May 1990 Papers 415

A Convenient Synthesis of 5-Alkyl- and 5-Aryl-1,2,3,4-thiatriazoles

Shin-ichi Ikeda, Toshiaki Murai, Hideharu Ishihara, Shinzi Kato* Department of Chemistry, Faculty of Engineering, Gifu University, 1-1Yanagido, Gifu 501-11, Japan

1-Methyl-2-thioacylthiopyridinium salts react with sodium azide to afford 5-alkyl- and 5-aryl-1,2,3,4-thiatriazoles in good yields.

Since the first synthesis of 5-phenyl-1,2,3,4-thiatriazole in 1896,¹ a number of 5-aryl-1,2,3,4-thiatriazoles 4 (R = aryl) have been synthesized.^{2,3} On the other hand, the isolation of only one 5-alkyl-1,2,3,4-4 (R = alkyl), a 5-benzyl derivative,^{4,5} has been described due to their instability and difficulties in obtaining the required starting compounds such as aliphatic thioacyl chlorides and hydrazides. We now report a convenient synthesis of 5-alkyl and aryl-1,2,3,4-thiatriazoles 4.

$$\begin{bmatrix} S \\ N = N = \bar{N} \end{bmatrix} = \bar{N} = \bar{N}$$

R = alkyl, aryl

4	R	4	R	4	R
a	Me	f	cyclohexyl	k	4-MeOC ₆ H ₄
b	Et	g	Ph	1	4-ClC ₆ H ₄
c	Pr	ĥ	2-MeC ₆ H ₄	m	1-naphthyl
d	i-Pr	i	$4-\text{MeC}_{6}H_{4}$		·· r · · · · J ·
e	Bu	j	$2,4,6-Me_3C_6H_2$		

The synthesis of the thiatriazoles 4 was achieved by the use of 1-methyl-2-thioacylthiopyridinium salts⁶ 3 as thioacylating agents.

The synthesis of thiatriazoles 4 is either performed as a one-pot reaction in which sodium azide is added to the reaction mixture of the preparation of the 1-methyl-2-thioacylthiopyridinium iodide 3 from a piperdinium dithiocarboxylate 1 and 2-chloro-1-methylpyridinium iodide (2) in dichloromethane/methanol (Method A), or a suspension of sodium azide in acetonitrile is added to a solution of the pyridinium salt 3 in acetonitrile (Method B).

The present reaction is assumed to proceed through the intermediate, thioacyl azides 5 as intermediates which are formed by attack of azide anion on the thiocarbonyl Catom of 3.

The procedures used for the preparation of compounds 4 are simple and the yields are high. In addition, the starting compounds 1 and 2 are readily available.

5-Alkyl- and 5-Aryl-1,2,3,4-thiatriazoles 4; Typical Procedures:

Method A, without Isolation of Pyridinium Salts 3:

5-Ethyl-1,2,3,4-thiatriazole (4b): A solution of piperidinium ethanecarbodithioate (1b; 280 mg, 1.5 mmol) in $\rm CH_2Cl_2$ (20 mL) is added dropwise to a stirred solution of 2-chloro-1-methylpyridinium iodide (2; 402 mg, 1.5 mmol) in $\rm CH_2Cl_2/MeOH$ (5:1; 10 mL) and the mixture is stirred at $-15^{\circ}C$ for 15 min. To the resultant mixture containing 2-[ethyl(thiocarbonylthio)]-1-methylpyridinium iodide (3b) is added NaN₃ (204 mg, 3 mmol), and stirring is continued at 20 °C for 2 h. The solvent is removed under reduced pressure and $\rm CH_2Cl_2$ (30 mL) is added. The mixture is washed with water (2 × 40 mL), dried (Na₂SO₄), and evaporated using a rotary evaporator. The residue is purified by preparative TLC on silica gel [CH₂Cl₂/hexane (1:2)] to give 4b as a slightly yellow oil; yield: 110 mg (73 %); R_f 0.25.

Method B, from the Isolated Pyridinium Salts 3:

5-(4-Methylphenyl)-1,2,3,4-thiatriazole (4i): A solution of 1-methyl-2-[4-methylphenyl(thiocarbonylthio)]pyridinium iodide⁶ (3i; 194 mg, 0.5 mmol) in MeCN (20 mL) is added to a suspension

