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The irradiation of 4-methyl-2-quinolinecarbonitrile 1 in ethanol or cyclohexane resulted in the formation
of 2-(1-hydroxyethyl)-4-methylquinoline 2 or 2-cyclohexyl-4-methylquinoline 3 in the yield of ca. 48 or 65%. The
effects of an external magnetic field upon the photosubstitution reaction were investigated in either the absence
or presence of 1,3-pentadiene (triplet quencher). In the case of the photosubstitution reaction (1—2) in ethanol,
the chemical yield of 2 increased quadratically with an increase in the field strength (magnetic field effect due to
Ag mechanism) and it also showed a minimum at approximately 1.1T (magnetic field effect due to HFI-]
mechanism). The addition of 1,3-pentadiene caused a complete disappearance of the Ag magnetic field effect.
Thus, the formation of 2 at a zero field was concluded to occur from the S;-state via the singlet hydrogen-bonded
radical pair. In the case of the photosubstitution reaction (1—3) in cyclohexane, the chemical yield of 3
decreased steeply upon the application of a magnetic field of 40mT (magnetic field effect due to HFI mechanism)
and a further increase in the field strength resulted in a quadratic increase in the yield (magnetic field effect due
to Ag mechanism). Neither an HFI nor a Ag magnetic field effect was observed in the presence of 1,3-pentadiene.
The reaction was thus concluded to proceed from the S; and T) states via the singlet and triplet radical pairs.
Reaction mechanisms deduced from the external magnetic field effects were consistent with the results of
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Stern-Volmer analyses.

Photochemical reactions proceeding via a radical-
pair intermediate in solution can generally be expect-
ed to show an external magnetic field effect which
arises from an electronic Zeeman interaction (Ag
mechanism), electron-nuclear hyperfine interaction
(HFI mechanism), or hyperfine-interaction mecha-
nism including an electron-exchange interaction (HFI-
J mechanism) in a radical-pair intermediate (cf. Ap-
pendix).? The magnetic field effect due to the HFI-J
mechanism is considered to be particularly interest-
ing and important from the viewpoint of mechanistic
photochemistry, becuase it is expected when hydrogen-
or electron-transfer between a photoexcited molecule
and the hydrogen-bonded species occurs to form an
appropriate hydrogen-bonded radical pair or radical
ion-pair intermediate in a solvent cage.? In 1976 this
type of magnetic field effect was found for the first time
by one (N.H.) of the authors in the case of the photo-
chemical isomerization of isoquinoline N-oxide in
ethanol.? In order to find a second example of the
magnetic field effect due to the HFI-J mechanism, in
the present investigation, the photoinduced substitu-
tion reaction of 4-methyl-2-quinolinecarbonitrile in
ethanol and in cyclohexane were studied in both the
absence and presence of a magnetic field.®

Experimental

Materials. The 4-methyl-2-quinolinecarbonitrile 1
used as a sample was prepared from 4-methylquinoline N-
oxide according to a method (Reissert reaction) given in the
literature;? it was then purified by recrystallization from
methanol several times; mp 97—98°C. 1,3-Pentadiene used
as a triplet quencher was a Chemical-pure product of Tokyo
Kasei Kogyo Co., which was further purified by distillation;
bp 42—43.5°C. The ethanol and cyclohexane used as the
photoreaction medium were Reagent-grade products of
Wako Pure Chemical Industries; the former was used with-

out further purification, while the latter was purified by
silica-gel chromatography.

