A General Synthesis of α -Halogenated Imines¹ Norbert DE KIMPE*, Roland VERHÉ, Laurent DE BUYCK, Luc MOENS, Niceas SCHAMP Laboratory of Organic Chemistry, Faculty of Agricultural Sciences, State University of Gent, Coupure 533, B-9000 Gent, Belgium α -Halogenated imines are the nitrogen analogues of the synthetically useful α -halocarbonyl compounds. While the latter class of compounds has been studied extensively only minor attention has been given to the chemistry of α -halogenated imino compounds, due to the fact that general routes leading to these compounds were lacking. Two major approaches to the synthesis of α -halogenated imines can be considered, first, the halogenation of an imine (or the tautomeric secondary enamine), and second, the direct condensation of an α -halogenated carbonyl compound with a primary amine². The first pathway can be accomplished using a variety of halogenating agents, e.g., chlorine, bromine, N-halosuccinimides, hypochlorites, 2,4,4,6-tetrabromocyclohexadienone, and phenyltrimethylammonium perbromide². A drawback of this approach is 0039-7881/82/0132-0043 \$ 03.00 © 1982 Georg Thieme Verlag \cdot Stuttgart \cdot New York 44 Communications Synthesis the fact that only in a few cases have regiospecific halogenations of imines been performed²⁻⁵. The second pathway met with major difficulties in terms of side reactions such as α -substitution, hydrogen halide elimination, Favorskii-type rearrangements, rearrangements via epoxides, etc.². Thus, α -haloketones have not been condensed with primary amines to afford α -haloketimines, except for some α -fluorinated derivatives and the usual carbonyl identification reagents, e.g., hydroxylamine, hydrazines, semicarbazide, etc.². On the other hand, α -haloaldehydes could be condensed with primary aliphatic amines under certain conditions (molecular sieves or Lewis catalysis) to give α -haloaldimines^{6,7,8}. We now report a general synthesis of α -halogenated imines (3) based on the second above-mentioned approach, i.e., the condensation of an α -halocarbonyl compound (1) with a primary amine (2) in ether or benzene in the presence of titanium(IV) chloride. The reaction is performed using 3-4 molar equivalents of amine (2) and 0.55 molar equivalents of titanium(1V) chloride. The latter reagent acts as a Lewis acid catalyst and it also removes the water formed in the reaction by formation of titanium dioxide. This method may be applied to the synthesis of α -haloaldimines and α -haloketimines. It has previously found widespread application in the synthesis of ordinary imines⁹ and a modification of the method has been used for the synthesis of β -halogenated enamines ¹⁰. The examples listed in the Table show that