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ABSTRACT: The redox-relay Heck reaction is a powerful method
for the construction of enantioenriched quaternary stereocenters
remote from existing functional groups. However, there has been
little success in the design of site-selective alkene functionalization
based on these methods. Herein, we show that experimentally
determined rates can be used to train a multivariate linear regression
model capable of predicting the rate of a specific relay Heck
reaction, allowing for the site-selective functionalization of diene
substrates.

We1 and others2 have developed an array of enantiose-
lective Pd-catalyzed alkene functionalization reactions

wherein a remote functional group impacts both the reactivity
and the selectivity of these processes. In particular, a range of
redox-relay Heck reactions of both di- and trisubstituted
alkenes have been reported wherein tertiary or quaternary
stereocenters are set using a chiral catalyst. The remote
functional group attached to the alkene can vary widely and
includes alcohols, arenes,1h electron-withdrawing groups
(mainly carbonyl derivatives),1g and protected amines.1i

However, in considering the application of these reactions to
more complex systems that contain more than one similar
alkene in the substrate, it is difficult to anticipate which alkene
would be most reactive.3 Thus, we found that a significant
advancement in this context would be to build an analysis tool
that provided the ability to predict which alkene in a polyene
substrate would react on the basis of the structural environ-
ment. Herein, we interrogate the role of the remote functional
group in the relative rates of redox-relay Heck reactions using a
combination of experimental rate measurements, computa-
tional chemistry, and multivariate linear regression. This
analysis allowed us to design diene substrates capable of
undergoing selective functionalization of a specific alkene
based solely on the basis of the identity of the remote
functional group. Our group has previously carried out
extensive mechanistic studies of the redox-relay Heck reaction
with a focus on understanding the nature of the chain-walking
process and the impact of the chain length between the alkene
and terminal group on the site selectivity, enantioselectivity,
and rate of the reaction.4

The turnover-limiting step is proposed to be the migratory
insertion of the aryl−palladium species into the alkene. Of
particular interest, allylic alcohols were found to react ∼4 times

faster than homoallylic alcohols and disubstituted alkenes
significantly outcompete trisubstituted alkenes in the reaction
(Figure 1a).4c Taken together, we hypothesized that the nature
of the remote functional group (G) could have a considerable
impact on the reaction rate and perhaps could be used to
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Figure 1. Inspiration and goals of this study. (a) Previous studies
reveal the impact of proximity on the rate of ene-ols. (b) How does
the nature of the terminal group impact rate? (c) Application of this
approach to site-selective polyene functionalization.
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modulate the site of reaction in substrates containing multiple
alkenes. Specifically, it was reasoned that G could impact the
rate by modulating either the binding affinity for the alkene
(concentration of the reactive species) or the barrier of the
migratory insertion (the rate constant).5 To explore this
possibility, we sought to measure the relative rates of a training
set of alkene substrates that were decorated with a broad array
of functional groups. We would then use these rates to build a
predictive model through correlation with various molecular
features derived from mechanistically relevant DFT structures.
This statistical model then could be used to predict unseen
substrates and applied to more complex scenarios.
To begin this study, we chose a representative subset of

synthetically useful terminal groups related to those that have
been previously shown to efficiently engage in the relay Heck
reaction.1c,g,i The rates of the relay Heck reaction were
determined by measuring the initial rates using ex situ reaction
monitoring under a standard set of conditions (Figure 2a). We
chose to focus on utilizing the same trisubstituted alkene core
for all of the terminal groups studied to isolate the effect the
terminal group has on the system. We also sought to
investigate the impact that the proximity of the terminal
group (either allylic or homoallylic) has on the rate of the
reaction. Therefore, we chose a set of 8 allylic and 15
homoallylic imides, amides, sulfonamides, carbamates, nitriles,
ketones, and alcohols that give rise to a wide array of products
(Figure 2b). The independently measured rates are compared
to one another (krel) by referencing each rate to that of
homoallylic phthalimide 2k (Figure 2c). Our initial hypothesis
was that the rate would be dependent on the electronics of the
alkene (with electron-rich alkenes reacting faster) and the
steric environment of the alkene (with large groups reacting
slower). To test the impact of subtle electronic perturbations
on the reaction rate, we deployed para-substituted benzamide
(2a−c and 2f) and sulfonamide substrates (2e, 2g, and 2p).
The sulfonamides followed the expected reactivity based on
the Hammett electronic parameters, with the most electron-
withdrawing sulfonamide 2g reacting the slowest and the most
electron-rich 2p reacting the fastest. However, the substituted
benzamide series did not follow a similar Hammett response,
with electron-donating and -withdrawing groups reacting
slower than unsubstituted benzamide 2c. Additional qualitative

trends can be perceived on the basis of the relative size of the
terminal group. For example, the relative rate of every allylic
substrate other than the alcohol is slower when compared to
that of its homoallylic counterpart. However, the same trend is
not as apparent in the homoallylic series, with relatively small
terminal groups such as a nitrile (2h) or an alcohol (2i)
reacting slower than the phthalimide (2k). These initial
conflicting trends suggested that there are subtler substrate
features impacting the reaction rate.
We next carried out intermolecular competition experiments

to determine if these independently measured relative rates can
be translated to a competitive scenario (Figure 3). These

Figure 2. Independently measured relative rates. (a) Standard reaction conditions used. (b) Products formed from the relay Heck reaction. (c)
Relative rates of the terminal groups investigated.

