on the Al₂O₃ surface. Thus, in order for the decomposition of the alcohol adsorbed on the Al₂O₃ to be affected by the Ni, the alcohol or the species that form upon adsorption must diffuse to the Ni crystallites. Decomposition on Ni/Al₂O₃ thus takes place by reverse spillover to the Ni-Al₂O₃ interface or the Ni surface, which is a more active dehydrogenation catalyst than the Al₂O₃ surface. Several aspects of the TPD data indicate that surface diffusion is responsible for the decomposition. - The rate of decomposition increases dramatically when Ni is present. - Dehydrogenation to CO and H₂ increases when Ni is present because Ni is a good dehydrogenation catalyst but Al₂O₃ is not. - The rate of alcohol decomposition on Al_2O_3 is in the order $1-C_3H_7OH > C_2H_5$ $OH > CH_3OH$, but on Ni/Al_2O_3 the alcohols decompose at essentially the same rate. TPD is effective for studying this reverse spillover because it essentially measures the Fig. 5. TPD spectra of C₂H₅OH (2 µl) adsorbed at 300 K on 5.7% Ni/Al₂O₃. Fig. 6. TPD spectra of 1-C₃H₇OH (2 μl) adsorbed at 300 K on Al₂O₃. specific rate of reaction. Because the alcohol does not decompose or desorb until higher temperatures in the absence of Ni, the enhanced decomposition rate is not due to desorption from Al₂O₃ and readsorption on Ni. Instead, the fact that CO and H₂ desorbed simultaneously from Ni/Al₂O₃ shows that their formation was limited either by the rate of reverse spillover or the rate of decomposition of an adsorbed species on Ni or at the Ni-Al₂O₃ interface. The Ni surface area (0.6 m²/g catalyst) was estimated by hydrogenating CO (adsorbed at 300 K) to form CH₄ during temperature-programmed reaction (10). Since the BET surface area of Kaiser A-201 Al₂O₃ is 220 m²/g Al₂O₃ (1), almost no alcohol is adsorbed on Ni, but most of the alcohol decomposes on the Ni surface or at the Ni-Al₂O₃ interface. Because the Ni surface is so active for alcohol decomposition, relative to Al₂O₃, most of the alcohol probably decomposes as soon as it spills over to Ni from Al₂O₃. Narayanan et al. (3) concluded that surface diffusion was necessary for isopropanol decomposition on Al₂O₃ because only a small fraction of the surface sites was active for decomposition. Our results for Ni/Al₂O₃ show that when a small number of active Ni sites are placed on the Al₂O₃ surface, alcohols diffuse to the Ni surfaces and react. The formation of HD and D₂ during TPD of CH₃OD on Ni/Al₂O₃ (Fig. 3) suggests that CH₃O species diffuse along the Al₂O₃ surface together with D or H of the adjacent OD or OH groups. The CH₃OD adsorbed on Al₂O₃ to form CH₃O and OD. On the Ni surface or at the Ni-Al₂O₃ interface, CH₃O and OD or OH decomposed to form CO, H₂, HD, and D₂. Theoretical analysis by Anderson and Jen (11) suggested that CH₃O moved as an anion from one Al3+ site to another, paired with a proton, which moved from one O^{2-} site to another. The results for CH₃OD decomposition are consistent with this model. For clarity, CH₃O is used to represent the diffusing species during CH₃OH decomposition in the following discussion. Previous TPD studies for CH₃OH adsorption on Pt/Al₂O₃ (12) showed similar results to our TPD of CH₃OH on Ni/Al₂O₃ (Fig. 2). Methanol, which adsorbed on the Al₂O₃ surface of Pt/Al₂O₃, decomposed to form CO and H₂ simultaneously with a peak temperature near 500 K (12). During TPD after CO and H₂ were coadsorbed at 385 K on Pt/Al₂O₃ (12) and Pd/Al₂O₃ (13), CO and H₂ also desorbed simultaneously in single Fig. 7. TPD spectra of 1-C₃H₇OH (2 μ l) adsorbed at 300 K on 5.7% Ni/Al₂O₃. peaks at 500 K. In those experiments, CH₃O formed on Al₂O₃ during CO and H₂ coadsorption at 385 K. The similarity of TPD for CH₃OH on Ni/Al₂O₃, CH₃OH on Pt/Al₂O₃, and CH₃O on Pt/Al₂O₃ and Pd/Al₂O₃ indicates that the increased decomposition rate of CH₃OH on Ni/Al₂O₃, relative to that on Al₂O₃ alone, is due to reverse spillover of CH₃OH, and is not due to additional reaction sites created by the formation of Ni aluminate on the support. TABLE 3 TPD of 1-C₃H₂OH on Al₂O₃ and Ni/Al₂O₃ | Products | temp | Peak
