May 1990 Papers 415 ## A Convenient Synthesis of 5-Alkyl- and 5-Aryl-1,2,3,4-thiatriazoles Shin-ichi Ikeda, Toshiaki Murai, Hideharu Ishihara, Shinzi Kato* Department of Chemistry, Faculty of Engineering, Gifu University, 1-1Yanagido, Gifu 501-11, Japan 1-Methyl-2-thioacylthiopyridinium salts react with sodium azide to afford 5-alkyl- and 5-aryl-1,2,3,4-thiatriazoles in good yields. Since the first synthesis of 5-phenyl-1,2,3,4-thiatriazole in 1896,¹ a number of 5-aryl-1,2,3,4-thiatriazoles 4 (R = aryl) have been synthesized.^{2,3} On the other hand, the isolation of only one 5-alkyl-1,2,3,4-4 (R = alkyl), a 5-benzyl derivative,^{4,5} has been described due to their instability and difficulties in obtaining the required starting compounds such as aliphatic thioacyl chlorides and hydrazides. We now report a convenient synthesis of 5-alkyl and aryl-1,2,3,4-thiatriazoles 4. $$\begin{bmatrix} S \\ N = N = \bar{N} \end{bmatrix} = \bar{N} \bar{N}$$ R = alkyl, aryl | 4 | R | 4 | R | 4 | R | |---|------|---|-----------------------------------|---|------------------------------------| | a | Me | f | cyclohexyl | k | 4-MeOC ₆ H ₄ | | b | Et | g | Ph | 1 | 4-ClC ₆ H ₄ | | c | Pr | ĥ | 2-MeC ₆ H ₄ | m | 1-naphthyl | | d | i-Pr | i | $4-\text{MeC}_{6}H_{4}$ | | ·· r · · · · J · | | e | Bu | j | $2,4,6-Me_3C_6H_2$ | | | The synthesis of the thiatriazoles 4 was achieved by the use of 1-methyl-2-thioacylthiopyridinium salts⁶ 3 as thioacylating agents. The synthesis of thiatriazoles 4 is either performed as a one-pot reaction in which sodium azide is added to the reaction mixture of the preparation of the 1-methyl-2-thioacylthiopyridinium iodide 3 from a piperdinium dithiocarboxylate 1 and 2-chloro-1-methylpyridinium iodide (2) in dichloromethane/methanol (Method A), or a suspension of sodium azide in acetonitrile is added to a solution of the pyridinium salt 3 in acetonitrile (Method B). The present reaction is assumed to proceed through the intermediate, thioacyl azides 5 as intermediates which are formed by attack of azide anion on the thiocarbonyl Catom of 3. The procedures used for the preparation of compounds 4 are simple and the yields are high. In addition, the starting compounds 1 and 2 are readily available. ## 5-Alkyl- and 5-Aryl-1,2,3,4-thiatriazoles 4; Typical Procedures: Method A, without Isolation of Pyridinium Salts 3: 5-Ethyl-1,2,3,4-thiatriazole (4b): A solution of piperidinium ethanecarbodithioate (1b; 280 mg, 1.5 mmol) in $\rm CH_2Cl_2$ (20 mL) is added dropwise to a stirred solution of 