Figure 3. Intermolecular competition reactions. aPredicted ratio based
on independently measured relative rates.
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competition reactions were performed using an equimolar
excess of two alkenes relative to phenylboronic acid and
comparing the amount of product formed.6 In general, the
independently measured rates were able to accurately predict
the major product (cf., measured vs predicted); however, the
observed ratios were typically higher than predicted. One
notable exception is entry 2, where homoallylic nitrile 2h was
predicted to be slower than homoallylic trifluoroacetamide 2d.
This suggests that the independent rate data for 2h are likely
artificially low due to the ability of the nitrile to serve as a
ligand for the aryl−palladium intermediate (see the Supporting
Information for details). On the basis of this observation, the
competitive rate data for the nitrile substrate were used to
generate a predictive model.
With these data in hand, we turned our attention to

determining if the relative rates could be predicted using
multivariate linear regression techniques (Figure 4). This was

accomplished by relating structural features of the alkene and
alkene−Pd complex to the log of the relative rates [log(krel)].

7

The geometries used for the acquisition of the DFT-derived
parameter set for the alkene substrates were calculated at the
M06-2x/def2-TZVP level of theory, and those of the alkene−
Pd complexes were calculated at the M06/SDD-6-31+G(d)
level of theory (see the Supporting Information for details). By
using an iterative MLR process, we were able to determine that
the impact of the terminal group on the rate of the reaction can
be described using three quantitative descriptors (in order of
decreasing impact): the Boltzmann-weighted percent buried
volume of the disubstituted carbon atom, the energy of the
antibonding π-bond of the alkene, and the calculated 13C NMR
chemical shift of the Pd−alkene complex (for a full list of
parameters used for model development, see the Supporting

Information). The performance of this model was determined
using both leave-one-out (LOO) and external validation in
which the data set was pseudorandomly divided into a training
and validation set (approximately 80:20 split). This model not
only can predict the rate of a specific terminal group with
reasonable accuracy but also provides some insight into the
factors that govern the rate. For example, the %Vbur‑BW was
found to be the most dominant factor impacting the relative
rate, which indicates that the rate is largely guided by the
proximal steric environment of the alkene.
A consistent outlier in all of the models generated is

homoallylic biscarbamate 2j (Figure 4, gray box). To
rationalize why this substrate was consistently predicted to
have a significantly slower rate than measured, we performed
transition state (TS) calculations on a subset of the substrates
(Figure 5b). The calculated transition state 2j-TS was found to

be lower than 2k-TS, consistent with the experimentally
observed faster rate of 2j. The low transition state barrier for
2j-TS can be rationalized by the presence of an attractive
noncovalent interaction (NCI) between the benzyl group of
the benzyl carbamate and the pyridine of the ligand (2j-TS, a).
A similar orientation is observed in the case of 2k-TS;
however, the longer distance between the phthalimide and
pyridine ring systems (3.55 Å vs 3.37 Å) suggests that this
interaction is less favorable (see the Supporting Information
for additional TS calculations). This perhaps suggests that the
more electron-rich nature of the benzyl ring leads to a stronger

Figure 4. Multivariable linear regression reveals the steric and
electronic parameters that impact the rate of the relay Heck reaction.

Figure 5. Transition state analysis. (a) Calculated transition state
geometries for 2j and 2k. (b) Comparison of relative rates and
calculated transition state energies.
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noncovalent interaction with the electron-deficient pyridine
ring than with the phthalimide.8 Additionally, the key bond
distances for the forming C−Pd and C−Ph bonds (b and c,
respectively) are similar between the two, suggesting the
difference resulting in 2j-TS being lower in energy is the
presence of the stabilizing NCI. Overall, these data suggest that
the inability of 2j to be predicted accurately by this model is
due to the presence of this unique NCI.
This provoked us to calculate the transition state energies for

a subset of the substrates studied to determine if the rate is
directly related to the migratory insertion barrier. However, we
did not observe a correlation between the rate and the
calculated barrier across a wide range of substrates (Figure 5b).
For example, the calculated barrier of 2a (krel = 0.14) was
found to be lower than that of 2k (krel = 1.00). The lack of a
direct correlation between the observed rates and the
calculated transition state barriers suggests that the migratory
insertion is not always the rate-limiting step. This implies that
other factors such as the relative binding propensity and/or the
rate of the chain-walking process (e.g., subsequent β-hydride
elimination and migratory insertion steps) can influence the
overall rate. The statistical model is consistent with this
hypothesis (for additional discussion, see section 7a of the
Supporting Information).
Lastly, using this predictive model, we designed substrates

bearing two alkenes that could be functionalized in an alkene-
selective manner (Scheme 1). On the basis of the relative rate

data, we paired an allylic alcohol with either an allylic
phthalimide (5a) or biscarbamate (5b). Subjecting these
substrates to the standard reaction conditions resulted in a
6:1−10:1 ratio of the expected monofunctionalized adduct 6
and the 2:1 adduct 7, with no observable amount of the
isomeric monosubstituted product. This result shows that it is
possible to design a highly site-selective relay Heck reaction
based solely on the nature of the terminal group, which could
facilitate design possibilities for more complex situations.
In conclusion, we have demonstrated that the rate of the

relay Heck reaction can vary by approximately an order of
magnitude solely on the basis of the identity and proximity of
the terminal group relative to the alkene. Using the collected
relative rate data, we were able to construct a statistical model
that can predict the rate of a specific terminal group. We also
carried out transition state calculations to rationalize these
results and found that the migratory insertion step may not
always be the rate-limiting step for each of the terminal groups
studied. Lastly, we were able to use this predictive model to
design diene substrates that can undergo site-selective
functionalization. We expect the insights garnered through
this study will guide the design of site-selective Heck
transformations in more complex scenarios.
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