peratures
(K) | Amounts desorbed (µmol/g catalyst) | | |---------------------------------|--------------------------------|-----------------------------------|------------------------------------|-----------------------------------| | | Al ₂ O ₃ | Ni/Al ₂ O ₃ | Al ₂ O ₃ | Ni/Al ₂ O ₃ | | СО | _ | 504 | | >186 | | Н, | 631 | 546 | 44 | >477 | | $(C_3H_7)_2O$ | 625 | | 8 | | | C_3H_6 | 625 | 562 | 215 | 93 | | C ₃ H ₆ O | 623 | 562 | 6 | 13 | | CO, | | 504 | | >13 | | H ₂ O | _ | | 220 | >41 | | Total carbon | | | 711 | >517 | | (Total H) × 3/8 | | | 737 | >627 | Another possible explanation for the increased rate of alcohol decomposition is that H₂ spillover, during treatment in H₂ at 773 K, created new types of active sites on the Al₂O₃ surface. Teichner (14) observed that active sites were created on the Al₂O₃ phase of a Pt/Al₂O₃ + Al₂O₃ mixture by H₂ gas exposure at 673 K. These sites on Al₂O₃ were active for ethylene hydrogenation, even when the Pt/Al₂O₃ was subsequently separated from the Al₂O₃. To determine whether this type activation was responsible for the increased rate of alcohol decomposition that we observed, a reactor was used in which 50 mg of Ni/Al₂O₃ was placed on top of 50 mg of Al₂O₃. The mixture was pretreated for 30 min in H₂ at 773 K, and then TPD of CH₃OH (500 μ mol/g mixture) was carried out. Hydrogen and CO products formed in two distinct processes, with peak maxima at 525 and 780 K, and some $(CH_3)_2O$, CO_2 , and CH_4 formed. The low temperature peaks were similar to the corresponding peaks in Fig. 2 for TPD of CH₃OH on Ni/Al₂O₃, and the high temperature peaks were similar to those in Fig. 1 for TPD of CH₃OH on Al₂O₃. The same results were obtained if the mixture was pretreated for 4 h in H₂ at 773 K. Thus, treatment in H₂ did not appear to activate the Al_2O_3 support for alcohol decomposition, and instead reverse spillover of alcohol from Al₂O₃ to Ni is responsible for alcohol decomposition. Our previous studies (15) also showed that following CH₃OH adsorption on Ni/Al₂O₃, isothermal treatment at 425 K in He caused reverse spillover and CO was formed on the Ni. This further supports our explanation as to why Ni increases the rate of alcohol decomposition. ## Comparison of Rates Both peak width analysis (16, 17) and Redhead's analysis (18, 19) were used to estimate activation energies for CO and H₂ formation on the catalysts. Though these methods are subject to significant errors, particularly if surface diffusion is the limiting step, they are useful for comparing relative rate constants, which were calculated from the activation energies and preexponential factors. Estimates based on the H₂ peak temperatures show that at 600 K, Ni increased the rate of methanol decomposition between a factor of 105 (Redhead's analysis) and 10⁷ (peak width analysis), the rate of ethanol decomposition between a factor of 10³ (Redhead's analysis) and 10⁵ (peak width analysis), and the rate of 1-propanol decomposition a factor of 10² (Redhead's analysis). The broad H₂ peak in Fig. 7 could not be analyzed by peak width analysis. These rate increases for dehydrogenation correspond to decreases in peak temperature of 250 K for methanol, 125 K for ethanol, and 85 K for 1-propanol. The presence of Ni also increased the rate of C₂H₅OH dehydration approximately a factor of 50 and the rate of 1-C₃H₇OH dehydrogenation a factor of 40 at 600 K. The initial rates of H₂ and CO formation on Ni/Al₂O₃ from C₂H₅OH