SYNTHESIS

Table. Acylsulfenyl Chlorides 2 prepared

Prod No.		Yield" [%]	m.p. [°C]	Molecular ^b formula	I.R. (KBr) $v_{C=0}$ [cm ⁻¹]
2a	CH ₃	40	20-22.5°	C ₇ H ₅ CISO (172.6)	1688
2b	<u>_</u>	41	oil	C ₈ H ₇ CISO (186.7)	1706
2c	H₃C() CI	43	oil	C ₈ H ₇ CISO (186.7)	1700
2d		50	47-49°	C ₇ H ₄ Cl ₂ SO (207.1)	1694
2e	cı —	55	43-45°	C ₇ H ₄ Cl ₂ SO (207.1)	1699
2f	H₃CO()>	see experimental procedure			
2g	n-C ₁₇ H ₃₅	53	41-43°	C ₁₈ H ₃₅ CISO (335.0)	1723

^a Yield of isolated product.

A Convenient Preparation of Acylsulfenyl Chlorides

Shinzi KATO*, Katsumi ITOH, Kenji MIYAGAWA, Masaru ISHIDA Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-11, Japan

Acylsulfenyl chlorides 2 are considered as effective electrophilic thiocarboxylating reagens. To our knowledge, only acetylsulfenyl chloride¹ has been described in the literature². However, no spectral data have been reported. We now describe a general, convenient preparation of the acylsulfenyl chlorides 2 (Table) by reaction of diphenyltin bis[thiocarboxylates] 1 with N-chlorosuccinimide (NCS)³.

$$R-C-S$$

$$R-C-S$$

$$R-C-S$$

$$R-C-S$$

$$C_6H_5$$

$$C_6H_5$$

$$C_6H_6$$

$$C_6H_$$

The diphenyltin dichloride (3) simultaneously formed can be reconverted to the educt 1 by reaction with thiocarboxylic acids or potassium and piperidinium thiocarboxylates, respectively⁴.

The acylsulfenyl chlorides 2 were characterized by spectral data and microanalyses. For example, the mass spectrum of 2f shows the molecular ion at m/e = 203. The I.R. spectrum exhibits a characteristic absorption band at v = 1704 cm⁻¹ assigned to the carbonyl vibration. Its position differs distinctly from that of the corresponding band of the educt 1 (1604 cm⁻¹) and from that of bis[2-methoxybenzoyl] disulfide (1670 cm⁻¹), a possible decomposition product.

The acylsulfenyl chlorides 2 obtained are stable for 4-5 h at room temperature both in the solid state and dissolved in *n*-hexane but they are gradually decomposed by moisture and in protic solvents.

Analogously, diphenyltin bis[thiocarboxylates] 1 are also suitable for the preparation of both acylsulfenyl bromides 4⁵ and iodides 5⁶.

4-Methoxybenzoylsulfenyl Chloride (2f); Typical Procedure:

To a solution of diphenyltin bis[4-methoxythiobenzoate]⁴ (1f; 0.27 g, 0.44 mmol) in dichloromethane/trichloromethane (2/1; 10 ml), N-chlorosuccinimide (0.26 g, 1.95 mmol) is added. The mixture is stirred for 15 min at -20° C. After evaporation of the solvent under reduced pressure, the residue is dissolved in n-hexane (15 ml), the insoluble solid⁷ is filtered off, and the filtrate chilled below -70° C. Filtration of the resulting precipitate gives chemically pure 2f as pale yellow crystals; yield 0.10 g (57%); m.p. 38-39°C.

M.S. (10 eV): m/e 203 (M⁺).

I.R. (KBr): v = 1704 cm⁻¹ (C=O).

Benzoylsulfenyl Bromide (4a); Typical Procedure:

N-Bromosuccinimide (0.36 g, 2 mmol) is added to a solution of diphenyltin bis[thiobenzoate] (1a; 0.27 g, 0.5 mmol) in trichloromethane/ dichloromethane (3/1; 20 ml) at 0°C and the mixture is stirred at this temperature for 30 min. The solvent is then evaporated under reduced pressure and the resulting residue is dissolved in n-hexane (\sim 20 ml). After removal of the insoluble solid by filtration, the filtrate is concentrated to \sim 5 ml under reduced pressure, and cooled to -78°C. Filtration of the resulting solid affords chemically pure 4a as pale yellow needles; yield 0.09 g (83%); m.p. 52-54°C. The structure of 4a was established by comparison of m.p. and the I.R. spectrum of with those of an authentic sample⁴.

I.R. (KBr): $v = 1686 \text{ cm}^{-1}$ (C=O).

Benzoylsulfenyl iodide (5a); Typical Procedure:

A solution of iodine (0.75 mmol) in n-hexane is added to a suspension

Satisfactory microanalyses obtained: C ± 0.39 , H ± 0.25 , except for **2a** and **2b**, which contain a small amount of *n*-hexane.

of diphenyltin bis[thiobenzoate] (1a; 0.21 g, 0.37 mmol) in the same solvent (10 ml) and the mixture is stirred for 30 min at room temperature, followed by chilling at $-78\,^{\circ}\text{C}$ for ~ 10 sec. The mixture containing black and yellow precipitates is gradually warmed to room temperature with stirring (the black precipitate is dissolved). Filtration of the yellow solid and subsequent recrystallization from a small amount of n-hexane gives 5a as yellow crystals; yield: 0.089 g (45%); m.p. 45- $47\,^{\circ}\text{C}$ (dec). The structure of 5a was established by comparison of m.p. and the I.R. spectrum of with those of an authentic sample 5.

I.R. (KBr): $v = 1672 \text{ cm}^{-1}$ (C=O).

Received: April 5, 1983

^{*} Author to whom correspondence should be addressed.

H. Böhme, M. Clement, Justus Liebigs Ann. Chem. 576, 61 (1952).

² According to Ref.¹, a number of attempts to prepare acylsulfenyl chlorides, especially aromatic substituted derivatives (2, R=aryl) by reaction of bis[acyl] sulfides with sulfuryl chloride were unsuccessful due to difficulties with the purification.

A number of the starting thioates such as trimethyl- and triphenyltin thioates, phenyltin tris[thioates], tin tetrakis[thioates], diphenylgermyl bis[thioates], trimethyl- and triphenylgermyl thioates, phenylmercury thioates, and mercury bis[thioates], etc. have been examined. However, the reactions of these thioates with chlorine or NCS give products which are difficult to purify.

Diphenyltin bis[thiocarboxylates] were prepared by the stoichiometric reaction of diphenyltin dichloride with piperidinium or potassium thiocarboxylates. For the reaction conditions, see: S. Kato, W. Akada, M. Mizuta, Y. Ishii, Bull. Chem. Soc. Jpn. 46, 244 (1973).

S. Kato, K. Miyagawa, S. Kawabata, M. Ishida, Synthesis 1982, 1013.

⁶ S. Kato, E. Hattori, M. Mizuta, M. Ishida, Angew. Chem. 94, 148 (1982); Angew. Chem. Int. Ed. Engl. 21, 150 (1982).

The detailed composition of this solid is ambiguous, though diphenyltin dichloride and succinimide could be detected by I.R. and ¹H-N.M.R. spectra.