
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2003; 13:95–127 (DOI: 10.1002/stvr.270)

Test adequacy criteria for UML
design models

Anneliese Andrews, Robert France, Sudipto Ghosh∗,†

and Gerald Craig

Computer Science Department, Colorado State University,
Fort Collins, CO 80523, U.S.A.

SUMMARY

Systematic design testing, in which executable models of behaviours are tested using inputs that exercise
scenarios, can help reveal flaws in designs before they are implemented in code. In this paper a technique
for testing executable forms of UML (Unified Modelling Language) models is described and test adequacy
criteria based on UML model elements are proposed. The criteria can be used to define test objectives for
UML designs. The UML design test criteria are based on the same premise underlying code test criteria:
coverage of relevant building blocks of models is highly likely to uncover faults. The test adequacy criteria
proposed in this paper are based on building blocks for UML class and interaction diagrams. Class diagram
criteria are used to determine the object configurations on which tests are run, while interaction diagram
criteria are used to determine the sequences of messages that should be tested. Copyright c© 2003 John
Wiley & Sons, Ltd.

KEY WORDS: design reviews; software testing; test adequacy criteria; UML; class diagram; collaboration
diagram; category partitioning

1. INTRODUCTION

The Unified Modelling Language (UML) [1] is an Object Management Group (OMG) object-oriented
(OO) modelling language standard that is gaining widespread use in the software development industry.
Modelling a large, complex system (e.g., a telecommunication system) can result in a system model
that consists of a variety of diagrams presenting different views of the model. Design reviews in which
the reviewers trace and relate concepts across the diagrams can be tedious because of the amount of
information reviewers need to track. The use of UML models that have informal semantics can also
make it difficult to uncover design faults in UML models.

∗Correspondence to: Dr Sudipto Ghosh, Computer Science Department, Colorado State University, Fort Collins, CO 80523,
U.S.A.
†E-mail: ghosh@cs.colostate.edu

Contract/grant sponsor: National Science Foundation Award; contract/grant number: #CCR-0203285

Copyright c© 2003 John Wiley & Sons, Ltd.
Received 8 April 2002

Accepted 13 March 2003

96 A. ANDREWS ET AL.

Static and dynamic analysis tools that utilize well-defined semantics for UML models can enhance
a reviewer’s ability to uncover faults in the models. Rigorous static analysis tools that can significantly
enhance design reviews include state exploration tools (e.g., model checkers [2–4]), Object Constraint
Language (OCL) [5] type-checking tools, and tools that utilize well-defined semantic relationships
across the views of a UML model (e.g., Rational Rose) to check consistency of information across
the views. Semantics that support the creation of executable UML models pave the way for dynamic
analyses of models. Dynamic analysis of UML models is concerned with testing modelled behaviours
by executing models using appropriate forms of test inputs. In this paper, a technique that supports
testing of executable forms of UML models is presented.

Systematic testing techniques for UML designs need to address at least the following concerns:

• Development of a semantics that supports creation of executable models. A systematic model
testing technique requires a semantics that supports execution of the models. Currently, the
semantics of the UML is informally described in the OMG standard document [1]. Executable
forms of the UML are beginning to emerge (e.g., see work on Executable UML [6], and the
UML Virtual Machine [7]). These works indicate that one can associate formal semantics to
UML behavioural elements that support the execution of UML models.

• Development of criteria that determine the adequacy of tests. The effectiveness of a test is based
on how well the tests cover and exercise the modelled behaviours. In code testing, criteria based
on coverage of the building blocks of programs can be used to determine the adequacy of tests.
Similar criteria for UML models can be used to guide the selection of test cases.

In this paper a systematic technique for testing executable forms of UML design models is described.
The technique utilizes test criteria expressed in terms of UML model element coverage. The remainder
of the paper is organized as follows. The concepts underlying the testing technique, the elements of
the executable forms of UML models and related work on UML testing are presented in Section 2.
In Section 3, an overview of the technique for testing UML designs is given. Test criteria based on
elements in UML models are described in Section 4. A systematic testing approach using the proposed
criteria is described in Section 5. An example illustrating the creation of test cases is given in Section 6.
A preliminary evaluation of the criteria in terms of the types of faults they target is described in
Section 7. Conclusions and directions for future work are presented in Section 8. For readers less
familiar with UML terminology, definitions of common UML terms based on the most recent standard
definition [8] are quoted in Appendix A.

2. BACKGROUND

Testing executable forms of models is analogous to program testing. In general, testing an executable
software artifact (program or executable design model) involves (1) the creation of test cases, (2) the
execution of the artifact using the test cases, and (3) the analysis of test results to determine correctness
of the tested behaviour. In this section, the basic testing concepts that underly this work, and the UML
elements used to build testable UML designs are described. The section concludes with an overview
of related work on UML testing.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 97

2.1. Software testing concepts

A test case is a sequence of inputs that determines the behaviours that will be tested (e.g., a sequence
of program input data or a sequence of events for a state machine design model), along with the
expected behaviour. A test case is successful if the observed behaviour matches the expected behaviour;
otherwise, the test fails. Success can be determined with the help of an oracle that compares the
observed behaviour with the expected (correct) behaviour. A test set is a set of one or more test
cases.

A test adequacy criterion is a predicate that defines properties that must be covered if the test is to be
considered adequate with respect to the criterion [9]. Tests that are adequate with respect to a criterion
cover all the elements in the domain determined by the criterion. Test criteria help in defining test
objectives or goals that are to be achieved while performing software testing. Cost considerations and
available resources often determine the selection of one criterion over another. Test criteria can also be
used to determine when testing should stop: testing can stop when tests that satisfy all the criteria have
been carried out successfully.

The approach to defining test criteria for UML models is based on the category-partition testing [10]
approach developed for code. The category partitioning approach utilizes a program’s specification to
(1) identify separately testable functional units, (2) categorize the inputs for each functional unit, and
(3) partition the input categories into equivalence classes. Offutt and Irvine [11] show that the category
partitioning technique is effective at detecting faults that involve implicit functions, inheritance,
initialization and encapsulation when applied to OO software. In this work, a variant of category-
partitioning is used to categorize and partition object configurations specified by UML class diagrams.
Design-level test criteria determine the configurations that must be covered in an adequate design-level
test.

The approach also uses a variant of the method sequence oriented approaches described in the OO
code testing literature. Class testing techniques [12] provide for executing sequences of methods,
and for varying the order of methods in the sequences. At the end of a sequence, the tester or the
test environment verifies whether the resulting states of the objects involved are correct [13–15].
These method sequence oriented approaches are useful to consider adapting for those parts of the
UML descriptions that deal with sequences of object states. The combining of category partitioning
with the method sequence oriented technique results in an approach that involves more than just use of
graph-based criteria.

2.2. UML modelling concepts

The UML model testing approach described in this paper utilizes requirements and design models.
A UML Requirements Model is used to develop the oracles for design model tests. A requirements
model consists of a conceptual model (i.e. a requirements class diagram) and a set of use cases.
A conceptual model depicts the problem concepts and their relationships to each other. Each use case
specifies a required behaviour in terms of a pre-condition that states what must be true before execution
if the behaviour is to have the effect specified in the post-condition. The pre- and post-condition in a
use case are defined in terms of concepts defined in the conceptual model of the Requirements Model.

The design model consists of (1) a design class diagram (DCD) that specifies the valid object
structures (configurations) that can exist in an executing system, (2) an activity diagram for each class

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

98 A. ANDREWS ET AL.

borrID

CM-Library Member

title
author
bookType

CM-Book

copyID
status

CM-Copy

1

*

describes

dueDate
borrowDate

Borrows

0..1

borrower

*

loan copy

Figure 1. Conceptual model for a simple library system.

that describes the behaviour of class objects, and (3) interaction diagrams that model how objects
collaborate in order to accomplish required behaviours.

2.2.1. Requirements model artifacts

The conceptual model used in this approach consists of (1) classes that represent problem
concepts, (2) associations that model semantic relationships between problem concepts, and
(3) specialization relationships between problem concepts. Class properties are represented by
attributes and associations. Conceptual model classes do not have operations. An example of a
conceptual model for a simple library system is shown in Figure 1. A library member (instance of CM-
Library Member) can have zero or more copies (instances of CM-Copy) checked out at any time, while
a copy can be checked out by at most one library member. The borrow relationship between a library
member and a copy is associated with information about the due date and borrow date. Each copy must
be associated with a book (instance of CM-Book) that contains information about the book’s author,
title, and also indicates the book type (for this simple example, a book can either be a general book that
can be checked out or a reference book that cannot be checked out).

Use cases specify required behaviours. Figure 2 contains two use cases for the library system,
one specifying the behaviour of a successful copy checkout, the other specifying the behaviour of
an unsuccessful checkout.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 99

«requirement»
USE CASE: Successful Check out Copy

OVERVIEW: This Use Case specifies the behavior of a
successful copy check out.

INPUTS: BORROWERID bid; COPYID cid; DATE currdate

OCL Definitions (these definitions are used in the pre- and post-
condition sections of the Use Case):
{let loancopy:Copy = copy->select(copyID=cid)
 let borrower:Library Member =
 library Member->select(borrID=bid)}

PRECONDITION:
 Overview: cid must identify an available copy
 of a general book (i.e., a book whose copies can be checked out)
 and bid must identify a library member.

