SYNTHESIS OF SUBSTITUTED 2-ALKYL(ARYL)THIO-3-CYANOPYRIDINES AND 3-AMINOTHIENO[2,3-b]PYRIDINES

E. I. Kaigorodova, L. D. Konyushkin, S. N. Mikhailichenko,

V. K. Vasilin, and V. G. Kul'nevich

The alkylation of 6-methyl-4-methoxymethyl-3-cyano-2(1H)pyridinethione by halogen derivatives in the presence of KOH proceeds regioselectively with the formation of S-alkyl derivatives. By cathodic electrolysis of the thiols in the presence of 6-methyl-4-methoxymethyl-2-chloro-3-cyanopyridine, 2-arylthiopyridines are obtained. By Thorpe-Ziegler cyclization of 2-alkylthiopyridines having an active methylene group, 2-aminothieno[2,3b]pyridines have been synthesized.

2-Substituted thiopyridines are of interest as potential biologically active substances and as reagents for fine organic synthesis [1]. The known paths for obtaining these compounds are based on the interaction of 2-halopyridines with thiols, or on the alkylation of 2(1H)-pyridinethiones with halogen derivatives [2]. The alkylation of 3-cyano-2(1H)pyridinethiones proceeds by an $S_N 2$ mechanism through a stage of formation of pyridine-2-thiolates, the interaction of which with halogen derivatives leads to the desired products [3-5].

In a continuation of our studies [6] of the synthesis of substituted 2-thiopyridines, we have investigated the alkylation of 6-methyl-4-methoxymethyl-3-cyano-2(1H)-pyridinethione (I) by halides (IIa-m). The reaction was performed in dimethyl-formamide or alcohol, in the presence of potassium hydroxide with a reactant ratio I-KOH-II = 1-1-1.

It was established that regardless of the nature of the halogen derivative, the solvent, or the temperature, the reaction proceeds with high regioselectivity and leads to S-substituted thiopyridines IIIa-m with yields of 70-95% (Table 1).

m) R = $CH_2COC_6H_3(OH)_2-3,4$

The decisive factor in the regioselectivity is apparently the complete localization of negative charge on the sulfur atom through the formation of a close ion pair in the potassium pyridinethiolate, as indicated by an analysis of x-ray diffraction data on similar salts [5]. For the synthesis of the 2-arylthiopyridines IIIn,o, the traditional alkylation reaction proved to be unsuitable. These compounds were obtained by an electrochemical method [6] from chloropyridine (IV) and thiols (Va,b), respectively.

Kuban State Technological University, Krasnodar 350072. N. D. Zelinskii Institute of Organic Chemistry, Moscow 117913. Southern Branch of Association Rosvuznauka, Krasnodar 350072. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1432-1437, October, 1996. Original article submitted April 2, 1996; revision submitted August 20, 1996.