and 1-C₃H₇OH were similar to those from CH₃OH, but CO and H₂ from C₂H₅OH decomposition continued to form up to 900 K, and CO and H₂ from 1-C₃H₇OH decomposition still formed above 775 K. On Al₂O₃ alone, C₂H₅OH and 1-C₃H₇OH decompositions (Figs. 4 and 6) instead were complete by 700 K. The high temperature CO from C₂H₅OH and 1-C₃H₇OH decomposition on Ni/Al₂O₃ probably resulted from an intermediate adsorbed species that formed on the Ni surface, possibly a CH_r species. This CH_r species then reacted with surface oxygen at high temperature to form CO and H₂ on Ni/Al₂O₃. Gates et al. (20) detected surface carbon in addition to CH₄, CO, H₂, and C₂H₄O when C₂H₅OH decomposed on Ni(111). The C-C bond is easier to break than the C-H in the CH₃ group (20). The similarity of CH₃OH, C₂H₅OH, and 1-C₃H₇OH initial decomposition rates indicates that their rates are probably limited by the same step such as spillover from Al₂O₃ to Ni. The rate of spillover might not be expected to be different for similar molecules. Decomposition to CO and H₂, which occurs after spillover, is expected to be fast because CH₃OH has been reported to decompose on Ni at 290 K to form CO and H₂ (6, 21). Since CO and H₂ do not form until much higher temperature in Fig. 2, CH₃OH decomposition on Ni does not limit CO and H₂ formation. For uniformed-size, spherical Ni particles and complete Ni reduction, the Ni particles are calculated to be 60 nm in diameter and the average distance between two adjacent particles is then approximately 1400 nm. This means the maximum distance that a molecule would have to diffuse to decompose is 700 nm. These estimates are based on Ni and Al₂O₃ surface areas, and are approximate since the Ni is not completely reduced. The diffusion distance of CH₃O adsorbed on Al₂O₃ also can be estimated using the model of Boudart and co-workers (22, 23), $$X_{\rm D} = (a/2) \exp[(E_{\rm d} - E_{\rm D})/(2RT)],$$ where X_D is the distance CH₃O diffuses before it desorbs, a is the hop distance for surface diffusion, R is the gas constant, E_D and E_d are the activation energies for CH₃O diffusion on and desorption from Al₂O₃, respectively, and T is temperature. At 534 K, which is the CO peak temperature for CH₃OH decomposition on Ni/Al₂O₃, sur- face diffusion of CH₃O on the Al₂O₃ surface of Ni/Al₂O₃ was assumed to be the ratedetermining step in order to estimate the distance. This estimate will then give a lower estimate of diffusivity if spillover is limiting. The activation energy for CO formation from CH₃OH on Ni/Al₂O₃ is E_D , and $E_{\rm d}$ is the activation energy of CO formation from CH₃OH decomposition on Al₂O₃ alone. If a = 0.4 nm is used (22), then X_D is estimated to be 470 nm. This value is close to the value of 700 nm obtained by using Ni surface area. Since CH₃O reverse spillover from Al₂O₃ to Ni limits CH₃OH decomposition, the rate of CH₃O diffusion is faster than the apparent rate of CO formation. For CH₃OH decomposition on Ni/Al₂O₃, if diffusion of CH₃OH on Al₂O₃ is the ratedetermining step, the concentration of CH₂OH on the Ni surface or at the Ni-Al₂O₃ interface will be much lower than that on the Al₂O₃ surface, and the rate of surface diffusion will be the same as the CO formation rate. From TPD of CH₃OH (Fig. 2), the CO formation rate at 534 K is 3.4 µmol/g catalyst/s. Thus, the diffusivity of CH₃O on the Al₂O₃ surface is estimated to be 6.6 \times 10^{-11} cm²/s according to Fick's law (24). This will be a lower estimate, however, if surface diffusion of CH₃O is not the ratedetermining step during CH₃OH dehydrogenation. ## Methanol Decomposition on Al₂O₃ Previous studies (25–28) with IR and microcalorimetry on pure Al₂O₃ following CH₃OH adsorption showed two types of adsorbed species: strongly adsorbed CH₃OH on