 OCL constraint:
 { loancopy->notEmpty() and borrower->notEmpty and
 loancopy.status="available" and
 loancopy.book.bookType="general" }

POSTCONDITION:
 Overview: a link is created between the copy and the library member
 the due date is set (14 days from current date) and the borrow date
 is set to the current date.

 OCL constraint:
 { borrower.borrows->including(b) and b.IclIsNew() and
 b.dueDate=currdate+14 and b.borrDate=currdate and
 loancopy.status="checkedout"}

«requirement»
USE CASE: Unsuccessful Check out Copy

OVERVIEW: This Use Case specifies the
behavior of an unsuccessful copy check out.

INPUTS: BORROWERID bid; COPYID cid; DATE currdate

OCL Definitions (these definitions are used in the pre- and post-
condition sections of the Use Case):
{let loancopy:Copy = copy->select(copyID=cid)
 let borrower:Library Member =
 library Member->select(borrID=bid)}

PRECONDITION:
 Overview: cid does not exist, or has been checked or is a copy
 of a reference book, or bid does not identify a valid library member.

 OCL constraint:
 { loancopy->isEmpty() or borrower->isEmpty() or
 (loancopy->notEmpty() and (loancopy.status="checkedout" or
 loancopy.book.bookType="reference")) }

POSTCONDITION:
 Overview: The library system is unchanged.

 OCL constraint:
 { library member=library Member@pre and copy=copy@pre and
 book=book@pre and
 copy.book=copy.book@pre and book.copy=book.copy@pre and
 library Member.copy=library Member.copy@pre and
 copy.library Member=copy.library Member@pre }

Figure 2. Use cases for checking out a copy.

2.2.2. Design model artifacts

A system is modelled as a collection of state machines that communicate asynchronously.
Three diagrams are used to describe different views of a system model: a DCD depicts the design
classes and their relationships, an activity diagram‡ describes the behaviour of class objects, and an
interaction diagram describes the intra-object communications. A design model consists of a DCD, an
activity diagram for each class in the DCD, and a set of interaction diagrams that present the object
interaction view of the system.

An example of a DCD that shows part of a design for the simple library system is shown in Figure 3.
The class Library Member is intended to realize the CM-Library Member concept (see Figure 1),
Copy is intended to realize the CM-Copy concept, while the class Borrows is intended to realize the
conceptual model association class Borrows. The other classes in the DCD represent design objects,
that is, objects introduced to support a particular implementation of the system. In this case, a System

‡An activity diagram is a state machine in which actions take place in the states.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

100 A. ANDREWS ET AL.

+borrowUpdate(in borrinfo : Borrows)

-borrid : String

Library Member
+getStatus() : String
+getBookType() : String
+checkoutCopy() : Boolean
+validateCopy()
+copyUpdate(in borrinfo : Borrows)

-copyID : String
-status

Copy

+getBookType() : String

-title : String
-author : String
-bookType : String

Book

+checkout(in copyid : String, in borrid : String, in currdate : Date)
+createException(in errcode : Integer)
+borrowCheck()

System Controller

1 *

1

1
1

*

describes
1

1

-dueDate : Date
-borrowDate : Date

Borrowsborrower

1

loan record

*

loan record

0..1

loan copy

1

+findCopy(in copyid : String) : Copy
+validateCopy(in copyid : String)

Copy Manager

1

*

c-manages

+findMember(in borrid : String) : Library Member
+borrowCheck(in copyid : String, in borrid : String)

Member Manager

1

*

m-manages

1 1

Figure 3. Partial DCD for the library system.

Controller object accepts requests for library services and directs them to appropriate manager objects
for handling. The two manager classes shown in Figure 3 are Member Manager (performs member
management functions such as checking out a copy for a member) and Copy Manager (performs copy
management functions such as checking the availability of a copy).

Each class in a DCD is associated with an activity diagram that describes the behaviour of objects
in the class. Partial activity diagrams for the System Controller and the Member Manager classes are
shown in Figures 4 and 5, respectively.

An activity diagram consists of states and transitions. The following are the types of states and
transitions that can be found in the activity diagrams used in the proposed testing approach.

• Action states: a state in which actions are performed is called an action state. Action states are
associated with only one action in the activity diagrams used in this work. An action in an action
state can be one of the following:

– An assignment of the form element := expression, where element can be a local variable,
or an attribute, and expression can be a value or a call to a value-returning procedure or a
constructor (value returned is a reference to the new object). For example, in Figure 4 the
action state with the action

borrinfo := create :: Borrows(currdate + 14, currdate)

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 101

Active

checkout(copyid,borrid,currdate)
returnCopy(copyid)

send members.borrowCheck(copyid, borrid)

nocopy
nomember notAvailablereference isvalid(loancopy,member)

send client.exception("Reference Copy")

send client.exception("No Copy")

send client.exception("Not a Member")

send client.exception(" Not Available")

borrinfo:=create::Borrows(currdate+14,currdate)

send member.borrowUpdate(borrinfo)

send loancopy.copyUpdate(borrinfo)

Wait

Figure 4. Partial activity diagram for the system controller.

assigns a newly created Borrows object to the variable borrinfo. Local variables are simply
variables used to store information temporarily during the activity. They are not attributes
because they do not represent properties of objects.

– A send action of the form send object.signal. A signal is a communication between objects
and can have data associated with it (e.g., the signal checkout in Figure 4 has data copyid,
borrid, and currdate associated with it). For example, in Figure 4, entering the action state
with the action send members.borrowCheck(copyid, borrid), results in the sending of the
borrowCheck(copyid, borrid) signal to the members object.

– A procedure call of the form procedureA(arguments), or a call to a constructor of
the form create :: classname(constructor arguments). Procedures and constructors are

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

102 A. ANDREWS ET AL.

Active

borrowCheck(copyid,borrid) ...

member:=findMember(borrid)

send copies.validateCopy(copyid)

Wait

nocopy notAvailablereference isvalid(loancopy)

send libsys.reference send libsys.nocopy send libsys.notAvailable send libsys.isvalid(member,loancopy)

send libsys.nomember
member=null

member<>null

Figure 5. Partial activity diagram for the member manager.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 103

expressed in some programming language. Java is used in this work. An action state with
a procedure or constructor call results in the procedure or constructor being executed.
Execution of a procedure or constructor cannot be interrupted, that is, a transition to
another state can only be made after the procedure or constructor returns. The action
member := findMember(borrid) in Figure 5 results in a call to findMember(), and storing
of the return value in the local variable member.

• Input signal transitions: these transitions take place when the indicated signals are consumed by
the state machine. For example, Figure 4 shows a transition from the state Active to an action
state as result of receiving the input signal checkout(copyid, borrid, currdate).

A simple model of execution for activity diagrams is used. The action in an action state is executed
on entry to the state. Each activity diagram has a signal queue for incoming signals. The queue is
checked whenever the state machine moves into a new non-action state or after the action in an action
state is performed. If there are signals in the queue, the signal at the top of the queue is consumed (i.e.
removed from the queue) unless explicitly deferred (each state can define a set of signals to be deferred;
those signals are not consumed if they do not cause a transition to another state). If the activity diagram
indicates that the signal causes a transition to another state, then the transition is made; if not, the
machine remains in the current state. A deferred signal moves back to the top of the queue after a
signal has been consumed.

One can derive the interactions between objects from a set of activity diagrams by tracking the
send actions specified in the activity diagrams. This view of a system’s behaviour is conveniently
captured by interaction diagrams. A collaboration diagram is an interaction diagram that characterizes
how objects interact to achieve a behavioural goal. Sequence diagrams are another form of interaction
diagrams that can contain the same interaction information, but in a different format (e.g., collaboration
diagrams specify the object structure on which the behaviour is carried out; such information is implicit
in sequence diagrams). In this paper, collaboration diagrams are used because they depict structure as
well as interactions, allowing the development of criteria in terms of structures on which behaviours
are performed.

A collaboration diagram consists of two parts: a collaboration and an interaction. A collaboration
specifies the object structure needed to support a particular behaviour. It specifies the properties that
objects must have if they are to participate in the behaviour. The specifications can be expressed in
terms of collaboration roles, where a role specifies the attributes and operations of a class needed for a
particular behaviour, or in terms of prototypical objects. A collaboration diagram that consists of roles
is called a specification-level collaboration diagram, while a diagram consisting of prototypical objects
is called an instance-level collaboration diagram. One can use either diagram to specify collaborations.
Instance-level collaboration diagrams are used in this paper.

An interaction specifies the communications that take place between objects when performing a
specified behaviour. An interaction is always defined within a collaboration. Communication stimuli
between objects are specified by messages. In the interaction diagrams used in this work, a message
specifies a signal communication. An example of a collaboration diagram is given in Figure 6.