α -fluoro-, α -chloro-, and α -bromoimines as well as α,α -dichloro- and α,α,α -trichloroimines can be prepared by the present method which may be performed in two modifications: In Method A, a solution of titanium(IV) chloride in pentane is added to a solution of the α -halocarbonyl compound (1) and the amine (2) in ether or benzene; in Method B, the amine (2) is added to a solution of the α -halocarbonyl compound (1) and titanium(IV) chloride in ether to avoid undesired side reactions between 1 and 2 such as α substitution and Favorskii-type rearrangements which might occur with reactive α -halocarbonyl compounds (e.g., with α bromoketones and α -chloroaldehydes). The scope of the method seems to be limited by steric factors. While no limitations were observed with α -haloaldehydes, sterically hindered α -haloketones such as α -brominated dineopentyl and diisopropyl ketone could not be condensed with isopropylamine to afford the corresponding ketimines. Surprisingly, some undesired side reactions were observed in the case of the condensation of 1-chloro-1-phenylpropanone and 3-chloro-3-methylbutanone with t-butylamine, making the isolation of the pure N-t-butyl- α -chloroketimine impossible. Most of the α -haloimines described here were obtained as one geometrical isomer, i.e. in the (E)-form with respect to the imino function, as Table 1. α -Haloaldimines and α -Haloketimines (3) | 3 | R¹ | \mathbb{R}^2 | R ³ | R ⁴ | X | Method | Yield
[%] | m.p. or b.p./
torr [°C] | Molecular
formula" or
Lit. data | |---|------------------------------------|---------------------------------|-----------------|----------------------------------|----|--------|--------------|----------------------------|---| | a | H | C ₆ H ₅ | CH ₃ | i-C ₃ H ₇ | Cl | В | 93 | (dec.) | C ₁₂ H ₁₆ CIN (209.7) | | b | Н | t-C ₄ H ₉ | Cl | t - C_4H_9 | Cl | Α | 82 | m.p. 31° | $C_{10}H_{19}Cl_2N$ (224.2) | | c | Н | Cl | Cl | t-C ₄ H ₉ | Cl | Α | 73 | b.p. 58-62°/13 | b.p. 67°/12 ¹¹ | | d | CH | CH_3 | H | i-C ₃ H ₇ | Cl | Α | 78 | b.p. 47-48° / 14 | C ₇ H ₁₄ CIN (147.6) | | e | CH ₃ | CH ₃ | Н | t-C ₄ H ₉ | Cl | Α | 77 | b.p. 57-59°/14 | C ₈ H ₁₆ ClN (161.7) | | f | CH ₃ | CH_3 | Н | c-C ₆ H ₁₁ | Cl | Α | 68 | b.p. 109-114°/14 | $C_{10}H_{18}CIN$ (187.7) | | g | CH ₃ | Н | Н | i-C ₃ H ₇ | Cl | Α | 86 | — (dec.) ^b | $C_6H_{12}CIN$ (133.6) | | h | CH ₃ | Н | Н | t-C4H9 | Cl | Α | 72 | — (dec.) ^b | $C_7H_{14}CIN$ (147.6) | | i | CH ₃ | C_6H_5 | Н | i-C ₃ H ₇ | CI | Α | 90 | b.p. 76-78°/0.03 | $C_{12}H_{16}CIN$ (209.7) | | i | n-C ₃ H ₇ | Н | Н | i-C ₃ H ₇ | CI | Α | 98 | d | $C_8H_{16}CIN$ (161.7) | | ķ | CH ₃ | CH ₃ | CH_3 | i-C ₃ H ₇ | Cl | В | 88 | b.p. 42-45°/11 | C ₈ H ₁₆ CIN (161.7) | | ï | CH ₃ | CH ₃ | CH ₃ | c-C ₆ H ₁₁ | Cl | В | 56 | b.p. 100-103°/11 | $C_{11}H_{20}CIN$ (201.7) | | m | CH ₃ | C ₆ H ₅ | CH_3 | i-C ₃ H ₇ | Cl | Α | 93 | b.p. 52-54°/0.04 | $C_{13}H_{18}CIN$ (223.7) | | n | CH ₃ | C_6H_5 | Cl | i-C ₃ H ₇ | Cl | Α | 57 | b.p. $78-80^{\circ}/0.03$ | $C_{12}H_{15}Cl_2N$ (244.2) | | 0 | i-C ₄ H ₉ | Cl | Н | i-C ₃ H ₇ | Cl | Α | 82 | d | $C_9H_{17}Cl_2N$ (210.1) | | D | CH ₃ | CH ₃ | Н | C ₆ H ₅ | Cl | Α | 33 | b.p. 53-58°/0.15 | $C_{10}H_{12}CIN$ (181.7) | | q | Н | C_2H_5 | Н | t-C4H9 | Cl | Α | 47 | b.p. 56-58°/12 | b.p. $27-28^{\circ}/0.4^{6}$ | | r | C ₆ H ₅ | CH_3 | Cl | C_2H_5 | Cl | Α | 86 | c | -1 ² | | s | C ₆ H ₅ | CH ₃ | Cl | i-C ₃ H ₇ | Cl | A | 89 | c | $-\frac{12}{12}$ | | ť | C_6H_5 | CH ₃ | Cl | c-C ₆ H ₁₁ | Cl | Α | 88 | C | - 12 | | u | 4-Cl—C ₆ H ₄ | CH ₃ | Cl | i-C ₃ H ₇ | Cl | Α | 91 | m.p. 41° | _12 | | v | C_2H_5 | CH ₃ | Н | i-C ₃ H ₇ | Br | В | 79 | — (dec.) | $C_8H_{16}BrN$ (206.1) | | w | C_6H_5 | CH ₃ | Н | i-C ₃ H ₇ | Br | Α | 87 | d | $C_{12}H_{16}BrN$ (254.2) | | x | C_6H_5 | CH ₃ | Н | i-C ₃ H ₇ | F | Α | 89 | d | $C_{12}H_{16}FN$ (193.3) | [&]quot;C, H, Cl, N analyses were performed with 3b, d, e, i, k, l; C, H, N analyses were performed with 3w, x; Cl, N analyses were performed with 3f, n, p; N analyses only were performed with 3a, j, m, o. These microanalyses were in good agreement with the calculated values: C, ±0.15; H, ±0.20; Cl, ±0.15; N, ±0.19. Compounds 3g and 3h should be used directly in further experiments as they decompose rapidly and exothermically in neat form. Storing the pure compounds in a closed vessel, even at low temperature $(-20\,^{\circ}\text{C})$ may be cause serious explosions. Similar behavior of 3g and 3h was observed on attempted vacuum distillation. ^c Compounds 3r-t were not distilled; these products were shown to be free of impurities and were used as such in further experiments. d Not distilled, crude yields given. Table 2. Spectral Data of Compounds 3 | Tab | WAYAR COLUMNS COLUMNS | | | |--------|---|---|---| | 3 | M.S. (70 eV) <i>m/e</i> (rel. int.) | I.R. (NaCl) $v_{C = N}$ [cm ⁻¹] | ¹H-N.M.R. (CCl ₄ /TMS _{int} , 60 MHz) δ [ppm] | | a | | 1665 | 1.20, 1.21 (2d, 6H, J =6.5 Hz, 2 C \underline{H}_3); 3.46 [sept, 1H, J =6.5 Hz, C \underline{H} (CH ₃) ₂]; 2.00 (s, 3H, C \underline{H}_3); 7.1-7.6 (m, 5H _{arom}); 7.75 (s, 1H, CH=N) | | b | no M ⁺ , 167/69/71 (0.5); 152/4/6 (1); 111/3/5 (3); 99 (6); 84 (6); 57 (100); 41 (36) | 1660-1675 | 1.22 [s, 18 H, $2C(C\underline{H}_3)_3$]; 7.58 (s, 1 H, $C\underline{H}$ ==N) | | c