2-chloro-1-methylpyridinium iodide (2; 402 mg, 1.5 mmol) in $\rm CH_2Cl_2/MeOH$ (5:1; 10 mL) and the mixture is stirred at $-15^{\circ}C$ for 15 min. To the resultant mixture containing 2-[ethyl(thiocarbonylthio)]-1-methylpyridinium iodide (3b) is added NaN₃ (204 mg, 3 mmol), and stirring is continued at 20 °C for 2 h. The solvent is removed under reduced pressure and $\rm CH_2Cl_2$ (30 mL) is added. The mixture is washed with water (2 × 40 mL), dried (Na₂SO₄), and evaporated using a rotary evaporator. The residue is purified by preparative TLC on silica gel [CH₂Cl₂/hexane (1:2)] to give 4b as a slightly yellow oil; yield: 110 mg (73 %); R_f 0.25. Method B, from the Isolated Pyridinium Salts 3: 5-(4-Methylphenyl)-1,2,3,4-thiatriazole (4i): A solution of 1-methyl-2-[4-methylphenyl(thiocarbonylthio)]pyridinium iodide⁶ (3i; 194 mg, 0.5 mmol) in MeCN (20 mL) is added to a suspension Table. 5-Alkyl- and 5-Aryl-1,2,3,4-thiatriazoles 4 Prepared | Prod-
uct | Meth-
od ^a | Yield ^b
(%) | mp
(°C) | Molecular
Formula ^c or
Lit. mp (°C) | MS (20 eV) ^d m/z (%) | IR ^e
v _{C=S}
(cm ⁻¹) | ¹H-NMR
(CDCl ₃ /TMS)
δ | ¹³ C-NMR
(CDCl ₃ /TMS)
δ | |--------------|--------------------------|---------------------------|------------|---|---|--|--|--| | 4a | A | 73 | oil | C ₂ H ₃ N ₃ S
(101.1) | 101 (M ⁺ , 10),
73 (61) | 1200 | 3.01 (s, 3H, CH ₃) | 12.7 (CH ₃), 175.9 (C=N) | | 4b | A | 68 | oil | $C_3H_5N_3S$ (115.1) | 115 (M ⁺ , 30),
87 (82), 55 (25) | 1190 | 1.54 (t, 3H, CH ₃), 3.36 (q, 2H, CH ₂) | 14.3 (CH ₃), 21.3 (CH ₂), 182.9 (C=N) | | 4c | A | 85 | oil | $C_4H_7N_3S$ (129.1) | 129 (M ⁺ , 51),
69 (54) | 1180 | 1.08 (t, 3H, CH ₃), 1.93 (m,
2H, CH ₂), 3.31 (t, 2H,
CH ₂) | 13.5 (CH ₃), 23.4 (CH ₂), 29.3 (CH ₂) | | 4d | A | 79 | oil | $C_5H_9N_3S$ (129.1) | 130 (M ⁺ , 9),
128 (42), 69 (11) | 1205 | 1.66 (d, 6H, CH ₃), 3.73 (m, 1H, CH) | 23.4 (CH ₃), 29.0 (CH), 188.1 (C=N) | | 4e | A | 83 | oil | $C_5H_9N_3S$ (143.1) | 143 (M ⁺ , 9),
83 (78) | 1230 | 0.99 (t, 3H, CH ₃), 1.48 (m,
2H, CH ₂), 1.89 (m, 2H,
CH ₂), 3.33 (t, 2H, CH ₂) | 13.5 (CH ₃), 22.1,
27.1, 32.0 (CH ₂),
181.5 (C=N) | | 4f | A | 79 | oil | $C_7H_{11}N_3S$ (169.1) | 170 (M ⁺ , 9),
110 (100) | 1200 | $1.5 \sim 2.2$ (m, 10 H , CH_2), 3.39 (m, 1 H , CH) | 25.4, 25.7, 34.1
(CH ₂), 37.9 (CH),
187.0 (C=N) | | 4g | В | 94 | 94–96 | 95–96 ⁵ | 163 (M ⁺ , 11),
135 (24), 103 (44) | 1240 | $7.5-8.1 \text{ (H}_{arom})$ | 126.4, 129.7, 129.9,
133.2 (C _{arom}), 179.2
(C=N) | | 4h | В | 74 | 45-47 | 45–465 | 149 (11) | 1290 | 2.62 (CH ₃), 7.4–8.0 (H _{arom}) | 21.9 (CH ₃), 125.9,