In the example ‘return’ messages are differentiated using ‘half arrowheads’. This is only a syntactic
distinction; all signals specified by messages are asynchronous communications that are placed in the
signal queues of receiving objects. A textual description of the signal sequence for the library checkout
behaviour is given in Figure 7.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

104 A. ANDREWS ET AL.

libsys : Top Package::System Controller

checkout(copyid:String, borrid:String, currdate:Date)

1: b
orro

wChec
k(c

opy
id:S

trin
g, b

orri
d:S

trin
g)

3b[m
ember=

null]:
 nom

ember

5b/A
1: n

oco
py

B2: n
otA

va
ila

ble

9b
/10b: re

fe
ren

ce

9a/10
a: is

va
lid

(lo
an

copy,m
em

ber)

bk : Top Package::Book

copies : Top Package::Copy Manager

5a[loancopy<>null]: v
alidateCopy()

7b[st="checkedout"]:
notAvailable

7a/8a[bt="general"]:
isvalid

7a/8b[bt="reference"]: r
eference

members : Top Package::Member Manager

member : Top Package::Library
Member

7
a

[s
t=

" a
va

i la
b

le
"]

:
b

t:
=

g
e

t B
o

o
k

T
y

p
e

()

2: member:=findMember(borrid:String)

3
a

[m
e

m
b

e
r<

>
n

u
l l] : v

a
li d

a
te

C
o

p
y

(c
o

p
y

i d
:S

t rin
g

)

5
b

[l o
a

n
c

o
p

y
=

n
u

ll] : n
o

c
o

p
y

7
b

/B
1

: n
o

tA
v

a
il a

b
le

8
b

/9
b

: re
fe

re
n

c
e

8
a

/9
a

: i s
v

a
l i d

(lo
a

n
c o

p
y

)

3a/4: loancopy:=findCopy(copyid:String)

loancopy : Top Package::Copy

5a/6: st:=getStatus()

borrinfo : Top Package::Borrows

1
0

a
/1

1
: c

re
a

t e
(d

u
e

D
a

te
:D

a
te

, c
u

r rd
a

te
:D

a
te

)

1
2:

 b
or

ro
w

U
p

d
a te

(b
o rr

in
fo

:B
o

rr
ow

s
)

1
3

: c
o

p
y

U
p

d
a

t e
(b

o
r ri n

fo
: B

o
rr o

w
s

)

Figure 6. An example of an instance-level collaboration diagram.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 105

Interaction sequence for checkout operation

1. The members object (collection of library members) is
requested to check whether the member can borrow the
copy.

2. findMember searches for the member and stores result
in member.

3a. If the member is found then the copies object (collection
of library copies) is requested to validate the copy.

3b. If the member is not found then a signal is sent back
to libsys indicating there is no member.

4. Upon receiving a request to validate a copy, the copies
object searches for the copy (findCopy is invoked)

5a. If the copy is found then the found copy (loancopy) is requested to
check whether it can be checked out.

5b. If the copy is not found then a nocopy signal is sent to members.
 A1. members then sends a nocopy signal to libsys

6. Upon receiving a request to do a checkout check, loancopy checks
its status.

7a. If the status is "available" then loancopy requests the booktype from
its linked book (bk).

7b. If the status is "checkedout" a notAvailable signal is sent to copies;
 B1. copies then sends a notAvailable signal to members;
 B2. members then sends a notAvailable signal to libsys

8a. If the book type is "general" loancopy sends an isvalid signal to copies;
 9a. copies then sends an isvalid signal, with a reference to loancopy, to members;
 10a. members then sends an isvalid message, with references to loancopy
 and member to libsys;
 11. libsys then creates a borrows object (borrinfo) containing
 information about the due and borrow dates.
 12. libsys then requests member to create a link to borrinfo;
 13. libsys then requests loancopy to create a link to borrinfo.

8b. If the book type is "reference" loancopy sends a reference signal to
copies;
 9b copies then sends a reference signal to members to indicate that
 the copy cannot be checked out because it is a reference copy;
 10b. members then sends a reference signal to libsys

Figure 7. Textual description of signal sequence in library checkout behaviour.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

106 A. ANDREWS ET AL.

2.3. Related work on UML-based testing

Binder [16] describes generic test requirements derived from UML models and introduces the test
design pattern. The pattern focuses on determining appropriate test strategies, faults that may be
detected, test case development from the model and oracle. The test development can be done
for different scopes in the implementation (e.g., method, class, class integration, subsystem and
integration). This approach does not test UML models, but generates code test requirements from
them.

Briand and Labiche [17] describe the TOTEM (Testing Object-orienTed systEms with the Unified
Modelling Language) system test methodology. System test requirements are derived from UML
analysis artifacts such as use cases, their corresponding sequence and collaboration diagrams, class
diagrams and the use of the OCL across all these artifacts. The test requirements are then transformed
into test cases, test oracles and test drivers using more detailed design information. This approach is
meant for system testing whereas the proposed approach is targeted toward integration testing related
to interactions and behaviours of objects. Moreover, this approach does not evaluate UML artifacts.

Offutt and Abdurazik [18] developed a technique for generating test cases for code (rather than
designs) from a restricted form of UML state diagrams. The state diagrams used in their approach
utilize only enabled transitions. Test cases are generated using only the change events as a basis.
The authors identified four levels of testing based on transition coverage criteria and provided some
empirical evidence of the effectiveness of their approach.

Although the work focused on the generation of code-level test cases, it is possible to adapt the
approach for generating test cases for executable forms of state diagrams. A limitation of the work
is that the approach applies only to restricted forms of state diagrams. Test case generation based on
types of events other than change events (e.g., call events and signals) can also be used to increase the
chances of uncovering faults related to the generation and handling of these events. For this reason, the
approach performs only a limited form of class-level testing. The approach does not directly support
testing of object interactions.

Abdurazik and Offutt [19] also developed test criteria based on collaboration diagrams for static and
dynamic testing of implementation code. Building on this work, they proposed methods for statically
checking code relative to a collaboration diagram using classifier roles, collaborating pairs, messages or
stimuli and local variable definition-usage link pairs. The static checking approach involved evaluating
the code in terms of four elements from collaboration diagrams:

1. Classifier roles: test for required attributes and operations.
2. Collaborating pairs: each pair on the diagram should be tested or checked at least once.
3. Stimulus: each stimulus should be used as the basis for generating test inputs.
4. Local variable definition-usage link pairs: check for data flow anomalies at the design level.

A criterion for dynamic testing that involved message sequence paths was also proposed. For each
collaboration diagram in the specification, there must be at least one test case that results in the
execution of the code that implements the message sequence path of the collaboration diagram. At the
time the paper was published, empirical evaluation of the criterion had yet to be performed. However,
the utility of the criterion seems intuitive.

Both approaches proposed by Offutt and Abdurazik are for testing implementations using
information from UML design models (state or collaboration diagrams). The goal of the proposed

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 107

approach is to test the design models themselves and also to use information from different types of
diagrams (class and collaboration diagrams) together during testing.

Scheetz et al. [20] developed an approach to generating system (black box) test cases for code from
UML class diagrams. A restricted form of UML class diagrams is used to represent the conceptual
architecture of the system under test. The class diagrams used in the approach consist only of
classes, associations (including aggregation) and specialization structures. From the class diagrams
test objectives are derived that cover single classes, groups of classes and their associations as depicted
in the class diagrams.

Test objectives are composed from ‘building blocks’. These are derived from defining choices in
composing the initial state of objects and desired states of some or all of these objects after the test
is executed. Test objectives can be aggregated by conjunction. The desired states for an object are
determined by its attribute values and links to other objects.

The approach to deriving test objectives is based on the following.

1. Test objectives can be derived for each class (and its instantiated objects) in the diagram
separately, considering the class’ relationships to other classes.

2. Test objectives for a complete class diagram can be aggregated from those for individual classes
(and their instantiated objects), subject to constraints through class relationships.

3. Test objectives can be expressed as states of objects instantiated from classes depicted in the
UML class diagrams.

The class-based test objectives can be aggregated into system level test objectives subject to
constraints defined as part of the UML model. In [20] these test objectives are converted into test
cases with the use of an AI planner as the generation mechanism. When multi-object test objectives
are aggregated, the space of possible test objectives can become intractably large. The testing criteria
described in this paper can be used to guide the selection of building blocks and aggregation of
individual test objectives, thus reducing this complexity.

3. TESTING UML MODELS: AN OVERVIEW

The collection of communicating state machines that models a system is referred to as a system model
in the remainder of this paper. In this work, UML diagrams are used to present views of system models.
Testing a system model involves executing modelled behaviour, starting from a specified configuration
(object structure), using a sequence of signals that trigger modelled behaviours. During execution the
start configuration can change as a result of adding and deleting objects and links and changing the
values of object attributes.

To test a design, one needs to create a test set, where a test set consists of several test cases. In the
proposed approach, a test case is a tuple that has the following form:

� sequence of signals, start configuration, prefix �
A configuration is a structure of objects that satisfies the constraints expressed in the DCDs.

A configuration includes (1) the class objects and the links that exist at a given time, and (2) the
value of each attribute in each object in the configuration. The start configuration is the configuration
on which the test is started. The prefix is a sequence of signals that can be used to take the system from

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

108 A. ANDREWS ET AL.

an initial configuration to the start configuration. Once the system is in the chosen start configuration,
a sequence of signals is applied to run the test.

A sample test case for the collaboration diagram shown in Figure 6 is given below.

• Sequence of signals: checkout(copy123, borr1, 10102002),
checkout(copy123, borr2, 10102002), checkout(copy321, borr1, 10102002).

