969 October 1985 Communications

> which were isolated by simple filtration of the inorganic salts followed by solvent evaporation in vacuo.

> The alkylation of the β -ketonitrile moiety with primary alkyl halides in the cases of 6f-h formed variable amounts (5-10%) of O-alkylated products, which could be easily removed by flash-chromatography. However this operation was unnecessary, the final products being more easily purified by bulb-to-bulb distillation.

C≣N K₂CO₃/acetone/ C 6a-h 5 a-h

5,6		5,6	
а	CH₂	е	C ₂ H ₅ OOC CH = C CH ₂
b	0 ₂ N-{_}-CH ₂ -	f	n-C5H11
С	NC - CH ₂ -	9	n - C ₆ H ₁₃
d	HC≡C−CH2−	h	(CH ₂) ₃ -

Table. Acrylonitriles 6a-h prepared

Prod- uct	Yield ^a [%]	b.p. [°C]/ torr or m.p. [°C]	Molecular formula ^b or Lit. data	1 H-N.M.R. (CDCl ₃ /TMS) c δ [ppm]
6a	49	105-106°/ 15	110-111°/ 20 ⁵	3.52 (s, 2H); 5.68 (m. 1H); 5.87 (s, 1H); 7.1-7.55 (m, 5H)
6b	50	4446° ^d	C ₁₀ H ₈ N ₂ O ₂ (188.2)	3.7 (s, 2H); 5.85 (m, 1H); 6.0 (m, 1H); 7.45 (d, J = 9 Hz, 2H); 8.2 (d, J = 9 Hz, 2H)
6c	47	149–150°/ 15	$C_{11}H_8N_2$ (168.2)	3.65 (s. 2 H); 5.8 (m, 1 H); 5.97 (s. 1 H); 7.4 (d, $J = 9$ Hz, 2 H); 7.7 (d, $J = 9$ Hz, 2 H)
6d	29	120°/760	C ₆ H ₅ N (91.1)	2.3 (m, 1H); 3.2 (m, 2H); 6.05 (m, 1H); 6.15 (m, 1H)
6e	31	131–133°/ 50	C ₁₁ H ₁₅ O ₃ N (209.3)	1.3 (t, J=7 Hz, 3H); 1.35 (t, J=7 Hz, 3H); 3.75 (m. 2H); 3.9 (q, J = 7 Hz, 2H); 4.15 (q, J = 7 Hz, 2H); 5.15 (s, 1H); 5.9 (s, 1H); 5.95 (s, 1H)
6f	43	110-112°/ 50	77-78°/ 25 ³	0.9 (t, 3H); 1.1-1.7 (m, 6H); 2.15 (m, 2H); 5.65 (m, 1H); 5.8 (s, 1H)
6g	41	114-116°/ 50	e	0.9 (t, 3H); 1.1–1.8 (m, 8H); 2.2 (m, 2H); 5.68 (m, 1H); 5.8 (s, 1H)
6 h	39	118-119°/ 15	C ₁₂ H ₁₃ N (171.2)	1.9 (m, 2H); 2.2 (m, 2H); 2.65 (t, $J = 7$ Hz, 2H); 5.65 (s, 1H); 5.8 (s, 1H); 7.1–7.4 (m, 5H)

Yields are not optimized and are given for isolated products after bulb-to-bulb distillation or crystallization.

A New Simple Synthesis of α -Substituted Acrylonitriles

P.G. BARALDI, G.P. POLLINI, V. ZANIRATO

Istituto di Chimica Farmaceutica, Via Scandiana 21, I-44100 Ferrara, Italy

A. BARCO, S. BENETTI

Istituto Chimico, Laboratorio di Chimica Organica, Via L. Borsari 46, I-44100 Ferrara, Italy

An efficient preparation of α -substituted acrylonitriles 6 based on the utilization of 4-cyano-3-ketothiolane enolate anion (3) as a synthetic equivalent to α-acrylonitrile anion (1) is described.

α-Substituted acrylonitriles are important intermediates in synthetic organic chemistry, being essential components in classical Michael and Diels-Alder reactions as well as starting materials for a wide variety of heterocycles. These compounds are not directly accessible by reaction of the anion 1 with electrophiles¹, therefore several round-about routes have been proposed for their preparation. Thus dehydration of cyanohydrins of methyl ketones² or oximes of αalkylacroleins³ was successfully applied, although the most general route4 involves heating in dimethylformamide for 48 h at 80 °C of a quaternary salt of a Mannich base derivative of alkylated cyanoacetic esters. A synthetic equivalent of 1 was found⁵ in the anion 2 of 2-cyano-5-norbornene, the Diels-Alder adduct between cyclopentadiene and acrylonitrile. Alkylation of 2, generated by the action of sodium amide in tetrahydrofuran, with suitable electrophiles, followed by pyrolysis (350-380°C) of the alkylated products, gave rise to the corresponding α-alkylated acrylonitriles in unspecified yield through a retro Diels-Alder reaction.

$$H_2C = \stackrel{\Theta}{C} = C = N$$
 $C \equiv N$
 $C \equiv N$
 $C \equiv N$

We wish to describe in this paper a new method of preparation of α -substituted acrylonitriles 6 featured by the use of the heterocyclic anion 3 as a new synthetic equivalent for 1, which circumvented the drastic conditions associated with the retro Diels-Alder reaction.