Table. 5-Alkyl- and 5-Aryl-1,2,3,4-thiatriazoles 4 Prepared

Prod- uct	Meth- od ^a	Yield ^b (%)	mp (°C)	Molecular Formula ^c or Lit. mp (°C)	MS (20 eV) ^d m/z (%)	IR ^e v _{C=S} (cm ⁻¹)	¹H-NMR (CDCl ₃ /TMS) δ	¹³ C-NMR (CDCl ₃ /TMS) δ
4a	A	73	oil	C ₂ H ₃ N ₃ S (101.1)	101 (M ⁺ , 10), 73 (61)	1200	3.01 (s, 3H, CH ₃)	12.7 (CH ₃), 175.9 (C=N)
4b	A	68	oil	$C_3H_5N_3S$ (115.1)	115 (M ⁺ , 30), 87 (82), 55 (25)	1190	1.54 (t, 3H, CH ₃), 3.36 (q, 2H, CH ₂)	14.3 (CH ₃), 21.3 (CH ₂), 182.9 (C=N)
4c	A	85	oil	$C_4H_7N_3S$ (129.1)	129 (M ⁺ , 51), 69 (54)	1180	1.08 (t, 3H, CH ₃), 1.93 (m, 2H, CH ₂), 3.31 (t, 2H, CH ₂)	13.5 (CH ₃), 23.4 (CH ₂), 29.3 (CH ₂)
4d	A	79	oil	$C_5H_9N_3S$ (129.1)	130 (M ⁺ , 9), 128 (42), 69 (11)	1205	1.66 (d, 6H, CH ₃), 3.73 (m, 1H, CH)	23.4 (CH ₃), 29.0 (CH), 188.1 (C=N)
4e	A	83	oil	$C_5H_9N_3S$ (143.1)	143 (M ⁺ , 9), 83 (78)	1230	0.99 (t, 3H, CH ₃), 1.48 (m, 2H, CH ₂), 1.89 (m, 2H, CH ₂), 3.33 (t, 2H, CH ₂)	13.5 (CH ₃), 22.1, 27.1, 32.0 (CH ₂), 181.5 (C=N)
4f	A	79	oil	$C_7H_{11}N_3S$ (169.1)	170 (M ⁺ , 9), 110 (100)	1200	$1.5 \sim 2.2$ (m, 10 H , CH_2), 3.39 (m, 1 H , CH)	25.4, 25.7, 34.1 (CH ₂), 37.9 (CH), 187.0 (C=N)
4g	В	94	94–96	95–96 ⁵	163 (M ⁺ , 11), 135 (24), 103 (44)	1240	$7.5-8.1 \text{ (H}_{arom})$	126.4, 129.7, 129.9, 133.2 (C _{arom}), 179.2 (C=N)
4h	В	74	45-47	45–465	149 (11)	1290	2.62 (CH ₃), 7.4–8.0 (H _{arom})	21.9 (CH ₃), 125.9, 126.9, 131.2, 132.0, 137.9 (C _{arom}), 177.6 (C=N)
4i	В	76	98–100	98-995	177 (M ⁺ , 16), 149 (2), 117 (76)	1240	2.45 (CH ₃), 7.3–7.9 (H _{arom})	21.6 (CH ₃), 123.6, 129.6, 130.4, 144.1 (C _{arom}), 179.2 (C=N)
4j	В	32	58-61	$C_{10}H_{11}N_3S$ (205.1)	177 (2), 145 (11)	1240	2.09 (CH ₃), 2.36 (CH ₃), 7.01 (H _{arom})	20.5, 20.6, 21.2 (CH ₃), 128.2, 129.1, 137.2, 141.0 (C _{arom}), 177.0 (C=N)
4k	В	82	105–107	103-1045	193 (M ⁺ , 14), 164 (36), 150 (100), 133 (87)	1240	3.90 (CH ₃), 7.0-8.0 (H _{arom})	55.6 (CH ₃ O), 115.1, 118.9, 131.5, 163.5 (C _{arom}), 178.7 (C=N)
41	В	80	102–103	101-1025	199 (M ⁺ , 2), 197 (M ⁺ , 5), 169 (90), 137 (100)	1235	$7.5 \sim 8.0 \text{ (H}_{\text{arom}})$	124.8, 130.1, 139.5 (C _{arom}), 177.9 (C=N)
4m	В	73	46–47	47–48 5		1240	$7.5 \sim 8.6 \text{ (H}_{arom})$	123.0, 124.7, 125.1, 127.1, 128.5, 128.9, 130.0, 131.4, 133.3, 133.9 (C _{arom}), 178.1 (C=N)

^a Method A: molecular ratio $3/NaN_3 = 1:2$; $CH_2Cl_2/MeOH = 5:1$, $20\,^{\circ}C$, $2\,h$. Method B: Molecular ratio $3/NaN_3 = 0.5:1.2$; MeCN, $82\,^{\circ}C$, $2\,h$.

of NaN₃ (75 mg, 1.1 mmol) in MeCN (10 mL), and the mixture is stirred at 30 °C for 2 h. The solvent is evaporated under reduced pressure, CH_2Cl_2 (20 mL) is added, and the solution is washed with water (2 × 40 mL) and dried (Na₂SO₄). Evaporation of CH_2Cl_2 using a rotary evaporator, followed by TLC of the residue in silica gel [CH_2Cl_2 /hexane (1:2)] affords 4i as slightly yellow crystals; yield: 67 mg (76%); R_f 0.35.

Received: 11 September 1989; revised: 9 November 1989

- (2) Jensen, K.A.; Pedersen, C. Adv. Heterocycl. Chem. 1964, 3, 263.
- (3) Holm, A. Adv. Heterocycl. Chem. 1976, 20, 145.
- (4) Kirmse, W. Chem. Ber. 1960, 93, 2353.
- (5) Syntheses without isolation: 5-tert-Butyl- and 5-(2-phenylethyl)-1,2,3,4-thiatriazoles: Jensen, K.A.; Pedersen, C. Acta Chem. Scand. 1961, 15, 1104.
 5-Cyclohexyl-1,2,3,4-thiatriazole: Smith, P.A.S.; Kenny, D.H. J. Org. Chem. 1961, 26, 5221.
- (6) Kato, S.; Masumoto, H.; Ikeda, S.; Murai, T. Z. Chem., in press.
- (7) Kato, S.; Mizuta, M. Bull. Chem. Soc. Jpn. 1972, 45, 3492. Kato, S.; Mitani, T.; Mizuta, M. Int. J. Sulfur Chem., Part A 1973, 8, 359.

b Yield is isolated product.

[°] Satisfactory microanalyses: C \pm 0.19, H \pm 0.15. Satisfactory HRMS: \pm 0.0028.

d EI method.

^e Neat for 5-alkyl derivatives (4a-f) and KBr for 5-aryl derivatives (4g-m).

⁽¹⁾ Freud, M.; Schwarz, H.P. Ber. Dtsch. Chem. Ges. 1896, 29, 2491, 2500.