• Start configuration: consists of a set of copies that includes copy123, but not copy321, and a set
of members that includes borr1 and borr2.

• Prefix: addCopies({copy123}), addMember({borr1, borr2}).

Execution of a test case will result in a trace of configurations and the sequence of signals generated as
a result of the test input sequence.

In order to determine whether a test is successful or not one needs an oracle. In this work, the pre- and
post-conditions of use cases associated with the behaviours under test are used to determine success
or failure of a test: if the start configuration of the test satisfies the pre-condition of the use case, then
at the end of the test the final configuration must satisfy the post-condition of the use case for the test
to be deemed a success. Some of the objects in the configuration may not correspond to concepts in
the requirements models (e.g., the System Controller class does not correspond to any concept in the
library system conceptual model), in which case it is necessary to apply abstraction functions to the
start and end configurations (which hide details of design objects that do not correspond to requirements
concepts) before applying the pre- and post-conditions. Abstraction mappings are not discussed in this
paper.

4. TESTING CRITERIA FOR UML DIAGRAMS

The adequacy of tests executed on system models can be expressed in terms of the covered model
elements. In this section, a set of test criteria based on coverage of elements in DCDs and interaction
diagrams are presented.

4.1. DCD criteria

DCD criteria determine the configurations that a behavioural test must cover in order to be termed
adequate. For example, a criterion might specify the valid configurations (object structures) that must
be created during execution of a system model. Failure to reach a specified valid configuration may
be the result of an inadequate test set or an inconsistency in the system model which prevents the
configuration from being reached.

Figure 8 shows a DCD for the Royal and Loyal System (RLS) used to illustrate how DCD criteria
can be used to obtain test objectives. RLS handles loyalty programs for companies that offer their
customers bonuses in the forms of bonus points and air miles. Details of this example can be found in
Chapter 2 of the book by Warmer and Kleppe [21].

DCD criteria can be based on the form of constraints present in the diagrams. In a DCD, constraints
can be expressed as association-end multiplicities, generalizations and OCL statements (not shown in
Figure 8). Table I summarizes the test criteria proposed for classes, associations and generalizations.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 109

Burning Earning

ProgramPartner

numberOfCustomers : Integer

ServiceLevel

name : String

LoyaltyProgram

enroll(c : Customer)

1..*

1..*

+partners 1..*

1..*

1..*1..*{ordered}

Membership

0..*0..*

+actualLevel

Customer

name : String
title : String
isMale : Boolean
dataOfBirth : Date

age() : Integer

0..*0..* 0..*

+program

0..*

LoyaltyAccount

points : Integer

earn(i : Integer)
burn(i : Integer)

0..10..1

Service

condition : Boolean
pointsEarned : Integer
pointsBurned : Integer
description : String

0..*
+delivered
Services 0..*

0..*

+availableServices

0..*

CustomerCard

valid : Boolean
validFrom : Date
goodThru : Date
color : enum{silver, gold}
printedName : String

+card

0..*+cards 0..*

+owner

Transaction

points : Integer
date : Date

program() : LoyalProgram

0..*+transactions 0..*

0..*

+transactions

0..* 0..*

+card

+transactions

0..*

Date

$now : Date

isBefore(t : Date) : Boolean
isAfter(t : Date) : Boolean
=(t : Date) : Boolean

Date is a
utility class

Figure 8. Class diagram for the RLS [21].

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

110 A. ANDREWS ET AL.

Table I. Candidate test criteria for class diagrams.

Association-end multiplicity (AEM) criterion
Given a test set T and a system model SM , T must cause each representative
multiplicity-pair in SM to be created.

Generalization (GN) criterion
Given a test set T and a system model SM , T must cause every specialization defined
in a generalization relationship to be created.

Class attribute (CA) criterion
Given a test set T , a system model SM , and a class C, T must cause a set of
representative attribute value combinations in each instance of class C to be created.

Two of the criteria (AEM and CA) are expressed in terms of representative values. In order to
establish the set of representative values, a form of category-partition testing [10] adapted to UML
diagrams is used. Using this method, the value domain is partitioned into equivalence classes, and one
value from each class is selected for the set of representative values. The partitions can be determined
in the following ways.

1. Knowledge-based partitioning. Using knowledge of the problem domain, the tester can
determine the partitions. Such knowledge may be gained by examining the OCL constraints
associated with the model. A value domain for a UML construct may be characterized using one
or more constraints. A systematic approach to determining partitions for the value domain may
proceed as follows:

(a) Using one of the constraints, create an initial partitioning (e.g., a partition in which the
constraint is true for each element in the partition, and a partition in which the constraint
is false for each partition element). The initial partitioning can also be created using default
partitioning (see below).

(b) Refine the initial partitioning by further partitioning each initial partition using a different
constraint. Repeat this step until there are no more constraints to be applied.

The use of OCL constraints for determining partitions will be illustrated when the CA (Class
Attribute) criterion is considered.

2. Default partitioning. The tester can use default partitions consisting of minimum, non-boundary
and maximum values. For example, given a multiplicity p..n, the minimum value partition is
{p}, a non-boundary partition is {p + 1, . . . , n − 1} and the maximum value partition is {n}.
In the case where the multiplicity is defined as ‘∗’, it will be up to the tester to select an upper
limit based on the system requirements.

4.1.1. Association-end multiplicity (AEM) criterion

An association-end multiplicity (AEM) specifies how many instances of a class at the opposite end
of the association link can be associated with a single instance of a class at the association end.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 111

For example, the Customer-LoyaltyProgram association in Figure 8 shows that a single instance of
the Customer class can be associated with zero to many instances of the LoyaltyProgram class, and
a single instance of the LoyaltyProgram class can be associated with zero to many instances of the
Customer class. An AEM criterion determines the set of representative multiplicity tuples that must be
created during a test.

In order to establish the set of representative multiplicity tuples, the adapted form of category-
partition testing [10] previously outlined can be used. Using this method, the multiplicity domain
is partitioned into equivalence classes, and one value from each class is selected for the set of
representative multiplicities. The default partitioning approach is illustrated using the Customer-
LoyaltyProgram association shown in Figure 8.

1. Create a multiplicity set by arbitrarily selecting a value from each partition. A possible
multiplicity set for class Customer is {0, u, n} and one for LoyaltyProgram is {0, v,m}, where m

and n are upper limits determined by the tester, u is a value from the set {1, . . . , n − 1} and v is
a value from the set {1, . . . ,m − 1}.

2. Create a set of configurations {(r, s)1, (r, s)2, . . . } from the Cartesian product of the multiple
sets of the Customer and LoyaltyProgram instances, where r is the number of Customer
instances linked with s instances of LoyaltyProgram. For the association, this configuration set
is: {(0, 0), (0, v), (0,m), (u, 0), (u, v), (u,m), (n, 0), (n, v), (n,m)}.

The AEM criterion will ensure that design testers run tests that exercise configurations that contain
boundary and non-boundary occurrences of links between objects (an instance of an association is a
link).

4.1.2. Generalization (GN) criterion

Figure 8 shows an example of a generalization relationship where the classes Burning and Earning
specialize the class Transaction. The generalization criterion defines the representative set of
specialization types that must be created from a DCD’s superclasses during a system model test. A test
that causes one of each type of specialization (e.g., Burning and Earning) to be created is adequate
with respect to the GN criterion.

Tests that satisfy the GN criterion are likely to reveal faults that can arise from violation of the
substitutability principle which states that an instance of a subclass can be used anywhere an instance
of its superclass is expected. Tests that satisfy the GN criterion can uncover substitutability violations
by testing behaviours in which superclass objects are expected using specializations of the superclass
instead of superclass objects.

4.1.3. Class attribute (CA) criterion

Attribute values may restrict the behaviour of an object. For example, particular attribute values may
restrict how an object responds to signals. Thus, the value space of attributes provides yet another
opportunity to develop test criteria. The value space of an attribute can be restricted by OCL constraints.

The critical part of the criterion is to define the combinations of representative attribute values.
This is done in three steps:

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

112 A. ANDREWS ET AL.

1. use category-partitioning to create representative value sets for each attribute;
2. take the Cartesian product of each value set to create an aggregate set of representative attribute

value tuples for each class;
3. identify valid and invalid aggregated sets.

Defining the value space for Boolean attributes is a trivial exercise since their values are either
true or false. For scalar and string attributes a form of category partitioning is applied to define a
representative set of values. The partitions can be determined by the tester using domain knowledge
(e.g., as expressed in OCL constraints), or by using boundary and non-boundary values to determine
default partitions (in situations where there is an unbounded limit, a maximum or minimum value can
be chosen based on the modeller’s knowledge of the problem).

This section illustrates how constraints (expressed in OCL or otherwise) can be used to determine
partitions using the RLS class diagram. The RLS has the following constraints from which partitions
for attributes can be obtained (in some cases constraints are expressed using a mixture of English and
familiar mathematical notation rather than OCL to enhance readability).

1. Customer: the age property is associated with two constraints: (1) age >= 18, (2) age >

60 implies that each CustomerCard linked to the Customer has color = gold. Using the
constraint (1), three partitions are obtained for the attribute age: (0, 18), {18}, (18, 130).
Using constraint (2) the above can be further refined to (0, 18), {18}, (18, 60), {60}, (60, 130).
Representative values can be selected from each partition, for example, 5, 18, 54, 60, and 100.
The partition (0, 18) is an invalid partition. Invalid partitions are useful for testing fault recovery
mechanisms and to check if constraints are correctly specified.