Isolation and Identification of Photoproducts. 4-Methyl-
2-quinolinecarbonitrile 1 (50 mg) dissolved in 50-cm3 of
ethanol (or cyclohexane) in a Pyrex vessel was irradiated with
a 100 W high-pressure immersion mercury lamp (Riko
Kagaku Sangyo Co.) for 5h (or 8h) in an atmosphere of
nitrogen at room temperature. After the removal of the
solvent under reduced pressure, unreacted 1 and product 2 (or
3) were separated by means of silica-gel TLC (Merck TLC
silica-gel plate 60Fzs4; layer thickness, 2mm; the eluent,
hexane-diethyl ether (1:2) for the separation of 1 and 2, and
hexane-ethyl acetate (5:1) for the separation of 1 and 3). The
product 2 was 2-(1-hydroxyethyl)-4-methylquinoline, which
has been identified previously;® mp 82—82.5°C; theyield, ca.
48%. The product 3 was a colorless liquid; bp 121°C/2mm,
mp (the picrate) 182°C; the yield, ca. 65%. It was identified as
2-cyclohexyl-4-methylquinoline by the following analvtical
data. NMR(CDCls) §(ppm): 8.2—7.3 (m, 5H, aromatic), 2.70
(s, 3H, -CHs), 2.2—1.1 (m, 11H, -C¢Hn). MS: 225(M*).
Found (the picrate): C,58.46; H,4.86; N,12.05%. Calcd for
Ca2H2N4O7 (the picrate): C, 58.15; H, 4.85; N, 12.33%.

Stern-Volmer Experiments. A determination of the
quantum vyields (the disappearance of 1 and the formation
of 2 or 3) was performed in a quartz cell (4¢.5-cm in diameter
and l-cm in length) containing the ethanolic solution (or
cyclohexane solution) of 1 (1.62X10-2 moldm™3) and 1,3-
pentadiene (0—10.0X10-3 mol dm~—3) under a nitrogen atmo-
sphere at room temperature. The light source employed
was a Ushio Super-high-pressure Mercury Lamp (USH-
500D) equipped, for the 313-nm irradiation, with a filter
combination of a nickel sulfate solution with Toshiba filters
UV-29 and UV-D33S. The light intensity was determined by
means of a potassium tris-(oxalato)ferrate (III) actinometer.
The amounts of unreacted 1 and product 2 (or 3) were
determined by means of a silica-gel chromatographic
separation, using the same eluent as that described before,
combined with a spectrophotometric determination.

Magnetic Perturbation Experiments. A 50-cm3 of
ethanolic solution (or cyclohexane solution) containing 4-
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TABLE 1. SPECTRAL DATA OF SOME AZAAROMATIC NITRILES6—8)
Nitriles Solvents® Absorptionb) Fluorescence Phosphorescence®
Amax/nm (me‘) Amnx/nm lm.x/nm

R R=H MCH 330 (2800) Non 482
©©~c EtOH 331 (2650) 372.5 484
N R=CH3 MCH 330.5 (2600) Non 483
EtOH 331 (2300) 365 486

~R R=H MCH 331 (5600) 339 (Very weak) Non

2 EtOH 332 (5600) 365 Non

CN R=CH3 MCH 340 (6200) 350 (Very weak) Non

EtOH 341 (6100) 370 Non

a) MCH: Methylcyclohexane, EtOH: Ethanol.

methyl-2-quinolinecarbonitrile 1 (35 mg) and 1,3-pentadiene
(0 or 3.0X10~! moldm™3) in a quartz vessel (44X45X25 mm)
was placed in an electromagnet (EEO-1815) supplied by the
Maezumi Electric Company and subsequently, irradiated
with two 500 W Super-high-pressure Mercury Lamps (USH-
500D) equipped with a Toshiba filter UV-31 for 40 min at
room temperature while nitrogen was bubbled. The un-
reacted 1 and product 2 (or 3) were separated by means of
silca-gel TLC in the same manner as that described before and
the amounts were determined spectrophotometrically.

Spectroscopic Measurements. UV absorption spectra
were taken with a Shimadzu recording spectrophotometer,
UV-220. Fluorescence and phosphorescence spectra were
determined with a Hitachi recording fluorescence spectro-
photometer, MPF-2A. Reagent-grade ethanol (Wako Pure
Chemical Industries) and Spectro-grade methylcyclohex-
ane (Dotite Spectrosol) were used as the solvent. NMR spec-
tra were taken in CDCl3 with a Hitachi-Perkin Elmer NMR
spectrometer R-20 at 60 MHz, using TMS as the internal
standard. Mass spectra were measured with a Hitachi
mass spectrometer, RMU-6M.