basic sites and surface CH₃O species on Lewis acid sites. The CH₃O groups were the only irreversibly adsorbed species above 443 K (26, 27). In the present TPD experiment, since CH₃OH desorbs from 500 to 800 K (Fig. 1), its formation is probably due to the recombination of adsorbed CH₃O species with a proton from a hydroxyl group on Al₂O₃. Two mechanisms have been proposed in previous studies to explain (CH₃)₂O forma- tion from CH₃OH (2, 4, 29). Jain and Pillai (29) suggested that (CH₃)₂O formed by a bimolecular reaction between a CH₃O species and a strongly adsorbed CH₂OH. Similar models were developed by Padmanabhan and Eastburn (30) and Knözinger et al. (31). Matsushima and White (4) proposed, however, that dimethyl ether formed through the interaction of two adsorbed CH₃O species. They observed that in the presence of gas-phase CD₃OD the ether produced by thermal desorption from an Al₂O₂ surface on which CH₃OH had been preadsorbed was primarily (CH₃)₂O. More recently, DeCanio et al. (2) detected (CH₃)₂O with a peak maximum at 467 K for CH₃OH dehydration on Al₂O₃, but no physisorbed CH₃OH was detected. They concluded that (CH₃)₂O formed by the reaction between two CH₃O species and not between a CH₃O and a molecularly adsorbed CH₃OH. They did not mention the possibility of CH₃OH formation by the reaction between adsorbed CH₃O and H at elevated temperature. Our (CH₃)₂O peak in Fig. 1 is broader (from 450 to 800 K) and is about 95 K higher than that observed by DeCanio et al. (2). Part of this difference results because DeCanio et al. used a lower heating rate (0.4 K/s), but (CH₃)₂O is also more likely to readsorb in our study and they used a different alumina. Since CH₃OH desorbed over the same temperature range as (CH₃)₂O in the present study, formation of (CH₃),O could be due to reaction between adsorbed CH₃O and CH₃OH. The reaction of two CH₃O to form (CH₃)₂O is also possible, since (CH₃)₂O formed during TPD of CH₃OH on Ni/Al₅O₃ although CH₃OH was not observed (Fig. 2). The formation of CO and H₂ at higher temperature is attributed to the decomposition of CH₃O and OH groups, since H₂ and CO desorb simultaneously and the H/(CO + CO₂) ratio is larger than 3. During TPD of CH₃OD adsorbed on Al₂O₃, HD, D₂, H₂, and CO desorbed simultaneously. Since CH₃OD forms adsorbed CH₃O and OD on Al₂O₃ at 300 K, the formation of HD and D₂ is due to the decomposition of CH₃O and OD or OH. Carbon dioxide may be produced by CO disproportionation or by the recombination of CO and surface oxygen. Matsushima and White (4) also detected CO, H₂, and CO₂ during CH₃OH decomposition on Al₂O₃ at high temperature, but DeCanio et al. (2) did not observe the formation of CO, H₂, and CO₂ since they only ran TPD to 650 K. Because Greenler (25) and Kagel (28) reported that formate species (HCOO) formed above 450 K from CH₃OH adsorbed on Al₂O₃, TPD following HCOOH adsorption on Al₂O₃ was carried out (10). Formic acid decomposed mostly into CO (peak temperature of 525 K) and H₂O, which desorbed at wider temperature range (from 500 K to 775 K). Infrared studies (32–34) have identified formation of HCOO species following HCOOH adsorption on Al₂O₃. Since CO and H₂ desorb above 600 K for CH₃OH adsorption (Fig. 1), the formation of formate from CH₃OH seems unlikely under our conditions. ## Ethanol Decomposition on Al₂O₃ Previous IR studies (25, 28, 35) have shown that C_2H_5OH adsorbs on Al_2O_2 to form C₂H₅O and OH species, and physically adsorbed C₂H₅OH can be removed by evacuation at 343 K (35). Formation of $(C_2H_5)_2O_3$ which desorbed from Al₂O₃ at a similar rate as (CH₃)₂O from CH₃OH decomposition, may be due to the reactions between adsorbed C₂H₅O and C₂H₅OH or between two C₂H₅O species. Ethanol may form by the recombination of C₂H₅O and H