2. CustomerCard:

validFrom.isBefore(goodThru)

In the above, isBefore is an operation with the following postcondition:

Date::isBefore(t:Date):Boolean
post: if self < t

then result = True
else result = False

From the postcondition three partitions are derived for the (validFrom, goodThru) pair.

(a) Valid card: {(validFrom, goodThru)|validFrom < goodThru}.
(b) Last day of validity: {(validFrom, goodThru)|validFrom = goodThru}.
(c) Expired card: {(validFrom, goodThru)|validFrom > goodThru}.

A set of sample input values for {(validFrom, goodThru)} that can be used to fulfil the test criteria
is:

{(02/09/97, 03/07/00), (03/03/98, 03/03/98), (03/07/00, 02/09/97)}
3. CustomerCard:

printedName = customer.title.concat(customer.name)

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 113

Table II. Truth table.

actualLevel.name(‘Silver’) actualLevel.name(‘Gold’)

card.color(#silver) T F
card.color(#gold) F T

Two partitions that evaluate the above expression to True and False, respectively, are
obtained.

(a) Names that match:
{customerCard.printedName, customer.title, customer.name)|
printedName = customer.title.concat(customer.name)}.

(b) Names that do not match:
{customerCard.printedName, customer.title, customer.name)|
printedName <> customer.title.concat(customer.name)}.

4. LoyaltyProgram:

partners.deliveredServices.transaction ->
select(oclType=Burning) -> collect(points) -> sum<10000

The following partitions based on the sum of the points in all the instances of Burning are
obtained:

(a) the sum is greater than or equal to 10 000;
(b) the sum is less than 10 000.

5. Membership:

actualLevel.name = ‘Silver’ implies card.color=#silver

and

actualLevel.name = ‘Gold’ implies card.color=#gold

Since the domain of actualLevel.name is {‘Silver’, ‘Gold’}, and the type of card.color
is enum{silver, gold}, the truth table can be built as shown in Table II.
(‘Silver’, #silver) and (‘Gold’, #gold) are the aggregated partitions. (‘Silver’, #gold) and
(‘Gold’, #silver) can be used for fault recovery testing.

4.2. Interaction diagram criteria

Table III lists the candidate test criteria based on coverage of collaboration diagram elements.
The library system collaboration diagram shown in Figure 6 will be used to illustrate the criteria defined
in Table III.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

114 A. ANDREWS ET AL.

Table III. Candidate test criteria for collaboration diagrams.

Condition coverage (Cond) criterion
Given a test set T and collaboration diagram CD, T must cause each condition
in each decision to evaluate to both TRUE and FALSE.

Full predicate coverage (FP) criterion
Given a test set T and collaboration diagram CD, T must cause each clause
in every condition in CD to take the values of TRUE and FALSE while all other
clauses in the predicate (condition) have values such that the value of the predicate will
always be the same as the clause being tested.

Each message on link (EML) criterion
Given a test set T and collaboration diagram CD, T must cause each message
on a link connecting two objects in CD to be executed at least once.

All message paths (AMP) criterion
Given a test set T and collaboration diagram CD, T must cause each possible
message path (sequence of message numbers) in CD to be taken at least once.

Collection coverage (Coll) criterion
Given a test set T and collaboration diagram CD, T must test each
interaction with collection objects of various representative sizes at least once.

4.2.1. Condition coverage (Cond) criterion

Certain messages in a collaboration diagram may be executed only under certain conditions.
An adequate test set should test all possible branches based on a condition. The Cond criterion applies
only to the conditions shown on collaboration diagrams. In Figure 6, a signal specified by message 3a

occurs when the condition member <> null is true. A test set that satisfies the Cond criterion must
include test cases that make this condition true and false.

4.2.2. Full predicate coverage (FP) criterion

A condition may consist of more than one clause connected by Boolean operators (e.g., AND, OR).
An adequate test set should ensure that each clause in every condition take the values of TRUE and
FALSE while all other clauses in the condition have values such that the value of the condition is the
same as the clause being tested. This ensures that each clause in a condition is separately tested.

4.2.3. Each message on link (EML) criterion

According to this criterion, signals for each message on a link connecting two objects in a collaboration
diagram should occur at least once in an adequate test. This criterion ensures that all messages between
two objects occur during tests.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 115

1.1.1:foo

CBA

1.1:bar
1.1.1.1:bar

1:foo

Figure 9. Example collaboration diagram with apparent cycle.

4.2.4. All message paths (AMP) criterion

A message path is a sequence of messages. Examples from Figure 6 are shown below.

• The path§ consisting of the messages 1:borrowCheck(), 2:findMember(),
3a:validateCopy(), 4:findCopy(), 5b:nocopy and A1:nocopy,
abbreviated as {1, 2, 3a, 4, 5b,A1}.

• The path consisting of the messages 1:borrowCheck(), 2:findMember(),
3a:validateCopy(), 4:findCopy(), 5a:validateCopy,
6:getStatus(), 7b/B1:notAvailable and B2:notAvailable
abbreviated as {1, 2, 3a, 4, 5a, 6, 7b,B1, B2}.

Note that arbitrary numbers of cycles are not possible in a collaboration diagram since messages are
ordered and a message with a lower number (for example 1.1) must not be executed after a message
with a higher number (for example 1.1.1). Thus, while the graph of a collaboration diagram may have
cycles, actual paths are limited by the message number along its edges. In Figure 9, A sends a message
1:foo to B. B in turn sends a message 1.1:bar to C. C sends a message 1.1.1:foo to B. B now
sends a message 1.1.1.1:bar to C. There is an apparent cycle in the graph (1.1 : bar, 1.1.1 :
foo, 1.1.1.1 : bar, . . .), but actually there is only one path (1 : foo, 1.1 : bar, 1.1.1 : foo, 1.1.1.1 : bar).
The limitation on the number of actual paths is a feature of UML which requires message numbers to
be present along the edges.

The AMP criterion ensures that all message paths in a collaboration diagram are exercised.

4.2.5. Collection coverage (Coll) criterion

Collaboration diagrams may specify communications with collections of objects. The collections
can be partitioned into different domains, much like the partitioning of multiplicities of objects
and relations in the class diagram. The Coll criterion requires that a collection in each domain be

§Parameters and conditions have been omitted for brevity.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

116 A. ANDREWS ET AL.

instantiated at least once. This criterion ensures that interactions with collections of various sizes,
including boundary-sized collections, are tested.

4.3. Deriving test objectives

The DCD and collaboration diagram based test criteria can be used to derive test objectives.
For example, an AMP criterion can be used to define a test objective that stipulates the specific paths to
be exercised during tests. The Cond criterion can be used to derive test objectives that stipulate values
for a specific condition. Alternatively, the Coll criterion may be associated with test objectives that
require the system to be brought into a specific configuration that has a specified number of objects in
a collection appearing in a collaboration diagram.

5. TEST METHOD USING UML-BASED CRITERIA

Testing methods for UML designs are likely to differ depending on the testing criteria used. To illustrate
the basic principle and highlight some of the issues that need to be solved, it is assumed that the class
diagram criteria given in this paper need to be met, as well as the AMP criterion for collaboration
diagrams.

The test objectives derived from class diagram test criteria define a set of target configurations S.
This set can be partitioned into those target configurations that represent initial system configurations
(S0) and those that need a prefix executed (S1). The AMP criterion leads to test objectives in the form
of a set of paths P = {P1, . . . , Pk} in the design’s collaboration diagram. These paths represent a
sequence of messages. There is always at least one collaboration diagram that can apply its paths from
an initial system configuration. Let this set be PI and the set that requires a prefix PP. The candidate
testing process is as follows.

1. Determine target configurations S0 and S1 from test objectives for class diagrams.
2. Determine paths PP and PI as sequences of messages from collaboration diagrams.
3. Apply pi ∈ PI, i = 1, . . . , kPI to sj ∈ S0 if the precondition for pi is met in sj . Note that paths

may be applied to more than one sj ∈ S0.
4. Determine whether any intermediate configurations during the execution of one of these test

cases meet preconditions for paths ppi ∈ PP. If so, use the initial state and the stimuli that reach
that state as prefix for applying these paths ppi . This reduces the uncovered paths to a set PP′.

5. Apply and measure coverage. Let Sc be the set of covered target configurations. Any uncovered
target configurations must be in S1. Uncovered states are S′

1 = S1 \ {s ∈ S1 | s ∈ Sc}.
6. Determine prefixes for the configurations that meet preconditions for uncovered paths in PP′.
7. Measure coverage and reduce S′

1 by any configurations covered in the previous step.
8. Determine prefixes and execute them for the remaining states in S1.

Given that paths through collaboration diagrams are determined via the ordering of messages
(numbers), determining paths (PI) is trivial. In addition, one would naturally assume that designers
evaluate their design against requirements. These are commonly reflected in the use cases. Applying
use cases would result in at least partial test coverage. Use cases can also be used to determine necessary

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 117

prefixes to paths (in PP) because use cases have pre- and post-conditions, and thus can be ordered or
concatenated if the post-condition of one meets the precondition of the other.