Results and Discussion

Photochemical Reactions and the Stern-Volmer
Analyses. It has been already reported in previ-
ous papers® that the irradiation of 2-quinolinecarboni-
triles in alcoholic solvents generally results in the
replacement of the cyano group at the 2-position of a
quinoline nucleus by hydroxyalkyl group. Ashas been
described in the Experimental section, when 4-methyl-
2-quinolinecarbonitrile 1 in ethanol was irradiated
in an atmosphere of nitrogen, 2-(1-hydroxyethyl)-4-
methylquinoline 2 was obtained in a ca. 48% yield (Eq.
1). In the case of a cyclohexane solution, there also
occurred a similar photosubstitution reaction to give
rise to 2-cyclohexyl-4-methylquinoline 3 in a yield of
ca. 65% (Eq. 2).

b) The value of the first maximum.

In order to characterize the excited states responsible
for the photosubstitution reaction of 4-methyl-2-
quinolinecarbonitrile 1 in ethanol or cyclohexane, the
effects of 1,3-pentadiene upon the quantum yield (®-1)
of the disappearance of 1 and that (@2 or @) of the
formation of 2 or 3 were examined. The excitation
energy of the lowest triplet state of 4-methyl-2-
quinolinecarbonitrile was estimated, from the first
maximum of the phosphorescence spectrum (Table 1),
to be ca. 247 k] mol—!; hence 1,3-pentadiene was used
as a triplet quencher for the photochemical reaction
of 1.

Figure 1 shows a plot of ®2,/®_; or @%/®. against
the concentration of 1,3-pentadiene ([CsHs]) for the
photosubstitution reaction (1—2) in ethanol (Stern-
Volmer plot), where the quantum yield (#2,) of the
disappearance of 1 and that (®%) of the formation of
2 at [CsHs]=0 were 0.0825 and 0.0461, respectively. As
can be seen from Fig. 1, @2 was independent of the
concentration of 1,3-pentadiene, whereas @_, decreased
with an increase in the concentration of 1,3-pentadiene
until it became constant above a concentration of
7.0X10-3mol dm™3 1,3-pentadiene. The results clearly
indicate that the photosubstitution reaction (1—2)
proceeds from the S; state and that some complicating
reactions occur from the T} state.

Figure 2 shows Stern-Volmer plots for a photosub-
stitution reaction (1—3) in cyclohexane, where the
quantum vyield (#2;) of the disappearance of 1 and
that (@5 of the formation of 3 at [CsHs]=0 were
0.0374 and 0.0271, respectively. Both quantum yields,
@_; and @3, decreased with an increase in the con-
centration of 1,3-pentadiene until no further quench-
ing occurred above a concentration of 1.7X10~2 mol
dm—3 1,3-pentadiene. This means that, unlike the
case of the photosubstitution reaction 1—-2, both S,
and T; states are responsible for the photosubstitu-
tion reaction 1—3.

The chemical yield, Ys or Yr, of the Si- or Ti-born
product 3 was estimated from the Stern-Volmer plot
(curve (a) in Fig. 2) in the following manner. The
chemical yield (Y) of 3 at [CsHg]=0 is given by the sum
of Ysand Yt (Eq. 3). The chemical yield (Ys) of the S;-
born product 3 is given by Eq. 4, where (®38/®3)o and
(D§/ Ps3)s represent, respectively, @3/Psat [CsHs]=0and
[CsHg]>1.7X10-3 moldm=3. Ys and Yr were thus



December, 1985]

Photochemical Magnetic Field Effect

1.3 F -
S (b)
oN |
S 1.2
]
g 1.1 r . (
° a)
= s o o ) )
‘.’s 1.0 12} O O
0,9 " 1 1 - 1 " 1 1 1 1 .
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0 100
[CsHs] % 103
Fig. 1. Triplet quenching of the photosubstitution reaction
(1—>2) in ethanol. [1]=1.62X10-3 mol dm™3.
(a) —O—: @3/ Ps, (b) —@—: B2,/ P_1.
1‘5 L v T L] L] i
(b) [ ] 'Y
.é? 1.4 ° Q O e O B
> (a)
S
e} 1.3 1 b
T
% 1.2 f .
o |
L]
1.1 *
o
1.0 1 - 1 1 a e
0 1.0 2.0 3.0 4.0

[CsHs] x 108

Fig. 2. Triplet quenching of the photosubstitution reaction
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(1-3) in cyclohexane. [1]=1.62X10-3 moldm™3.
(a) —O—: B3/P3, (b)—@—: P21/ D,

Y=Y, + Yy (3)

Yy = Y(@3/®s)o/ (P3/Ps)s 4)

evaluated by substituting (@§/®3)=1.41 and Y=65%
into Egs. 3 and 4 to be 46 and 19% respectively.