The required 4-cyano-3-oxotetrahydrothiophene (4) was prepared in 50% overall yield through Dieckmann cyclization of the Michael adduct between acrylonitrile and methyl thioglycolate in the presence of sodium methoxide in refluxing methanol, in a one-pot reaction described in the patent literature⁶. Treatment of 4 in acetone with a variety of alkyl halides in the presence of anhydrous potassium carbonate gave the corresponding C-alkylated products 5a-h.

Satisfactory microanalyses obtained: $C \pm 0.29$, $H \pm 0.28$, $N \pm 0.3$.

Recorded at 80 MHz.

Recrystallized from *n*-pentane. Ref. ⁴, not reported.

The crude 5a-h on exposure to 5% aqueous sodium hydroxide in a two phase water/ether system at room temperature underwent a hydroxide ion-promoted fragmentation which proceeded through a series of inverse Dieckmann-Michael reactions, resulting in a clean formation of the α -substituted acrylonitriles 6a-h (Table).

The mild conditions involved and the good overall yields make this sequence a novel and convenient route to α -substituted acrylonitriles **6**, a class of extremely useful compounds. These findings confirm and further extend the versatility of this strategy, which we have already applied to the synthesis of α -alkyl- α , β -unsaturated esters^{8,9} and to α -alkyl- α , β -unsaturated cyclic ketones¹⁰.

4-Cyano-3-oxotetrahydrothiophene (4):

To a solution of sodium methoxide prepared from sodium metal (13.2 g, 0.57 mol) in methanol (200 ml), methyl thioglycolate (21.6 g, 0.41 mol) is added dropwise at 0 °C. Then neat, freshly distilled acrylonitrile (43 g, 0.41 mol) is added and the mixture is heated at reflux for 1 h. Most of the solvent is removed in vacuo (15 torr), the mixture is diluted with water (100 ml) and extracted with ether (1 \times 25 ml). The aqueous phase is acidified with 10 % hydrochloric acid and extracted with ether (4 \times 25 ml). Evaporation of the dried (magnesium sulfate) extracts gives 4 as a solid; yield: 12.8 g (50 %); m.p. 71 –72 °C (ether) (Lit. 6, m.p. 72 °C; yield: 58 %).

I. R. (CHCl₃): v = 2260, 1760 cm⁻¹.

¹H-N.M.R. (CDCl₃/TMS): $\delta = 3.5$ ppm (m, 5 H).

Acrylonitriles 6; General Procedure:

To a suspension of anhydrous potassium carbonate (30 mmol) and compound 4 (10 mmol) in dry acetone (20 ml), is added the alkyl halide (10 mmol) and the mixture is refluxed for the appropriate time (T.L.C. control, eluent: diethyl ether/hexane, 1/2). After cooling the mixture is filtered and the solvent removed at 25 torr. The residue is dissolved in ether (30 ml) and vigorously stirred with 5% aqueous sodium hydroxide (50 ml) at room temperature until complete fragmentation (T.L.C. control, eluent: diethyl ether/petroleum ether, 1/4). The organic phase is separated and dried with sodium sulfate. Removal of the solvent leaves a residue which is distilled or crystallized.

Received: March 5, 1985

Arseniyadis, S., Kyler, K.S., Watt, D.S. Org. React. 1984, 31, 1.

² Bailey, W.J., Naylor, F.E., Hewitt, J.J. J. Org. Chem. 1957, 22, 1076.

Marvel, C. S., Miller, W. R., Chou, L. C. J. Am. Chem. Soc. 1950, 72, 5408.

⁴ Miller, J.C., Smith, B.F. Synth. Commun. 1973, 3, 413.

⁵ Muller, J.C., Fleury, J.P. Bull. Soc. Chim. Fr. 1970, 738.

⁶ Georg, A.H., Willi, M., Heinrich, R. *Dutch Patent Appl.* 6604742 (1966); C.A. 1967, 67, 21811.

⁷ Elnagdi, M.H., Elmoghayar, M.R.H., Elgemeie, G.E.H. Synthesis 1984, 1.

⁸ Baraldi, P. G., Barco, A., Benetti, S., Moroder, F., Pollini, G.P. Simoni, D., Zanirato, V. J. Chem. Soc. Chem. Commun. 1982 1265

Baraldi, P. G., Guarneri, M., Pollini, G. P., Simoni, D., Barco, A. Benetti, S. J. Chem. Soc. Perkin Trans. 1 1984, 2501.

Baraldi, P.G., Barco, A., Benetti, S., Pollini, G.P., Zanirato, V. Tetrahedron Lett. 1984, 4291.