It must be noted that this candidate test process is neither minimal, nor immediately automatable.
Part of the reason for this is that it implies determining reachability, an undecidable problem. However,
this does not mean that a human is unable to execute this process for a particular design.

6. CASE STUDY

Given the complexity of large systems, it is expected that a large set of test cases would be required to
achieve 100% test coverage. However, rarely does each coverage item require a separate test. Thus, the
number of coverage items required is a worst case scenario and an unrealistic predictor of the number
of test cases required.

There is plenty of evidence for other testing techniques that the number of test cases grows linearly,
rather than quadratically or exponentially. For example, the theoretical limit on the number of test cases
to satisfy dataflow criteria is quadratic in the number of two-way decisions. However, Weyuker [22]
showed that in most cases, the number of test cases grows linearly with the number of two-way
decisions in a program. There is an expectation of analogous behaviour because a single test covers
items required by both class diagrams and collaboration diagrams. Usually, more than one coverage
item of each type will be covered. Indeed, test cases can be constructed to cover the largest possible
number of items. Thus, while the number of coverage items may well be the product of numbers of
partitions, this has little to do with the number of test cases required.

The library system described in Section 2 was used to conduct a case study in which a model of the
checkout activity is tested. Figure 2 shows the use cases for checking out a copy, Figure 3 shows
a partial class diagram and Figure 6 shows the instance-level collaboration diagram for the check-out
activity. Each test case consists of a single checkout signal that requires copyid, borrid and
currdate parameters.

Table IV shows the parameters that are passed in the test signal, the type of configuration used and the
coverage elements exercised during the test. The Parameters column represents the three parameters
passed to the checkout signal. The test inputs I-CopyId and I-MemberId indicate invalid values of
copyid and borrid, i.e. those that do not exist in the system. The inputs V-CopyId and V-MemberId
indicate valid values of copyid and borrid, respectively.

The columns Copy-Config and Member-Config represent state predicates. Copy-Config is true if and
only if the copy corresponding to the copyid passed in as a parameter to the test signal is in the start
configuration of the test. Similarly, Member-Config is true if and only if the member corresponding to
the borrid passed in as a parameter to the test signal is in the start configuration of the test.

The Status column represents the states that can be taken by the copy in question (e.g., available,
checked-out, or not applicable—NA). The BookType column indicates the type of book (e.g., reference,
general, or not applicable—NA). The test cases shown in the table were derived using a combination
of CA and AEM criteria, and constraints from the check-out use case specified in OCL.

The Coverage column shows the coverage elements from the DCD criteria that were exercised during
the test. For example, the entry ‘AEM: Member(0)–Copy(1)’ indicates that the test signal resulted in
the coverage of the Borrows association between a Member and Copy, and that the multiplicities

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

118 A. ANDREWS ET AL.

Table IV. Test cases.

Copy- Member-
Parameters Config Config Status BookType Coverage

1 I-CopyId, I-MemberId, 02/21/03 False False NA NA AEM: Member(0)–Copy(0)
2 I-CopyId, V-MemberId, 02/21/03 False True NA NA AEM: Member(1)–Copy(0)

3 V-CopyId0, I-MemberId, 02/21/03 True False Av Gen AEM: Member(0)–Copy(1)
CA: Av, Gen

4 V-CopyId1, I-MemberId, 02/21/03 True False Av Ref AEM: Member(0)–Copy(2)
CA: Av, Ref

5 V-CopyId2, I-MemberId, 02/21/03 True False Chk Gen AEM: Member(0)–Copy(3)
CA: Chk, Gen

6 V-CopyId3, I-MemberId, 02/21/03 True False Av Gen AEM: Member(0)–Copy(4)
CA: Av, Gen

7 V-CopyId0, V-MemberId1, 02/21/03 True True Av Gen AEM: Member(1)–Copy(1)
CA: Av, Gen

8 V-CopyId1, V-MemberId2, 02/21/03 True True Av Ref AEM: Member(1)–Copy(2)
CA: Av, Ref

9 V-CopyId2, V-MemberId3, 02/21/03 True True Chk Gen AEM: Member(1)–Copy(3)
CA: Chk, Gen

10 V-CopyId3, V-MemberId4, 02/21/03 True True Av Gen AEM: Member(1)–Copy(4)
CA: Av, Gen

Tests after status change: available → checked-out

11 V-CopyId0, V-MemberId1, 02/21/03 True True Chk Gen AEM: Member(1)–Copy(2)
CA: Chk, Gen

12 V-CopyId3, V-MemberId1, 02/21/03 True True Chk Gen AEM: Member(1)–Copy(2)
CA: Chk, Gen

13 V-CopyId0, V-MemberId2, 02/21/03 True True Chk Gen AEM: Member(2)–Copy(1)
CA: Chk, Gen

14 V-CopyId3, V-MemberId2, 02/21/03 True True Chk Gen AEM: Member(2)–Copy(1)
CA: Chk, Gen

15 V-CopyId1, V-MemberId2, 02/21/03 True True Av Ref AEM: Member(2)–Copy(1)
CA: Av, Ref

16 V-CopyId2, V-MemberId2, 02/21/03 True True Chk Gen AEM: Member(2)–Copy(1)
CA: Chk, Gen

17 V-CopyId4, V-MemberId2, 02/21/03 True True Av Gen AEM: Member(2)–Copy(1)
CA: Av, Gen

18 V-CopyId5, V-MemberId2, 02/21/03 True True Av Gen AEM: Member(2)–Copy(2)
CA: Av, Gen

Tests after status change: available → checked-out

19 V-CopyId4, V-MemberId1, 02/21/03 True True Chk Gen AEM: Member(1)–Copy(3)
CA: Chk, Gen

20 V-CopyId4, V-MemberId1, 02/21/03 True True Chk Gen AEM: Member(1)–Copy(3)
CA: Chk, Gen

21 V-CopyId4, V-MemberId2, 02/21/03 True True Chk Gen AEM: Member(2)–Copy(3)
CA: Chk, Gen

22 V-CopyId4, V-MemberId2, 02/21/03 True True Chk Gen AEM: Member(2)–Copy(3)
CA: Chk, Gen

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 119

Table V. Conditions covered by the test set T .

Condition Test cases

member = null 1, 3, 4, 5, 6
member �= null 2, 7, 8, 9, 10
loancopy = null 2
loancopy �= null 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
available = true 7, 8, 10, 15, 17, 18
available �= true 9, 11, 12, 13, 14, 16, 19, 20, 21, 22
general = true 7, 10, 17, 18
general �= true 8, 15

Table VI. Paths covered by the test set T .

Paths Test cases

1,2,3b 1, 3, 4, 5, 6
1,2,3a/4,5b,5b/A1 2
1,2,3a,3a/4,5a,5a/6,7b,7b/B1,B2 9, 11, 12, 13, 14, 16, 19, 20, 21, 22
1,2,3a,3a/4,5a,5a/6,7a,7a/8b,8b/9b,9b/10b 8, 15
1,2,3a,3a/4,5a,5a/6,7a,7a/8a,8a/9a,9a/10a,10a/11,12,13 7, 10, 17, 18

at the Member and Copy ends are 0 and 1, respectively. The entry ‘CA: Av, Gen’ indicates that the
following class attribute partitions are covered:

Class Copy, Status=Available
Class Book, BookType=General

The set (T) of 22 test cases was found to be adequate with respect to the CA and AEM criteria.
T also covers a number of elements from the collaboration diagram criteria. Tables V and VI show the
conditions and paths that are covered by the test set T . The conditions shown in Table V (e.g., member
= null) and paths shown in Table VI (e.g., [1,2,3b]) are taken from the collaboration diagram in
Figure 6. Since the conditions have only one predicate each, T is also adequate with respect to the FP
criterion (not shown in the tables). This example clearly shows that one test case will cover quite a few
coverage items.

While this case study showed that test cases cover multiple coverage items for both class diagram
and collaboration diagram notations, it is important to note that it is also limited in its generalizability.
Further empirical work is necessary to investigate the degree of ‘multiple dipping’ that can be expected
for test cases. It is also important to note that theoretical limits on worst case behaviour will be high.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

120 A. ANDREWS ET AL.

7. PRELIMINARY EVALUATION OF THE CRITERIA

The effectiveness of the criteria is based upon the frequency at which the faults targeted by the
criteria occur in practice (the assumption is that tests that satisfy the criteria have a high probability of
uncovering the faults targeted by the criteria). Good criteria should be developed to uncover significant
faults that can occur in the artifacts under test. The types of faults that can be uncovered by tests
that satisfy the criteria are identified in this section. The results of a preliminary investigation into the
frequency at which the faults occur in practice are also presented.

7.1. Using the DCD criteria to uncover faults

Obtaining tests that satisfy the DCD criteria involves generating configurations that have the desired
multiplicities and attribute values. Tests that use these configurations satisfy the DCD criteria.
The generation of configurations from DCDs can be done automatically—a DCD can be viewed as a
template for stamping out configurations given desired multiplicities and attribute values. The criteria
determine domains of values from which representative values can be selected. A tool that (1) selects
a value from each domain of multiplicity and attribute values, and (2) uses the values to stamp out
configurations is currently under development.