and then react with another C_2H_5O to form $(C_2H_5)_2O$. At higher temperature, C₂H₅OH decomposition on Al₂O₃ is different from CH₃OH decomposition. Ethanol decomposes to form C₂H₄, C₂H₄O, and H₂, but CH₃OH decomposes to form CO, H2, and CO2. Ethanol also decomposes faster than CH₃OH. Arai et al. (36) concluded that C₂H₄ formed by the abstraction of a methyl hydrogen by an adjacent exposed oxide ion and the simultaneous rupture of the C-O bond. For C_2H_5OH decomposition on Al_2O_3 , $(C_2H_5)_2O$ and C₂H₄ has been detected in several studies (1, 2, 28, 36), but the formation of C_2H_4O and H_2 , which were observed in the present study, was not reported in those studies. Kim and Barteau (37), however, detected C_2H_4O and H_2 during TPD of C_2H_5OH on TiO₂. They attributed C_2H_4O formation to α -H elimination of a C_2H_5O species. Note that H_2 desorbed at the same temperature as C_2H_4 and C_2H_4O during TPD of C_2H_5OH on Al_2O_3 (Fig. 4). Hydrogen may form by the reaction between the hydrogen in the methyl or methylene group of C_2H_5O and surface hydrogen, which may adsorb on weak basic sites adjacent to the C_2H_5O adsorption site. Note that the C_2H_4 and C_2H_4O peaks from Ni/Al₂O₃ (Fig. 5) are similar to those formed in TPD of C_2H_5OH on Al₂O₃ alone (Fig. 4), and their formation may follow the same mechanism as on Al₂O₃. That is, C_2H_5O decomposes to C_2H_4 and C_2H_4O on Al₂O₃ in parallel with the reverse spillover of C_2H_5O from Al₂O₃ to Ni. ## 1-Propanol Decomposition on Al₂O₃ Previous IR studies showed that two species formed on the Al₂O₃ surface following 1-C₃H₇OH adsorption on Al₂O₃ up to 450 K (28, 38). One was physically adsorbed 1- C_3H_7OH , and another was 1- C_3H_7O . The gaseous product, which formed at 673 K and was detected by mass spectrometry, consisted mainly of C₃H₆ and H₂O (38). Thus, C₃H₆ formation was attributed to dehydration of physically adsorbed C₃H₇OH (38). DeCanio et al. (2) detected C₃H₆, H₂O, and $(C_3H_7)_2O$ during TPD of 1-C₃H₇OH adsorbed on Al₂O₃, but they did not observe a significant H₂ signal below 573 K. In the present study, in addition to C₃H₆, H₂O, (C₃H₇)₂O, and C₃H₆O, a significant amount of H₂ was detected (Fig. 6). This result is similar to that during TPD of C₂H₅OH decomposition on Al₂O₃ (Fig. 4). Thus, adsorbed C₃H₇O species on Al₂O₃ may decompose to form C₃H₆, C₃H₆O, and H₂ in a mechanism similar to that for C₂H₅O species. Kim and Barteau (37) detected similar products $(C_3H_6, H_2O, H_2, (C_3H_7)_2O, C_3H_6O,$ and CO₂) during TPD of 1-C₃H₇OH adsorbed on TiO₂. Because of the similarity between TPD of C₂H₅OH and 1-C₃H₇OH, formation of (C₃H₇)₂O may be due to the reaction between adsorbed 1-C₃H₇OH and 1-C₃H₂O or the reaction between two 1-C₃H₇O species. The decomposition rate of 1-C₃H₂OH on Al₂O₃ is higher than that of C₂H₅OH, and C₂H₅OH decomposes faster than CH₃OH. On TiO₂, Kim and Barteau (37) also observed that the rate of alkoxide decomposition was in the order $2-C_3H_7O >$ $1-C_3H_7O > C_2H_5O > CH_3O$. We have also studied TPD of 2-C₃H₇OH on Al₂O₃ and observed that 2-C₃H₇OH decomposes faster than $1-C_3H_7OH$. Thus, for the four alcohols studied, we see the same order of reactivity on Al₂O₃ that Kim and Barteau observed on TiO₂ in UHV. ### CONCLUSIONS Methanol adsorbed on Al₂O₃ decomposes to form (CH₃)₂O at low temperature, and to form CO, H₂, and CO₂ above 600 K. The presence of Ni on Al₂O₃ increases the rate of CH₃OH decomposition between a factor of 10⁵ and 10⁷, and dehydrogenation of CH₃OH to CO and H₃ becomes the dominant process. Ethanol adsorbed on Al₂O₃ mostly dehydrates to form C_2H_4 , but smaller amounts of (C₂H₅)₂O, C₂H₄O, and H₂ also form. On Ni/Al₂O₃, C₂H₅OH decomposition is 10³ to 10⁵ times faster and the main reaction is