d | 147/9 (M ⁺ , 0.5); 132/4 (2); 112 (2); 96 (1); 90 (1); | 1660 | 1.05, 1.07 [2d, 6H, J=6.5 Hz, 2 CH ₃]; 1.57 (d, 3 H, | | • | 89 (1); 84 (33); 70 (5); 55 (3); 54 (2); 43 (19); 42 (100); 41 (6) | 1000 | J=6.5 Hz, C \underline{H}_3); 1.88 (s, 3 H, N=C= \underline{H}_3); 3.60 [sept, 1 H, N=C \underline{H} (CH ₃) ₂]; 4.41 (q, 1 H, J=6.5 Hz, CH=Cl) | | e | 161/3 (M ⁺ , 0.5); 146/8 (6); 110 (4); 106 (5); 105 (4); 98 (15); 70 (15); 57 (100); 42 (28); 41 (38) | 1665 | 1.23 [s, 9 H, $C(C\underline{H}_3)_3$]; 1.54 (d, 3 H, J = 6.5 Hz, $C\underline{H}_3$); 1.98 (s, 3 H, N = C - $C\underline{H}_3$); 4.33 (q, 1 H, J = 6.5 Hz, CH - CI) | | f | 187/9 (M ⁺ , 1); 152 (12); 124 (24); 108 (2); 106 (4); 83 (100); 70 (5); 68 (4); 67 (4); 55 (44); 54 (5); 53 (4); 42 (34); 41 (20); 39 (4) | 1663 | 1.57 (d, 3 H, $J=7$ Hz, $C\underline{H}_3$); 1.90 (s, 3 H, N=C- $C\underline{H}_3$); 1-2 [m, 10 H, $(C\underline{H}_2)_5$]; 3.2 (m, 1 H, N-CH); 4.41 (q, 1 H, $J=7$ Hz, CH-Cl) | | g | - | 1661 | 1.05 [d, 6 H, J =6.5 Hz, $CH(C\underline{H}_3)_2$]; 1.90 (s, 3 H, N=C-CH ₃); 3.56 [sept, 1 H, J =6.5 Hz, $CH(CH_3)_2$]; 3.92 (s, 2 H, CH_2 -Cl) | | h | | - 1665 | 1.23 [s, 9 H, $C(C\underline{H}_3)_3$]; 2.04 (s, 3 H, N=C- $C\underline{H}_3$); 3.91 (s, 2 H, $C\underline{H}_2$ - $C\underline{I}$) | | i | no M ⁺ , 175 (0.5); 151 (0.5); 149 (0.5); 117 (2); 115 (1); 91 (6); 84 (23); 77 (1); 65 (2); 63 (1); 58 (1); 51(2); 43 (15); 42 (100); 41 (7) | 1657 | 1.06, 1.14 [2 d, 6 H, $J=6$ Hz, $CH(C\underline{H}_3)_2$]; 1.71 (s, 3 H, N=C-CH ₃); 3.56 [sept, 1 H, $J=6$ Hz, $C\underline{H}(CH_3)_2$]; 5.47 (s, 1 H, $C\underline{H}$ -Cl); 7-7.5 (m, 5 H _{arom}) | | j | 161/3 (M ⁺ , 0.3); 146/8 (1); 133/5 (2); 126 (2); 112 (2); 110 (2); 104 (1); 98 (2); 84 (10); 76 (2); 70 (39); 69 (3); 68(3); 67 (2); 58 (2); 57 (2); 56 (2); 55 (3); 54 (3); 43 (39); 42 (100); 41 (33); 40 (4); 39 (13) | 1658 | 0.95 (covered, 3 H, CH ₃); 1.10, 1.12 [2 d, ratio (E/Z) 70/30, 6 H, CH(CH ₃) ₂]; 1.2-1.9 (m, 2 H, CH ₂); 2.2-2.6 (m, 2 H, CH ₂ —C=N); 3.3-4 [m, 1 H, CH(CH ₃) ₂]; 4.00, 3.89 [2 s, ratio (E/Z) 70/30, 2 H, | | k | 161/3 (M ⁺ , 1); 146/8 (2); 126 (4); 125 (7); 110 (7); 84 (26); 69 (11); 68 (15); 43 (23); 42 (100); 41 (28) | 1657 | $C\underline{H}_2$ —CI]
1.07 [d, 6 H, J =6 Hz, $CH(C\underline{H}_3)_2$]; 1.66 (s, 6 H, $2C\underline{H}_3$); 1.98 (s, 3 H, H=C—CH ₃); 3.60 [sept, 1 H, I =6 Hz, $CH(CH)_1$] | | J | no M ⁺ , 166/8 (7); 150 (6); 124 (12); 122 (15); 108 (11); 96 (15); 84 (27); 83 (73); 69 (21); 68 (35); 67 (21); 55 (78); 42 (69); 41 (100); 39 (27) | 1661 | $J=6 \text{ Hz}, C\underline{H}(CH_3)_2$]
1.62 (s, 6H, 2CH ₃); 1.94 (s, 3H, N=C-C <u>H</u> ₃); 1-2
