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Abstract: The synthesis of the C1–C13 fragment of (+)-callipelto-
side A has been achieved in 12 steps with an overall yield of 11%.

Key words: callipeltoside, crotyltitanation, vinyllithium

Callipeltoside A (Figure 1) is a polyketide isolated from
the shallow water sponge Callipelta sp. collected off the
east coast of New Caledonia.2,3 This marine natural prod-
uct was found to inhibit the proliferation of NSCLC-N6
(15.26 mg·mL–1) and P388 (11.26 mg·mL–1) cell lines in
vitro. This compound consists of a 14-membered
macrolide, containing a six-membered hemiacetal ring
and a unique deoxyamino sugar, callipeltose, which is
attached glycosidically at C5. Furthermore, a pendant
dienyne side chain terminated by a trans-chlorocyclopro-
pane ring is present at C13. The relative stereochemical
relationship between the sugar moiety and the macro-
lactone has been proposed on the basis of 2D-NMR stud-
ies. However, due to the small amount of callipeltoside A,
isolated from the natural source (3.5 mg from 2.5 kg of
freeze-dried sponge, 1.4 × 10–4% yield), its full structural
determination and biological evaluation were limited.
Thus, the synthesis of callipeltoside A was imperative to
establish the absolute configuration of all the stereogenic
centers and to further examine its anticancer properties.

Figure 1 Structure of (+)-callipeltoside A

The relative stereochemistry of the chlorocyclopropyl
side chain to the rest of the molecule and the absolute con-

figurations of the stereogenic centers has been established
by total synthesis. Up to now, four total syntheses4 of the
aglycon part of callipeltoside A have been published and
synthetic efforts towards the aglycon part of callipeltoside
A5 have also been reported.

When this work was started, only the synthesis of the
aglycone of callipeltoside A had been published and later
on, it was revealed to be the aglycone of (+)-callipeltoside
A.4a Here, we would like to report the synthesis of the C1–
C13 fragment of (+)-callipeltoside A based on the addi-
tion of the vinyllithium reagent C to aldehyde B, which
possesses 4 of the 9 stereogenic centers present in the
macrolactone of (+)-callipeltoside A. The control of the
stereogenic center at C5 was envisaged by addition of the
vinyl silylenol ether D to an aldehyde of type E according
to Felkin–Anh control. This latter aldehyde of type E
would be issued from an enantioselective crotyltitanation6

applied to an aldehyde of type F, which would in turn be
synthesized from the Roche ester (Scheme 1).

Scheme 1 Retrosynthetic analysis of the C1–C13 fragment of
(+)-callipeltoside A

The synthesis (Scheme 2) began with the preparation of
aldehyde 1 from the Roche ester in three steps. After pro-
tection of the primary hydroxy group using chloro-tert-
butyldiphenylsilane (TBDPSCl, imidazole, CH2Cl2, r.t.,
95%), DIBAL-H reduction of the ester (DIBAL-H,
CH2Cl2, –78 °C, 99%) and a Swern oxidation, aldehyde 1
was isolated in 94%, the stereogenic center of which
corresponds to the C8 stereogenic center present in
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callipeltoside A. In order to control the C6 and C7 stereo-
genic centers, aldehyde 1 was treated with the highly face-
selective crotyltitanium complex (R,R)-I6 (Et2O, –78 °C)
to produce the anti/syn-triad 2 in 77% yield and with a
diastereomeric ratio superior to 95:5. The latter product
was then protected with TBSOTf (2,6-lutidine, CH2Cl2,
–78 °C, 76%) and an oxidative cleavage of the terminal
double bond using OsO4, NMO [H2O–acetone (1:3.5)]
followed by the addition of NaIO4, led to aldehyde 3 in
quantitative yield. The addition of the vinyl silylenol ether
D on the previously prepared aldehyde 3, in the presence
of BF3·OEt2 (3 equiv, CH2Cl2, –78 °C), resulted in the ex-
clusive formation of the aldol condensation product 4 in
95% yield and with an excellent Felkin–Anh control (dr >
95:5). Protection of the hydroxy group of 4 (TBSOTf, 2,6-
lutidine, CH2Cl2, –78 °C, 61%) followed by the deprotec-
tion of the primary hydroxy group using NH4F (MeOH,
65 °C, 69% yield) and a Swern oxidation (quantitative
yield) afforded aldehyde 5. In order to synthesize the C1–
C13 fragment of callipeltoside A, the coupling reaction

between aldehyde 5 with vinyllithium C was investigated.
An ethereal solution of vinyllithium was added to a solu-
tion of aldehyde 5 (1 equiv) in Et2O at –78 °C which pro-
vided the coupling products 6 and 6¢ in an equimolar ratio
with a global yield of 75%. These two compounds were
separated by flash chromatography on silica gel and the
syn,anti,syn,anti-stereopentad 6 was isolated. We have to
point out that vinyllithium C was prepared from the cor-
responding vinyliodide 10 by an iodide–metal exchange
(n-BuLi, Et2O, –78 °C), and the vinyliodide was obtained
in two steps from but-3-ynol 8 (Scheme 3). Compound 6
was then converted into 77 in 67% yield in a one-pot pro-
tection–deprotection reaction using four equivalents of
MeOTf [2,6-tert-butylpyridine (6 equiv), CH2Cl2, r.t.].

The C1–C13 fragment of (+)-callipeltoside A was synthe-
sized in 12 steps with an overall yield of 11% (Scheme 2).
Due to the versatility of the reactions used, the total
synthesis of (+)- as well as (–)-callipeltoside A will be
reported in due course.

Scheme 2 Synthesis of the C1–C13 fragment
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Scheme 3 Synthesis of the C10–C13 fragment
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