dehydrogenation to CO, H₂, and CH_x. 1-Propanol decomposes on Al₂O₃ mostly to form C_3H_6 and H_2O_7 , but some H_2 , (C₃H₇)₅O, and C₃H₆O were also detected. The presence of Ni on Al₂O₃ increases the rate of 1-C₃H₇OH decomposition a factor of 10^2 , and 1-C₃H₇OH decomposition to H₂, CO, and CH, is the main reaction. All alcohols studied initially decompose to CO and H₂ on Ni/Al₂O₃ at a similar rate though their rates of decomposition are different on Al₂O₃. The increase in the decomposition rate of alcohols, when Ni is present, is attributed to alcohol diffusion along the Al₂O₂ surface, reverse spillover to the Ni-Al₂O₃ interface, and decomposition on the Ni surface or at the interface. The diffusivity of CH₃O on the Al₂O₃ surface at 534 K is estimated to be larger than 6.6×10^{-11} cm²/s. #### **ACKNOWLEDGMENTS** We gratefully acknowledge support by the National Science Foundation, Grant CTS-9021194. We also thank Eric M. Cordi for his suggestions concerning the surface diffusion calculations. ### REFERENCES - Swecker, J. L., and Datye, A. K., J. Catal. 121, 196 (1990). - DeCanio, E. C., Nero, V. P., and Bruno, J. W., J. Catal. 135, 444 (1992). - Narayanan, C. R., Srinivasan, S., Datye, A. K., Gorte, R., and Biaglow, A., J. Catal. 138, 659 (1992). - Matsushima, T., and White, J. M., J. Catal. 44, 183 (1976). - Gates, S. M., Russell, J. N., Jr., and Yates, J. T., Jr., Surf. Sci. 146, 199 (1984). - Gates, S. M., Russell, J. N., Jr., and Yates, J. T., Jr., Surf. Sci. 159, 233 (1985). - Kester, K. B., and Falconer, J. L., J. Catal. 89, 380 (1984). - Glugla, P. G., Bailey, K. M., and Falconer, J. L., J. Phys. Chem. 92, 4474 (1988). - Schwarz, J. A., and Falconer, J. L., Catal. Today 1 (1990). - Chen, B., and Falconer, J. L., submitted to J. Catal. - Anderson, A. B., and Jen, S., J. Phys. Chem. 95, 7792 (1991). - Flesner, R. L., and Falconer, J. L., J. Catal. 139, 421 (1993). - Hsiao, E. C., and Falconer, J. L., J. Catal. 132, 145 (1991). - 14. Teichner, S. J., Appl. Catal. 62, 1 (1990). - Chen, B., Falconer, J. L., and Chang, L., J. Catal. 127, 732 (1991). - Chan, C. M., Aris, R., and Weinberg, W. H., *Appl. Surf. Sci.* 4, 234 (1980). - Chan, C. M., and Weinberg, W. H., Appl. Surf. Sci. 1, 377 (1978). - 18. Redhead, P. A., Vacuum 12, 203 (1962). - Falconer, J. L., and Madix, R. J., Surf. Sci. 48, 393 (1975). - Gates, S. M., Russell, J. N., Jr., and Hates, J. T., Jr., Surg. Sci. 171, 111 (1986). - Richter, L. J., Gurney, B. A., Villarrubia, J. S., and Ho, W., Chem. Phys. Lett. 111, 185 (1984). - Rumpf, F., Poppa, H., and Boudart, M., Langmuir 4, 722 (1988). - 23. Kieken, L., and Boudart, M., in "Proceedings of - the 10th International Congress on Catalysis, - Budapart, Hungary, 1992," to appear. 24. Kapoor, A., Yang, R. T., and Wong, C., Catal. Rev.-Sci. Eng. 31, 129 (1989). - 25. Greenler, R. G., J. Chem. Phys. 37, 2094 (1962). - 26. Busca, G., Rossi, P. F., and Lorenzelli, V., J. Phys. Chem. 89, 5433 (1985). - 27. Rossi, P. F., Busca, G., and Lorenzelli, V., Z. Phys. Chem. 149, 99 (1986). - 28. Kagel, R. O., J. Phys. Chem. 71, 844 (1967). - 29. Jain, J. R., and Pillai, C. N., J. Catal. 9, 322 (1967). - 30. Padmanabhan, V. R., and Eastburn, F. J., J. Catal. 24, 88 (1972). - 31. Knözinger, H., Kochloefl, K., and Meye, W., J. Catal. 28, 69 (1973). - 32. Koga, O., Onishi, T., and Tamaru, K., J. Chem. Soc. Chem. Commun., 464 (1974). - 33. Amenomiya, Y., Appl. Spectrosc. 32, 484 (1978). - 34. Amenomiya, Y., J. Catal. 57, 64 (1979). - 35. Arai, H., Saito, Y., and Yoneda, Y., Bull. Chem. Soc. Jpn. 40, 731 (1967). - 36. Arai, H., Take, J., Saito, Y., and Yoneda, Y., J. Catal. 9, 146 (1967). - 37. Kim, K. S., and Barteau, M. A., Langmuir 4, 533 (1988). - 38. Deo, A. V., and Dalla Lana, I. G., J. Phys. Chem. **73,** 716 (1969).