Magnetic Field Effects. In the case where the
photochemical reactions in solution proceed via a
radical-pair intermediate (as is shown in Scheme 1), the
chemical yield of the cage product or escape product
shows a magnetic field dependence provided that the
rate of the intersystem crossing of a radical pair is
influenced by an external magnetic field.? As will be
briefly described in Appendix, such a field depen-
dence of chemical yield has been currently classified
into six patterns (Figs. 5 and 6), depending on wheth-
er the product is a cage- or escape-product and an S;-
or Ti-born product and also whether the magnetic
perturbation is due to Ag, HFI, or HFI-J mechanism.
Consequently, an examination of the field dependence
of chemical vyield is supposed to furnish quite sig-
nificant information regarding photochemical reac-
tion mechanism.®

1
M. s 5 A& B —> Cage Product

BN

B —> A + B

|

Escape Product

T}QA'

Scheme 1.

As mentioned before, the Stern-Volmer plots (Fig. 1)
of the photoinduced substitution reaction (1—2) in
ethanol revealed the S; state to be responsible for this
reaction. Previously,”-® it had also been demonstrated
from the solvent dependence of the absortpion and
fluorescence spectra of 2-quinolinecarbonitriles (cf.
Table 1) that a hydrogen-bonding interaction between
the ring nitrogen and an ethanol does exist in the S;
state, although there is no appreciable interaction in
the So state.? Furthermore, the photoreaction has been
reasonably assumed to proceed via the S; state through
hydrogen abstraction by the ring nitrogen from the
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hydrogen-bonded ethanol.” Hence, as is shown in
Scheme 2, it seems quite reasonable to assume that the
Si-born singlet hydrogen-bonded radical pair 2a is
formed as a transient intermediate of this reaction. If
this assumption is valid, the magnetic field effect due
to the HFI-J mechanism (curve (3) in Fig. 5) may be
expected for the photosubstitution reaction 1—2, just
as the case of the photoisomerization of isoquinoline N-
oxide'in ethanol;? it is because the radical centers in the
radical pair 2a are in close proximity as a result of
hydrogen-bonding interaction between the two radicals
(consequently, the electron-exchange interaction is
much greater than the electron-nuclear hyperfine
energy). On the other hand, the photosubstitution
reaction (1—3) in cyclohexane was demonstrated from
Stern-Volmer plots (Fig. 2) to occur from both the S,
and T states. Therefore, as is shown in Scheme 3, if the
reaction proceeds via the S;-born singlet and T;-born
triplet radical pairs, 3a and 3a’, as the reactive inter-
mediate, then it may be subject to a magnetic field

’\OH
hv

/\OH \l/
@Q
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effect due to Ag or HFI mechanism (curve (1) or (2) in
Fig. 5 and curve (1’) or (2’) in Fig. 6), because either the
radical pair 3a or 3a’ is not a hydrogen-bonding pair of
radicals in close proximity and therefore the electron-
exchange interaction is disregarded. For these reasons,
the effects of an external magnetic field on the
photoinduced substitution reactions of 4-methyl-2-
quinolinecarbonitrile 1 in ethanol and in cyclohexane
were investigated in either the absence or presence of
1,3-pentadiene (triplet quencher).

First we will describe the magnetic field effect upon
the photosubstitution reaction (1—2) in ethanol.
Figure 3 shows the results when the chemical yield of
2 is plotted as a function of the field strength in
the absence and presence of 1,3-pentadiene, where the
conversion remained almost constant (20—22%). In
the absence of 1,3-pentadiene, as is shown by curve (a)
in Fig. 3, the chemical yield of 2 was ca. 48% at the zero
field, but it increased quadratically with an increase
in the field strength to be ca.58% at about 1.5T (the

3
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Fig. 3. External magnetic field effect upon the pho-

tosubstitution reaction (1—-2) in ethanol. Chemi-
cal yield of 2 wvs. magnetic field strength. [1]=
4.01X10~% moldm™3.