Com-	Empirical	Found %				mp °C	Vield 07
pound	formula	с	H	N N	s	inp, C	1 1010, 70
IIIa	C10H12N2OS	<u>57.43</u> 57.67	<u>5.74</u>	<u>13.38</u> 13.45	<u>15.28</u> 15.30	6364	93
Шb	C11H14N2OS	<u>59.47</u> 59.43	<u>6.39</u> 6.35	13,43 <u>12.54</u> 12.60	<u>14.41</u> 14.42	5253	92
IIIc	C15H22N2OS	<u>64.64</u> 64,71	7.89 7,96	<u>10.01</u> 10,06	<u>11.47</u> 11,52	Oil	84
IIId	C11H13N3O2S	<u>52.44</u> 52,57	<u>5.16</u> 5,21	<u>16.62</u> 16,72	<u>12.73</u> 12,76	168169	95
111e	C17H17N3O2S	<u>62.28</u> 62,36	<u>5.16</u> 5,24	<u>12.75</u> 12,83	<u>9.71</u> 9,79	215216	92
IIIf	C12H14N3O2S	<u>54.07</u> 54,12	<u>5.25</u> 5,30	<u>10.46</u> 10,52	<u>11.97</u> 12,04	88,589,5	70
IIIg	C14H18N2O3S	<u>57.07</u> 57,12	<u>6.08</u> 6,16	<u>9,44</u> 9,52	<u>10.75</u> 10,89	6665	75
IIIh	C17H16N2O2S	<u>65.28</u> 65,36	<u>5.12</u> 5,16	<u>8.83</u> 8,97	<u>10.18</u> 10,26	123125	95
IIIi	C19H20N2O2S	<u>66.92</u> 67,03	<u>5.85</u> 5,92	<u>8,16</u> 8,23	<u>9.37</u> 9,42	121122	89
шј	C19H20N2O2S	<u>67.01</u> 67,03	<u>5.87</u> 5,92	<u>8.21</u> 8,23	<u>9.28</u> 9,42	9596 ·	86
IIIk	C17H15N3O4S	<u>57.03</u> 57,13	<u>4.17</u> 4,23	<u>11.66</u> 11,76	<u>8.85</u> 8,97	128130	81
111 l	C21H26N2O2S	<u>67.98</u> 68,07	<u>7.02</u> 7,07	<u>7.79</u> 7,56	<u>8.56</u> 8,56	103104	87
III m	C17H16N2O4S	<u>59.19</u> 59,29	<u>4.62</u> 4,68	<u>8.07</u> 8,14	<u>9.25</u> 9,31	200201	78
IIIn	C15H14N2OS	<u>66.52</u> 66,64	<u>5.07</u> 5,22	<u>10.21</u> 10,37	<u>11.73</u> 11,86	6567	82
1110	C19H22N2OS	<u>69.77</u> 69,90	<u>6.69</u> 6,79	<u>8,55</u> 8,58	<u>9.78</u> 9,82	6663	93
Vla	C11H13N3O2S	<u>52.51</u> 52,57	<u>5.14</u> 5,21	<u>16.65</u> 16,72	<u>12.69</u> 12,76	189191	75
VIb	C17H17N3O2S	<u>62.31</u> 62,36	<u>5.18</u> 5,24	<u>12.83</u> 12,88	<u>9.68</u> 9,72	179180	82
VIc	C17H16N2O2S	<u>65.25</u> 65,36	<u>5.08</u> 5,16	<u>8.85</u> 8,97	<u>10.16</u> 10,26	136137	80
VId	C19H20N2O2S	<u>66,95</u> 67,03	<u>5.84</u> 5,92	<u>8.17</u> 8,23	<u>9.38</u> 9,42	132133	81
Vle	C17H15N3O4S	<u>57.04</u> 53,13	<u>4.14</u> 4,23	<u>11.62</u> 11,76	<u>8.88</u> 8.97	>210 (decomp.)	76
VIf	C21H26N2O2S	<u>67.98</u> 68,07	<u>7.01</u> 7,07	7.46 7,56	<u>8.54</u> 8,65	174175	88
VI g	C17H16N2O4S	<u>59.15</u> 59,29	<u>4.58</u> 4,68	8.05 8,14	<u>9.22</u> 9,31	210	79
Vih	C17H15CIN2O2S	<u>58.79</u> 58,87	<u>4.25</u> 4,36	<u>8.01</u> 8,08	<u>9.14</u> 9,24	118119	82
VII †	C ₁₇ H ₁₅ BrN ₂ O ₂ S	<u>52.07</u> 52,18	3.75 3,86	7.11	<u>8.15</u> 8,20	134135	81

TABLE 1. Characteristics of Synthesized Compounds

*Cl found 10.13%, calculated 10.22%.

[†]Br found 20.33%, calculated 20.42%.