[m, 10H, (C <u>H</u> ₂) ₅]; 3.2 (m, 1H, N-C <u>H</u>) | | m | _ | 1660 | 1.18 [d, 6 H, $J = 6$ Hz, $CH(C\underline{H}_3)_2$]; 1.75 (s, 3 H, CH_3); 1.94 (s, 3 H, $N = C - CH_3$); 3.73 [sept, 1 H, $J = 6$ Hz, $C\underline{H}(CH_3)_2$]; 7.1-7.6 (m, 5 H_{arom}) | | n | 243/5/7 (M ⁺ , 2); 208/10 (18); 207/9 (10); 191 (6); 173 (8); 166 (12); 165 (8); 158 (10); 131 (18); 130 (13); 118 (3); 117 (10); 116 (5); 115 (20); 91 (5); 89 (15); 84 (100); 77 (10); 63 (8); 51 (4); 43 (48); 42 (75); 41 (20) | 1666 | 1.13 [d, 6 H, J = 6.5 Hz, $CH(CH_3)_2$]; 1.97 (s, 3 H, N = C - CH_3); 3.66 [sept, 1 H, J = 6.5 Hz, $CH(CH_3)_2$]; 7.2-7.7 (m, 5 H _{arom}) | | 0 | no M ⁺ , 126 (10); 84 (100); 57 (10); 43 (21); 42 (17);
41 (17) | 1650 | 1.00 [d, 6 H, $J=6$ Hz, C—CH(C \underline{H}_3) ₂]; 1.13 [d, 6 H, $J=6$ Hz, N—CH(C \underline{H}_3) ₂]; ~2.4 (m, 2 H, C \underline{H}_2 —C=N); 3.80 [sept, 1 H, $J=6$ Hz, N—C \underline{H} (CH ₃) ₂]; 6.10, 6.56 [2 s, ratio (E/Z) 85/15, CHCl ₂] | | P | 181/3 (M ⁺ , 5); 118 (100); 77 (66); 51 (26) | 1662 | 1.72 (d, 3H, $J=6.5$ Hz, CH ₃); 1.89 (s, 3H, N=C-CH ₃); 4.60 (q, 1H, $J=6.5$ Hz, CH-Cl); | | q
r | 6 | 6 | 6.5-6.7 (m, 2 H _{artha}); 6.8-7.4 (m, 3 H _{meta+para}) | | r
S | 12 | 12
12 | 12 | | t | 12 | 12 | 12
12 | | u | 12 | 12 | 12 | | V | 205/7 (0.5, M ⁺); 134/6 (2); 98 (39); 84 (3); 69 (15); 57 (5); 56 (100); 55 (5); 54 (5); 43 (15); 42 (6); 41 (10) | 1652 | 1.06 [d, 6H, $J=6.5$ Hz, $CH(CH_3)_2$]; 1.11 (t, 3H, $J=7$ Hz, CH_3); 1.76 (d, 3H, $J=7$ Hz, CH_3); 2.38 (q, 2H, $J=7$ Hz, CH_2 —C=N); 3.70 [sept, 1H, $J=7$ | | w | no M ⁺ , 146 (2); 104 (100); 77 (2); 51 (1); 43 (3); 41 (2); 39 (1) | 1638 | Hz, $C\underline{H}(CH_3)_2$]; 4.55 (q, 1 H, $J=7$ Hz, $C\underline{H}-Br$)
0.97, 1.03 [2 d, 6 H, $J=6$ Hz, $CH(C\underline{H}_3)_2$]; 1.76 (s, 3 H, $J=6.8$ Hz, CH_3); 3.31 [sept, 1 H, $C\underline{H}(CH_3)_2$];
4.75 (q, 1 H, $J=6.8$ Hz, $C\underline{H}-Br$) | | x | 193 (M ⁺ , 3); 192 (2); 178 (6); 173 (2); 158 (3); 146 (32); 135 (2); 130 (2); 117 (4); 115 (4); 104 (100); 77 (7); 51 (4); 43 (6); 42 (2); 41 (4); 39 (3) | 1650 | 4.73 (q, 1 H, $J = 6.8$ Hz, $C\underline{H} - Br$)
0.98, 1.03 [2 d, 6 H, $J = 6$ Hz, $CH(C\underline{H}_3)_2$]; 1.43 (dd, 3 H, $J_{HH} = 6.4$ Hz, $J_{HF} = 23$ Hz, CH_3); 3.37 [sept, 1 H, $J - 6$ Hz, $C\underline{H}(CH_3)_2$]; 5.13 (dq, 1 H, $J_{HH} = 6.4$ Hz, $J_{HF} = 47.2$ Hz, $C\underline{H} - F$); 6.9-7.4 (m, 5 H _{arom}) | 46 Communications SYNTHESIS evidenced by the ¹H-N.M.R. spectra of α -chloroaldimines 3a, q, α , α -dichloroalkyl aryl ketimines 3r-u, α -chloroalkyl methyl ketimines 3d, e, f, i, k, l, m, p, α -bromoketimines 3v, w, and α -fluoroketimine 3v. However, chloromethyl ketimine 3j and dichloromethyl ketimine 3o exist as an equilibrium mixture of the (E)- and (Z)-isomers which was investigated by ASIS (Aromatic Solvent Induced Shift) measurements^{3,5} by which the variations in chemical shifts are determined on going from a carbon tetrachloride solution to a benzene solution. The upfield "benzene solvent shift" of protons trans