(a) —O—: [CsHg]=0, (b) —@—: [CsHs]=3.0X10"1
mol dm~3.

magnetic field effect due to Ag mechanism); this is the
same pattern as for the field dependence of the chemical
yield of the S;-born escape product or the Ti-born cage
product (curve (1’) in Fig. 6). The chemical yield of 2
also showed a minimum (ca. 49%) at approximately
1.1 T (the magnetic field effect due to HFI-J mecha-
nism); this is the same pattern as for the field depen-
dence of the chemical yield of the S;-born cage pro-
duct or the Ti-born escape product (curve (3) in Fig. 5).
The Ag magnetic field effect, as is shown by curve (b)
in Fig. 3, disappeared completely upon the addition of
1,3-pentadiene, although the magnetic field effect due
to the HFI-J mechanism was still observed. Thus, the
chemical yield of 2 was ca. 58% at a magnetic field be-
low 0.8 T, but it decreased steeply with an increase in
the field strength to become ca. 48% at about 1.1T.
A further increase in the magnetic field resulted in a
steep increase in the chemical yield until it became
approximately constant (ca. 58%). The results ex-
plicitly indicate that the Ag or the HFI-J magnetic
field effect observed in a photochemical reaction can
be assigned to the field dependence of the chemical
yield of the T;- or Si-born cage product.

Such an examination of the magnetic field effects
leads to the conclusion that a photosubstitution re-
action of 4-methyl-2-quinolinecarbonitrile 1 in etha-
nol (Eq. 1) proceeds according to the mechanism
shown in Scheme 2. Thus, the photoexcitation of 1into
the S; state results in the formation of a hydrogen bond
between the ring nitrogen and an ethanol. This is
followed by hydrogen abstraction by the ring nitrogen
from the hydrogen-bonded ethanol, which gives rise to
the singlet hydrogen-bonded radical pair 2a that is
responsible for the formation of 2 (Si-born cage
product). The S;-born singlet hydrogen-bonded radical
pair 2a undergoes a magnetic perturbation due to the
HFI-] mechanism. Asaresult, the chemical yield of the
Si1-born cage product 2 comes to show a minimum at
approximately 1.1 T. Inaddition, an observation of the
magnetic field effect due to the Ag mechanism (which
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disappears upon the addition of 1,3-pentadiene) indi-
cates, unambiguously, that in the T state there also
occurs hydrogen abstraction by the ring nitrogen from
an ethanol to yield the triplet radical pair 2b’. The T;-
born triplet radical pair 2b’, because of its triplet
character, undergoes a diffusive separation into the
solvent bulk to cause some complicating radical
reactions. It should also be noted that a magnetic field
effect due to the HFI mechanism, ascribed to the T;-
born triplet radical pair 2b’ (curve (2’) in Fig. 6), was
not observed in this reaction system. Thisimplies that,
unless a magnetic field is applied to this system, the
triplet radical pair 2b’ does not undergo an intersystem
crossing to the singlet radical pair 2b responsible for
the formation of 2 (T1-born cage product). This agrees
well with the conclusion from Stern-Volmer analyses
(Fig. 1) that the photosubstitution reaction 1—-2
proceeds from the S; state, while some complicating
reactions occur from the T} state.

As a general rule (¢f. Appendix), a magnetic field
effect due to the Ag or the HFI mechanism should be
expected when the two components of a field-sensitive
radical pair in a solvent cage is sufficiently far apart that
the electron-exchange interaction can be neglected. On
the other hand, a magnetic field effect due to the HFI-J
mechanism should be expected when the two
component radicals are in close proximity as a result of
a hydrogen-bonding interaction (the electron-exchange
interaction can not be disregarded). Thus, it may be
considered that the S;-born singlet radical pair 2a
which undergoes a magnetic perturbation due to HFI-J
mechanism is a hydrogen-bonding pair, whereas the
Ti-born triplet radical pair 2b’ which is subject to a
magnetic perturbation due to the Ag mechanism is a
nonhydrogen-bonding pair. This in turn leads to the
conclusion that hydrogen-bonding interaction between
the ring nitrogen and an ethanol does exist in the S;
state, but that it is negligibly small in the T, state.
This agrees well with the previously obtained conclu-
sion from solvent-effect studies on the fluorescence and
phosphorescence spectra of 2-quinolinecarbonitriles
(cf. Table 1).9