Cathodic electrolysis of the thiols V in the presence of chloropyridine was carried out on a Pt cathode in a 0.3 N solution of tetraethylammonium bromide in absolute acetonitrile. The thiolate anions generated on the cathode [7], reacting with the chloropyridine IV, form the sulfides IIIn,o with high yields (Table 1). The electrolysis was performed in a diaphragm cell in an argon atmosphere at 20-25°C, while holding the system in the galvanostatic regime and passing in no more than 1.05-1.10 F/mole.

Com-	ν,° cm ⁻¹						
pound	CN C+C.C+N		COC	со	N_H		
IIIa	2200	1560	1115, 1105	-			
шь	2180	1550	1105, 1080	—	_		
IIIc	2195	1560	1105, 1090	-			
III d	2210	1570	1120, 1100	1655 (Amide I)	3350, 3170		
Ille	2210	1570	1120, 1105	1650 (Amide I)	3350, 3170		
Шf	2210	1560	1105, 1070	1670	_		
III g	2195	1555	1150, 1100, 1080	1690			
IIIh	2190	1560	1020, 1080, 1110	1670			
Шi	2195	1590, 1570	1020, 1090, 1110	1660	_		
шј	2195	1580, 1570	1020, 1090, 1110	1655			
IIIk	2195	1530	1105, 1080, 1040	1660			
1111	2200	1580	1140, 1120, 1070, 1015	1700			
IIIm	2205	1595	1150, 1115	1650			
IIIn	2200	1640, 1560	1105, 1090	_			
IIIo	2195	1560	1110, 1095	_	_		
Vla	—	1580	1120, 1070	1630	3440, 3360, 3260, 3150		
VIb	_	1580	1130, 1070	1670	3360, 3270		
VIc	—	1570	1095	1620	3460, 3255		
VId	_	1560	1105, 1080	1650	3360, 3270		
Vle	_	1600	1150	1620	3320, 3210		
VIf	_	1580	1080	1690	3370, 3250		
VIg	-	1570	1095	1640	35003300 br.sh.		
VIh	-	1580	1120, 1080	1650	3370, 3260		
VIt [sic]	- 1	1570	1070	1680	3340, 3230		

TABLE 2. IR Spectra of Synthesized Compounds

Va, IIIn) Ar = Ph; Vb, IIIo) Ar = $C_6H_4(t-Bu)-4$

The structure of the 2-alkyl(aryl)-3-cyanothiopyridines IIIa-o was confirmed by PMR data and IR spectra (Tables 2 and 3).

By Thorpe-Ziegler cyclization of the pyridines IIId, e, h, j, k-m, which have an active methylene group in the substituent R, the corresponding 3-amino-thieno [2,3-b] pyridines (VIa-i) were synthesized (method A).

The present results and those reported in [6] show that the cyclization rate depends on the electronegativity of the substituent on the sulfur atom, decreasing in the series

In the example of the compounds VIa,i, we also demonstrated the possibility of obtaining 3-aminothieno[2,3-b]pyridines from the pyridinethione I and halides IIa,o in a single stage without segregating the product III (method B).