In this subsection the types of faults that can be uncovered by the criteria are identified. The set
of fault types targeted by a criterion is referred to as the fault model of the criterion. A test set that
satisfies the AEM criterion is likely to uncover faults related to behaviours that manipulate collections
of objects that are linked to an object. The classes of faults that can be uncovered using tests that satisfy
this criterion include loose association multiplicities and failure of behaviours to add or delete links as
required, especially when boundary multiplicities are exercised.

Loose association multiplicities allow more links between objects than are required. For example,
one may put a multiplicity ‘0 or more’, when an upper limit is really required. For example, consider
a requirements change in the library system described in Section 2 that restricts the number of copies
that can be checked out by a library member at any time to five copies. The change was made in
the requirements model but not in the design model; thus the checkout behaviour in the design does
not ensure that a member has only five books checked out. This fault is uncovered by executing the
checkout behaviour on a configuration that includes an upper limit test multiplicity. The test will
produce a configuration that violates the constraints specified in the requirements. In general, faults
associated with loose multiplicities can be uncovered by running tests on configurations determined by
boundary multiplicities.

Failure to add or create links, especially when boundary multiplicities are involved, can also be
detected by checking that the configuration at the end of the test satisfies the constraints expressed in
the requirements.

The GN criterion can be used to develop tests that check whether objects of subclasses can be used
anywhere objects of their superclasses are expected. For example, consider the case where a square
class is specified as a subclass of rectangle (see Figure 10). The Square inherits the attributes and the
resize() operation of Rect. The inherited attributes are constrained in Square ({x = y}). The resize
operation defined on Rectangle takes in two arguments, a, b, where a is the factor added to x and b is
the factor added to y in the operation. A test of resize() on a Square object, with a �= b would reveal

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 121

Rect

resize(a:int;b:int)

y:int
x:int

{x=y}

Square

resize(a:int;b:int)

y:int
x:int

Figure 10. A shapes DCD.

that the result is a rectangle, not a square (indicating that the resize() operation needs to be redefined
in Square if the constraint on the attributes is to be preserved).

The values of attributes can be used during an activity to determine the actions that will take place.
Consider an inventory system in which a reorder activity is required when the stock level of a product
falls below a particular threshold. If the stock level falls below the threshold during an invoicing
activity, a reorder activity must be spawned. To support adequate testing of the invoicing behaviour, the
attribute that stores the stock level should be associated with three partitions: (1) a partition consisting
of values above the threshold, (2) a partition consisting of a value equal to the threshold, and (3) a
partition consisting of values below the threshold. This partitioning is obtained by using domain
knowledge (expressed as part of the post-condition for the invoicing operation in the Requirements
Model). Tests that use representative values of these partitions are highly likely to uncover situations
in which the reorder behaviour is not invoked when it should be.

7.2. Using collaboration diagram criteria to uncover faults

Obtaining test cases that satisfy collaboration diagram criteria should be no more difficult than
obtaining test cases that satisfy conditional and path coverage criteria for code testing. Given that
models provide a more abstract view of behaviour, the task of obtaining test cases that satisfy the
criteria should require less effort.

Tests that satisfy the Cond and FP criteria target are intended to exercise behavioural paths
determined by conditions. These criteria target faults related to using inadequate conditional control
flow structures.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

122 A. ANDREWS ET AL.

obj1 obj2 obj3

obj4

a := start(x,y) 1: a := action1(x)
1.2: action1.2(p)

1.1:action1.1(obj2.att1, x)

obj1 obj2 obj3

obj4

a := start(x,y) 1: a := action1(x)
1.3: action1.2(p)

1.1:action1.1(obj2.att1, x)

1.2: p := intAction()

(a)

(b)

Figure 11. Dataflow gap in collaboration diagram: (a) collaboration diagram with dataflow gap, source of data p
is not shown; (b) corrected collaboration diagram.

Tests that satisfy message path and link criteria are intended to uncover faults related to interactions
between objects. Faults related to incorrect sequencing of messages, inappropriate control flows
(e.g., incorrect iteration and conditional structures), missing flows, and dataflow gaps are targeted by
these criteria. Missing flows can result from failing to cover all cases in a conditional. In the execution
of a model this type of fault would result in a behaviour in which the behaviour stops in a non-terminal
state (a terminal state is one in which a user-generated event is needed to move the system to another
state). A dataflow gap occurs when data that were not created internally by an object, nor were they
explicitly communicated to the object, appear as an argument in a message emanating from the object.
An example of a collaboration diagram with a dataflow gap is shown in Figure 11.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 123

Table VII. Faults identified in student projects.

Fault type Frequency Criteria

Incorrect sequence numbering 16 EML, AMP
Missing flows 8 Cond, FP
Dataflow gaps 3 EML, AMP

7.3. Preliminary evaluation of the fault models

The preliminary evaluation of the fault models underlying the criteria involved analysing faults made
by novice modellers (senior students in an OO design course) to determine the type and frequency of
modelling faults. Confidence in the utility of the criteria to uncover faults made by novice modellers is
enhanced if the more frequent faults made by the students are included in the fault models on which
the criteria are based. The question addressed in this preliminary study is the following:

• Do the faults included in the fault models of the criteria occur frequently in practice?

The students were assigned a modelling problem that required building a collaboration diagram
that ‘implemented’ (realized) a specific scenario of a use case. The scenario was concerned with
validating an order submitted by a customer and generating an invoice for the order if the order was
valid and could be fulfilled. The students were given one hour to develop the models in the classroom.
The problem was intended to test student ability to model interactions that involved iterations and
branching. The students were not taught how to test their models using the testing criteria presented in
this paper. This ensured that the students did not build models that were tested using the test criteria.
The students were not required to systematically test their models.

At the end of the class the student models were collected. The analysis of the models was carried
out soon after. Student models with syntactic faults that would prohibit their execution (e.g., use of
syntactically invalid sequence identifiers) were excluded from the preliminary evaluation. A total pool
of 21 student models was left. The students did not use the UML testing criteria during the development
of their models. Each of the 21 models was analysed by the course instructor and the fault types and
frequency noted. The following are the major types of faults identified.

• Incorrect sequence numbering (this can result in control jumps where control is ‘magically’
switched from one object to another).

• Missing flows.
• Dataflow gaps.

The results of the analysis are summarized in Table VII. The 21 students made 27 faults of the three
fault types described previously. The frequency of each fault type is listed in Table VII, in column 2.
The most commonly occurring problem was sequencing of interactions among objects. This is not
really surprising given that the students did not have the mechanisms to ‘execute’ their models (as they
have with code). This was followed with problems with missing flows, which, again, was not surprising.
Column 3 lists the UML testing criteria that would have uncovered the fault. The faults are included in

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

124 A. ANDREWS ET AL.

the fault models targeted by the criteria. All faults made could have been revealed by applying these
criteria.

Obviously, this is a small case study and further empirical investigation is necessary to establish the
value and limitations of these criteria. The results are certainly not generalizable with respect to their
applicability to modellers with more experience in UML modelling, and with respect to other UML
designs that are developed in industry. However, the study indicates the potential value of the criteria.

As in the previous section, this was a case study, not a controlled experiment. Thus, there is less
control over experimental variables than a controlled experiment would have had. However, it was
possible to control several factors that could have affected outcomes.

• Knowledge and use of test adequacy criteria: none of the students had been taught the criteria
described in this paper, nor had they been published. Thus, it is safe to say that the students did
not use them and that the faults left in the designs occur in practice and are not affected by the
test criteria.

• Knowledge of UML design methodology: all students were taught the same material, the same
way. This reduces effects of gaining UML knowledge through other sources that could have
affected results, although it does not eliminate them completely.

• The students did not know that their designs would be analysed against the fault model related
to the test adequacy criteria. This prevented them from being influenced by that fact (‘hypothesis
guessing’). Since they were graded on correct work, there was no incentive to please the
instructor by ‘making mistakes’. Further, the remaining faults can be considered faults that
remain after they made their best effort, i.e. they are not trivial to find.

Since the objective of this study was to show that faults detectable by the test adequacy criteria do
occur, it is important to point out some of the limitations of this study.

• All subjects were students. This limits generalizability of results—experienced designers may
make fewer and different mistakes.

• All subjects worked on the same design problem. While this helps to show that the faults were
not random, it again limits generizability of the results to design artifacts with similar properties
as the ones investigated. Unlike a controlled experiment in which tasks are carefully controlled
to be the same, case studies try to cover a wide range of applications to elicit many possible
behaviours. Further work is needed to answer the research question more fully.

8. CONCLUSIONS AND FUTURE WORK

Using the constraints contained within class diagrams in the form of multiplicities, generalization
and OCL, test adequacy criteria were defined for use in design reviews and in dynamic testing
of implementations. The criteria defined are (1) association-end multiplicity, (2) generalization and
(3) class attributes.

Test criteria were defined based on the elements in a collaboration diagram: (1) condition coverage
criterion, (2) full predicate coverage criterion, (3) each message on link criterion, (4) all message paths
criterion and (5) collection coverage criterion.