to the lone pair of electrons at the N-atom is more pronounced than that of the cis protons. This phenomenon was explained in terms of a repulsive effect between the lone pair of electrons at the N-atom and the benzene solvent molecule whereby the latter is pushed away from the N-atom as far as possible and, on the other hand, is attracted by the partial positive charge of the sp²-hybridized C-atom. As exemplified for *N-t*-butyl-3-chloro-2-butanimine (3e), the remarkable shielding effect of the protons remote from the lone pair of electrons at the N-atom, expressed by the benzene solvent shift $$\delta_{\text{CCl}_4}^{\text{C}_6\text{H}_6} = \delta^{\text{CCl}_4} - \delta^{\text{C}_6\text{H}_6} \text{ [ppm]},$$ is indicative for the (E)-configuration. The α -halocarbonyl compounds 1 were prepared by literature methods. Secondary and tertiary α -chloroketones were prepared by chlorination of the parent ketones with sulfuryl chloride¹³ while α -bromoketones were synthesized by standard brominations with bromine¹⁴. 1-Chloro-2-pentanone was obtained from the reaction of the parent α -diazoketone with hydrogen chloride¹⁵ while 1,1-dichloro-4-methyl-2-pentanone¹⁶, 2-fluoro-1-phenyl-1-propanone¹², and α , α -dichloroalkyl aryl ketones¹⁷ were prepared as previously described. ## a-Haloimines (3); General Procedures: Method A: To a vigorously stirred ice-cooled solution of the α -halogenated carbonyl compound 1 (0.1 mol) in a tenfold volume of dry ether (distilled from sodium wire), the primary amine 2 (0.4 mol; in the case of aniline 0.3 mol) is added followed by the dropwise addition of a solution of titanium(IV) chloride (10.435 g, 0.055 mol) in pentane (20 ml) [Caution! all reactions are exothermic; the rate of addition should therefore be carefully controlled to ensure smooth reaction]. After the addition is complete the ice bath is removed and the heterogeneous mixture stirred for another 2 h at room temperature. The mixture^a is then poured into aqueous 0.5-1 normal sodium hydroxide (100 ml) covered by a layer of ether (50 ml). The system is vigorously shaken, the ether layer isolated, and the aqueous layer extracted with ether $(2 \times 50 \text{ ml})$. The combined ether phase is dried with potassium carbonate and evaporated. The residual product is distilled in vacuo. The α halocarbonyl compounds thus obtained should be kept under an inert atmosphere at low temperature (-20°C) to avoid decomposidion. Method B: To a vigorously stirred ice-cooled solution of the α -halogenated carbonyl compound 1 (0.1 mol) in a tenfold volume of dry ether (distilled from sodium wire), a solution of titanium(IV) chloride (10.435 g, 0.055 mol) in pentane (20 ml) is added followed by the dropwise addition