Com.	Chemical shifts δ , ppm, and SSCC (J), Hz							
pound	CH3-Het c	осн3	SCH2.	осн2	H-Het c	other protons (see R, Z)		
IIIa	2,57	3,46 s	2,62 s	4,55 s	7,17	_		
111 d	2,59	3,50 s	3,91 s	4,58 s	7,17	5,52 and 6,76 (2H, two br.s, NH2)		
IIIe	2,68	3,51 s	4,01 s	4,59 s	7,10	7,207,47 (5H, m, C ₆ H ₅); 9,10 (1H, br.s, NH)		
III f	2,57	3,49 (5H, m,	.3,54 J = 6,7)	4,56 s	7,10	2,88 (2H, d, J = 6,7, CH ₂ COOH)		
III g	2,56	3,483,54 (5H,m)		4,55s	7,08	1,28 (3H, ^t , <i>J</i> = 7,18, CH ₃); 2,78 (2H, t, <i>J</i> = 7,5, <u>CH₂</u> , COOEt); 4,17 (2H, q, <i>J</i> = 7,18, OCH ₂)		
III.h	2,32	3,48 s	4,55 s	4,67 s	7,05	7,278,09 (5H, m, C ₆ H ₅)		
III i	2,46	3,48 S	4,56	(4H, s [.])	7,05	2,39 (6H, c, 2CH ₃ —Ar); 7,75 (2H, m, 2 o -H _{Ar}); 7,79 (1H, d, J = 2,7, n-H _{Ar})		
III j	2,46	3,47 S	4,554,58 (4H, m)		7,05	2,38 и 2,40 (6H, tow ^S , 2 CH ₃ —Ar); 7,10 (2H, m, o-, m-H _{Ar}); 7,78 (1H, d, m-H _{Ar})		
IIIk	2,31	3,48 s	4,64 s	4,56 s	7,08	7,278,37 (4H, m, C6H4)		
III n	2,42	3,50 s	—	4,59 s	7,16	7,407,57 (5H, m, C ₆ H ₅)		
III o	2,43	3,49 s	_	4,58 s	7,11	1,35 (9H, s, 3 CH ₃); 7,417,52 (4H, m, C ₆ H ₄)		
VIa	2,65	3,41 5	-	4,67 S	7,00	5,34 (2H, br. s, NH-Het); 7,10 (2H, br. s, CONH ₂)		
VIc	2,66	3,45 s	-	4,80 s	7,00	7,277,89 (5H, m, C ₆ H ₅); 8,12 (2H, br. s, NH ₂)		
vje	2,67	3,46 s	_	4,ð1 s	7,01	7,988,32 (6H, m, C ₆ H ₄ , NH ₂)		
VIf	2,80	3,48 s	-	4,62 s	7,13	1,802,18 (15H, m, Ad); 8,10 (2H, br. s, NH ₂)		
VIh	2,66	3,45 s	_	4,80 s	6,99	7,447,83 (4H, m, C ₆ H ₄); 8,14 (2H, br. s, NH ₂ -Het)		
VIi	2,66	3,44 s	-	4,79 s	7,00	7,597,77 (4H, m, C ₆ H ₄); 8,17 (2H, NH ₂)		

TABLE 3. PMR Spectra of Certain Synthesized Compounds

 $*SCH_3$ in the case of IIIa.

 $V1a)Z - CONH_2;b)Z - CONHPh; c)Z - COPh; d)Z - COC_6H_3Me_2-2,4; e)Z - COC_6H_4NO_2-4; fZ - COAr^1; gZ - COC_6H_3(OH)_2-3,4. IIn, VIh)Z - COC_6H_4CI-4. IIo, VIi)Z - COC_6H_4Br-4 - COAr^1; gZ - COC_6H_4CI-4. IIo, VII)Z - COC_6H_4CI-4.$

The IR spectra of the compounds VI do not contain any band $\nu C \equiv N$, and a series of bands appears in the 3150-3500 cm⁻¹ interval pertaining to stretching and bending vibrations of the amino group. In the PMR spectra, in place of signals of protons of the SCH₂ group, characteristic singlets of the amino group appear in the interval 7.10-8.32 ppm.

EXPERIMENTAL

PMR spectra were registered in a Bruker WM-250 RF spectrometer in CDCl₃, but for compounds VIa-c in (CD)₃CO. IR spectra were obtained in a Specord 75-IR spectrophotometer on suspensions in white mineral oil. The course of the reaction and the purities of the products were monitored by TLC on Silufol UV-254 plates, eluent 1:2 hexane-acetone, development by iodine vapor or KMnO₄ solution.

The characteristics of the synthesized compounds are listed in Tables 1-3.