The process for setting up configurations and the use of the category partitioning technique was
described. The kinds of faults that each criterion will detect and the types of faults the combined use

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 125

of configuration and behaviour-related criteria can uncover were enumerated. It was demonstrated that
this combination of criteria can have added value in detecting faults related to inconsistencies between
class diagrams and collaboration diagrams. It was also shown that these types of faults occurred in
actual designs. This speaks for the usefulness of the criteria.

The criteria will be evaluated further, both analytically, in terms of Weyuker [23] and Parrish–
Zweben [24] properties, and empirically in terms of scalability. Criteria based on other elements in
UML, such as state diagrams, are also being investigated. Support for test generation for UML designs
is being developed. Developing the testing and test generation method has great promise for a large
segment of the software industry which is adopting tools like TogetherJ and Rational Rose in high
numbers, but lacks a systematic, efficient way to validate the designs.

APPENDIX A. UML TERMINOLOGY

For those less familiar with UML terminology, definitions of common UML terms based on the most
recent standard definition [8] are quoted here.

Activity diagram: a state machine that is used to model processes involving one or more classifiers.

Association: the semantic relationship between two or more classifiers that specifies connections
among their instances.

Association end: an association consists of at least two AssociationEnds, each of which represents a
connection of the association to a classifier. Each AssociationEnd specifies a set of properties
that must be fulfilled for the relationship to be valid.

Class: a descriptor of a set of objects that represent software or conceptual elements, and share the
same attributes, operations, methods, relationships and behaviour.

Class attribute: a feature within a classifier that describes a range of values that instances of the
classifier may hold.

Class diagram: a diagram that shows a collection of declarative (static) model elements, such as
classes, types, and their contents and relationships.

Classifier: a mechanism that describes behavioural and structural features. Classifiers include
interfaces, classes, datatypes and components.

Collaboration: the specification of how an operation or classifier, such as use case, is realized by a set
of classifiers and associations playing specific roles used in a specific way.

Collaboration diagram: a diagram that shows interactions organized around the structure of a model,
using either classifiers and associations or instances and links. Unlike a sequence diagram, a
collaboration diagram shows the relationships among the instances. Sequence diagrams and
collaboration diagrams express similar information, but show it in different ways.

Design model: see model.

Event: the specification of a significant occurrence that has a location in time and space.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

126 A. ANDREWS ET AL.

Generalization: a taxonomic relationship between a more general element and a more specific
element. The more specific element is fully consistent with the more general element and
contains additional information. An instance of the more specific element may be used where
the more general element is allowed.

Link: a semantic connection among a tuple of objects. An instance of an association.

Message: a specification of the conveyance of information from one instance to another, with the
expectation that activity will ensue. A message may specify the raising of a signal or the call of
an operation.

Model: an abstraction of a physical system with a certain purpose.

Multiplicity: a specification of the range of allowable cardinalities that a set may assume. Multiplicity
specifications may be given for roles within associations, parts within composites, repetitions
and other purposes.

Object Constraint Language (OCL): lower order predicate language used to specify constraints on
objects in the UML.

Operation: a service that can be requested from an object to effect behaviour.

Precondition: a constraint that must be true when an operation is invoked.

Postcondition: a constraint that must be true at the completion of an operation.

Signal: the specification of an asynchronous stimulus communicated between instances.

State: a condition or situation during the life of an object during which it satisfies some condition,
performs some activity, or waits for some event.

Stimulus: an instance of an action, such as invoking an operation.

State transition: a relationship between two states indicating that an object in the first state will
perform certain specified actions and enter the second state when a specified event occurs and
specified conditions are satisfied.

Use case: a specification of a sequence of actions, including variants, that a system can perform,
interacting with actors of the system.

ACKNOWLEDGEMENT

This research was partially supported by National Science Foundation Award #CCR-0203285.

REFERENCES

1. The Object Management Group. OMG Unified Modelling Language Specification, Version 1.3. OMG, 1999.
2. Atlee JM, Gannon J. State-based model checking of event-driven system requirements. IEEE Transactions on Software

Engineering 1993; 19(1):24–40.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

TEST ADEQUACY CRITERIA FOR UML DESIGN MODELS 127

3. Holzmann GJ. Design and Validation of Computer Protocols (Software Series). Prentice-Hall: Englewood Cliffs, NJ, 1991.
4. Rushby JM. Model checking and other ways of automating formal methods. Position Paper for Panel on Model Checking

for Concurrent Programs, Software Quality Week, San Francisco, May/June 1995.
5. The Object Management Group. Object Constraint Language Specification. OMG, document ad/99-06-08, ch. 7, June,

1999.
6. Mellor S, Balcer M. Executable UML: A Foundation for Model Driven Architecture. Addison-Wesley: Reading, MA, 2002.
7. Riehle D, Fraleigh S, Bucka-Lassen D, Omorogbe N. The architecture of a UML virtual machine. Proceedings of the

2001 Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’01). ACM Press:
New York, 2001; 327–341.

8. The Object Management Group. The Unified Modelling Language, Version 1.4. OMG, formal/2001-09-67, 2001.
9. Goodenough JB, Gerhart SL. Toward a theory of test data selection. IEEE Transactions on Software Engineering 1975;

1(2):156–173.
10. Ostrand TJ, Balcer MJ. The category-partition method for specifying and generating functional tests. Communications of

the ACM 1988; 31(6):676–686.
11. Offutt AJ, Irvine A. Testing object-oriented software using the category-partition method. Proceedings of the 17th

International Conference on Technology of Object-Oriented Languages and Systems (TOOLS USA), Santa Barbara, CA,
August 1995; 293–304.

12. Perry DE, Kaiser G. Adequate testing and object-oriented programming. Journal of Object-oriented Programming 1990;
2(5):13–19.

13. Doong R-K, Frankl PG. Case studies on testing object-oriented programs. Proceedings of the 4th Symposium on Testing,
Analysis, and Verification, Victoria, B.C., Canada. ACM Press: New York, 1991; 165–177.

14. Harrold MJ, McGregor JD, Fitzpatrick KJ. Incremental testing of object-oriented class structures. Proceedings of the 14th
International Conference on Software Engineering, Melbourne, Australia. ACM Press: New York, 1992; 68–80.

15. Turner CD, Robson DJ. The state-based testing of object-oriented programs. Proceedings IEEE Conference on Software
Maintenance, Montreal, Canada. IEEE Computer Society Press, 1993; 302–311.

16. Binder RV. Testing Object-Oriented Systems: Models, Patterns, and Tools (Object Technology Series). Addison-Wesley:
Reading, MA, 1999.

17. Briand L, Labiche Y. A UML-based approach to system testing. Proceedings of the 4th International Conference on the
UML, Toronto, Canada (Lecture Notes in Computer Science). Springer, 2001; 194–208.

18. Offutt J, Abdurazik A. Generating tests from UML specifications. Proceedings of the 2nd International Conference on the
UML, Fort Collins, TX (Lecture Notes in Computer Science). Springer, 1999; 416–429.

19. Abdurazik A, Offutt J. Using UML collaboration diagrams for static checking and test generation. Proceedings of the 3rd
International Conference on the UML, York, U.K. (Lecture Notes in Computer Science). Springer, 2000; 383–395.

20. Scheetz M, von Mayrhauser A, France R, Dahlman E, Howe AE. Generating test cases from an OO model with
an AI planning system. Proceedings of the International Symposium on Software Reliability Engineering (ISSRE’99),
Boca Raton, FL. IEEE Computer Society Press, 1999; 250–259.

21. Warmer J, Kleppe A. The Object Constraint Language: Precise Modelling with UML. Addison-Wesley: Reading, MA,
1999.

22. Weyuker EJ. The cost of dataflow testing: An empirical study. IEEE Transactions on Software Engineering 1990;
16(2):121–128.

23. Weyuker EJ. Axiomatizing software test adequacy. IEEE Transactions on Software Engineering 1986; 12(12):1128–1138.
24. Parrish A, Zweben SH. Analysis and refinement of software test data adequacy properties. IEEE Transactions on Software

Engineering 1991; 17(6):565–581.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2003; 13:95–127

	1 INTRODUCTION
	2 BACKGROUND
	2.1 Software testing concepts
	2.2 UML modelling concepts
	2.2.1 Requirements model artifacts
	2.2.2 Design model artifacts

	2.3 Related work on UML-based testing

	3 TESTING UML MODELS: AN OVERVIEW
	4 TESTING CRITERIA FOR UML DIAGRAMS
	4.1 DCD criteria
	4.1.1 Association-end multiplicity (AEM)
criterion
	4.1.2 Generalization (GN)
criterion
	4.1.3 Class attribute (CA)
criterion

	4.2 Interaction diagram criteria
	4.2.1 Condition coverage (Cond)
criterion
	4.2.2 Full predicate coverage (FP)
criterion
	4.2.3 Each message on link (EML)
criterion
	4.2.4 All message paths (AMP)
criterion
	4.2.5 Collection coverage (Coll)
criterion

	4.3 Deriving test objectives

	5 TEST METHOD USING UML-BASED CRITERIA
	6 CASE STUDY
	7 PRELIMINARY EVALUATION OF THE CRITERIA
	7.1 Using the DCD criteria to uncover faults
	7.2 Using collaboration diagram criteria to uncover faults
	7.3 Preliminary evaluation of the fault models

	8 CONCLUSIONS AND FUTURE WORK
	APPENDIX A. UML TERMINOLOGY