126.9, 131.2, 132.0,
137.9 (C _{arom}), 177.6
(C=N) | | 4i | В | 76 | 98–100 | 98-995 | 177 (M ⁺ , 16),
149 (2), 117 (76) | 1240 | 2.45 (CH ₃), 7.3–7.9 (H _{arom}) | 21.6 (CH ₃), 123.6,
129.6, 130.4, 144.1
(C _{arom}), 179.2 (C=N) | | 4j | В | 32 | 58-61 | $C_{10}H_{11}N_3S$ (205.1) | 177 (2), 145 (11) | 1240 | 2.09 (CH ₃), 2.36 (CH ₃),
7.01 (H _{arom}) | 20.5, 20.6, 21.2
(CH ₃), 128.2, 129.1,
137.2, 141.0 (C _{arom}),
177.0 (C=N) | | 4k | В | 82 | 105–107 | 103-1045 | 193 (M ⁺ , 14),
164 (36), 150 (100),
133 (87) | 1240 | 3.90 (CH ₃), 7.0-8.0 (H _{arom}) | 55.6 (CH ₃ O), 115.1,
118.9, 131.5, 163.5
(C _{arom}), 178.7 (C=N) | | 41 | В | 80 | 102–103 | 101-1025 | 199 (M ⁺ , 2),
197 (M ⁺ , 5),
169 (90), 137 (100) | 1235 | $7.5 \sim 8.0 \text{ (H}_{\text{arom}})$ | 124.8, 130.1, 139.5
(C _{arom}), 177.9 (C=N) | | 4m | В | 73 | 46–47 | 47–48 5 | | 1240 | $7.5 \sim 8.6 \text{ (H}_{arom})$ | 123.0, 124.7, 125.1,
127.1, 128.5, 128.9,
130.0, 131.4, 133.3,
133.9 (C _{arom}), 178.1
(C=N) | ^a Method A: molecular ratio $3/NaN_3 = 1:2$; $CH_2Cl_2/MeOH = 5:1$, $20\,^{\circ}C$, $2\,h$. Method B: Molecular ratio $3/NaN_3 = 0.5:1.2$; MeCN, $82\,^{\circ}C$, $2\,h$. of NaN₃ (75 mg, 1.1 mmol) in MeCN (10 mL), and the mixture is stirred at 30 °C for 2 h. The solvent is evaporated under reduced pressure, CH_2Cl_2 (20 mL) is added, and the solution is washed with water (2 × 40 mL) and dried (Na₂SO₄). Evaporation of CH_2Cl_2 using a rotary evaporator, followed by TLC of the residue in silica gel [CH_2Cl_2 /hexane (1:2)] affords 4i as slightly yellow crystals; yield: 67 mg (76%); R_f 0.35. Received: 11 September 1989; revised: 9 November 1989 - (2) Jensen, K.A.; Pedersen, C. Adv. Heterocycl. Chem. 1964, 3, 263. - (3) Holm, A. Adv. Heterocycl. Chem. 1976, 20, 145. - (4) Kirmse, W. Chem. Ber. 1960, 93, 2353. - (5) Syntheses without isolation: 5-tert-Butyl- and 5-(2-phenylethyl)-1,2,3,4-thiatriazoles: Jensen, K.A.; Pedersen, C. Acta Chem. Scand. 1961, 15, 1104. 5-Cyclohexyl-1,2,3,4-thiatriazole: Smith, P.A.S.; Kenny, D.H. J. Org. Chem. 1961, 26, 5221. - (6) Kato, S.; Masumoto, H.; Ikeda, S.; Murai, T. Z. Chem., in press. - (7) Kato, S.; Mizuta, M. Bull. Chem. Soc. Jpn. 1972, 45, 3492. Kato, S.; Mitani, T.; Mizuta, M. Int. J. Sulfur Chem., Part A 1973, 8, 359. b Yield is isolated product. [°] Satisfactory microanalyses: C \pm 0.19, H \pm 0.15. Satisfactory HRMS: \pm 0.0028. d EI method. ^e Neat for 5-alkyl derivatives (4a-f) and KBr for 5-aryl derivatives (4g-m). ⁽¹⁾ Freud, M.; Schwarz, H.P. Ber. Dtsch. Chem. Ges. 1896, 29, 2491, 2500.