6-Methyl-4-methoxymethyl-2-R-3-cyanothiopyridines (IIIa-i). A mixture of 10 mmoles of the pyridinethione I in 20-25 ml of DMF, 10 mmoles of a halide II, and 10 mmoles of 10% aqueous potassium hydroxide was held for 1-5 h at room temperature, after which 5-10 ml of water was added. The resulting precipitate of the product III was separated, washed with water, and recrystallized from alcohol.

6-Methyl-4-methoxymethyl-2-phenylthio-3-cyanopyridine (IIIn). The cathode section of an electrolysis cell with a glass diaphragm was charged with 60 ml of a 0.3 M solution of tetraethylammonium bromide in absolute acetonitrile (background solution), containing an equimolar mixture (0.01 mole each) of 6-methyl-4-methoxymethyl-2-chloro-3-cyanopyridine and the thiophenol Va. The anolyte was 50 ml of the background solution. The cathode was a platinum strip (S = 35 cm²); the anode was a magnesium rod with a 1×1 cm section. The electrolysis was performed in an argon atmosphere at 20-25°C in the galvanostatic regime with a current density of 63-65 mA/cm². The catholyte was mixed by means of a magnetic stirrer. After passing 1.05-1.15 F/mole, the catholyte was poured off, and the solvent was removed under vacuum. The residue was treated with water. The resulting crystals were filtered off and recrystallized from alcohol. Obtained 1.12 g of the product IIIn. Analogously, from the thiophenol Vb, compound IIIo was synthesized.

3-Amino-2-R-6-methyl-4-methoxymethylthieno[2,3-b]pyridines (VIa-m). A. A mixture of 10 mmoles of the thiopyridine IIId,e,h,k-m in 20-25 ml of DMF and 20 ml of potassium hydroxide (10% aqueous solution) was held for 3-7 h at room temperature. The mixture was diluted with 2-3 times its volume of water, and the precipitate was filtered off. The products VIa-g were recrystallized from alcohol.

B. A mixture of 10 mmoles of the pyridinethione I in 20-25 ml of DMF, 10 mmoles of the halide IIn, o, and 10 mmoles of potassium hydroxide (10% aqueous solution) was stirred for 30 min at room temperature. Then, 10 mmoles of KOH (10% aqueous solution) was added, and the mixture was held at room temperature for 3-7 h. Obtained the product VIh, i. For the synthesis of compounds VIa, b, an additional 5 h of holding the reaction mass was necessary. The products were then recovered as described above.

REFERENCES

- 1. "Critical directions for investigation and application of chemical means of plant protection," in: The Chemistry of Azines [in Russian], Itogi Nauki i Tekhniki, Ser. Organicheskaya Khimiya (VINITI, Moscow), 17, 72 (1989).
- 2. E. E. Read, Organic Chemistry of Bivalent Sulfur, Chem. Publ. Co. (1960), Vol. 2, pp. 106, 110, 125, 126, 338.
- 3. N. Furukawa, T. Kawai, and S. Oae, Synthesis, No. 9, 746 (1984).
- 4. Yu. A. Sharanin, M. P. Goncharenko, and A. M. Shestopalov, Zh. Org. Khim., 21, 2470 (1985).
- 5. V. N. Nesterov, V. E. Shklover, Yu. T. Struchkov, Yu. A. Sharanin, A. M. Shestopalov, and L. A. Rodinovskaya, Acta Crystallogr., Sect. C, Cryst. Struct. Commun., 41, 1191 (1985).
- 6. E. A. Kaigorodova, L. D. Konyushkin, M. E. Niyazymbetov, S. N. Kvak, V. N. Zaplishnyi, and V. V. Litvinov, Izv. Russ. Akad. Nauk, Ser. Khim., No. 12, 2215 (1994).
- 7. M. E. Niyaz'mbetov, V. A. Petrosyan, L. D. Konyushkin, and V. P. Litvinov, Izv. Akad. Nauk SSR, Ser. Khim., No. 7, 1605 (1990).