of the amine 2 (0.4 mol) [Caution! the reaction is exothermic; the rate of addition should therefore be carefully controlled to ensure smooth reaction]. After the addition is complete, stirring is continued for 2 h at room temperature and the mixture then worked up as in Method A. Using Methods A or B, the α -haloimines (3) are obtained in a purity of >98% (as evidenced by G.L.C. analysis). In most cases, impurities cannot be detected. The authors are indebted to the Belgian "National Fund for Scientific Research" for financial support to the laboratory. Received: May 5, 1981 (Revised form: June 24, 1981) N. D. K. is "Bevoegdverklaard Navorser" (Research Associate) of the Belgian "Nationaal Fonds voor Wetenschappelijk Onderzoek" (National Fund for Scientific Research), Belgium. - This is Part 25 of our series of communications on the chemistry of α-halogenated imino compounds. For Part 24, see: N. DeKimpe et al., Tetrahedron Lett. 22, 1837 (1981). - N. De Kimpe, N. Schamp, Org. Prep. Proced. Int. 11, 115 (1979); and references cited therein. - N. De Kimpe, N. Schamp, W. Coppens, Bull. Soc. Chim. Belg. 84, 227 (1975); and references cited therein. - ⁴ N. De Kimpe, N. Schamp, Tetrahedron Lett. 1974, 3779. - ⁵ N. De Kimpe, N. Schamp, Bull. Soc. Chim. Belg. 84, 235 (1975). - ⁶ L. Duhamel, P. Duhamel, J. Y. Valnot, C. R. Acad. Sci. [C] 271, 1471 (1970) - S. C. Dorman, U. S. Patents 2468 592, 2468 593 (1949), Shell Development Co.; C. A. 43, 5153, 7499 (1949). - ⁸ D. Borrmann, R. Wegler, Chem. Ber. 100, 1814 (1967). - ⁹ H. Weingarten, J. P. Chupp, W. A. White, J. Org. Chem. 32, 3246 (1967). - L. Duhamel, P. Duhamel, J. M. Poirier, Bull. Soc. Chim. Fr. 1972, 221; Tetrahedron Lett. 1973, 4237. - 11 R. Verhé et al., Bull. Soc. Chim. Belg. 86, 879 (1977). - ¹² N. De Kimpe, R. Verhé, L. De Buyck, N. Schamp, *J. Org. Chem.* 45, 5319 (1980). - ¹³ P. Delbaere, Bull. Soc. Chim. Belg. 51, 1 (1942). - A. Roedig, in: Houben-Weyl, Methoden der Organischen Chemie. 4th Ed., E. Müller, ed., Vol. 5/4, Georg Thieme Verlag, Stuttgart, 1960, p. 13ff. - ¹⁵ W. D. McPhee, E. Klingsberg, J. Am. Chem. Soc. 66, 1132 (1944). - W. E. Bachman, W. S. Struve, Org. React. 1, 48 (1942). - ¹⁶ W. Coppens, N. Schamp, Bull. Soc. Chim. Belg. 81, 643 (1972). - ¹⁷ N. De Kimpe et al., Synth. Commun. 8, 75 (1978); 9, 575 (1979). Work-up of the reaction mixture may also be performed by filtering off the precipitated titanium dioxide and amine hydrochloride using a sintered glass filter but in many cases a slow filtration rate is noticed. This can be circumvented to some extent by filtration through a bed of magnesium oxide, florisil, or celite; this leads to considerable loss of product, however. ^{*} Address for correspondence.