Next, we describe the effect of an external magnetic
field on a photosubstitution reaction (1—3) in
cyclohexane. Figure 4 shows the results when the
chemical yield of 3 is plotted against the field strength
in either the absence or presence of 1,3-pentadiene. In
either case the conversion was almost independent of
the field strength (19—21%). In the absence of 1,3-pen-
tadiene, as can be seen from curve (a) in Fig. 4, the chem-
ical yield of 3 was ca. 65% at a zero field. However, it
steeply decreased upon the application of a magnetic
field of 40 mT to be ca. 54% (the magnetic field effect due
to HFI mechanism). Thisis the same pattern as that for
the field dependence of the chemical yield of the S;-born
escape product or the Ti-born cage product (curve (2”) in
Fig. 6). A further increase in the field strength resulted
in a quadratic increase in the chemical yield (the
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magnetic field effect due to Ag mechanism). Thisis the
same pattern as the field dependence of chemical yield
of the Si-born escape product or the T;-born cage
product (curve (1’) in Fig. 6). The addition of 1,3-
pentadiene, however, caused a complete disappearance
of these magnetic field effects; as a result, the chemical
yield of 3 became independent of the field strength to
show ca. 67%. This means that both the HFI and Ag
magnetic field effects observed in this reaction can be
assigned to the field dependence of chemical yield of the
Ti-born cage product. Also, the fact that the product
3 was obtained in a high yield (ca. 67%), even in the
presence of 1,3-pentadiene, suggests strongly that the
photosubstitution reaction proceeds from the S; state as
well as the Ty state. This is consistent with a conclusion
from Stern-Volmer analyses (Fig. 2).

The external magnetic field effects described above
lead to the conclusion that the photosubstitution
reaction of 4-methyl-2-quinolinecarbonitrile 1 in
cyclohexane (Eq. 2) proceeds according to the mech-
anism shown in Scheme 3. Thus, the photochem-
ical reaction is initiated by a hydrogen abstraction
from cyclohexane by the ring nitrogen, which oc-
curs from both the S; and T states, to yield the Si-born
singlet radical pair 3a and Ti-born triplet radical
pair 3a’ as transient intermediates. The Si-born sing-
let radical pair 3a undergoes mostly efficient cage
recombination to generate the product 3 (Si-born
cage product). On the other hand, the Ti-born triplet
radical pair 3a’ undergoes partly hyperfine-induced
intersystem crossing to the singlet radical pair 3a
responsible for the formation of 3 (T1-born cage pro-
duct) and partly diffusive separation into the sol-
vent bulk.

As can be seen from Fig. 4, a magnetic field effect
which could be ascribed to the S;-born singlet radical
pair 3a was not observed at all, although the formation
of the product 3 undoubtedly occurs from the S; state,
probably, via the intermediate 3a. This may be inter-
preted as follows. As is shown in Scheme 3, the S;-
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born singlet radical pair 3a undergoes mainly the
following two processes; one of them is a cage
recombination (3a—3b) or diffusive separation of the
component radicals, while the other is a magneto-
sensitive intersystem crossing (3a—3a’) which occurs
with a rate of the order of 107—108s-! via electron-
nuclear hyperfine interaction. Therefore, if the cage
recombination takes place in competition with the
intersystem crossing, the singlet radical pair 3a is
supposed to be subject to a magnetic perturbation due
to the Ag or HFI mechanism. However, the fact that
such a magnetic field effect as shown in curve (1) or (2)
in Fig. 5 is not observed at all implies that the cage
recombination is much faster than an intersystem
crossing. A similar interpretation has been made
regarding the photochemical magnetic field effect of
1-isoquinolinecarbonitriles in ethanol.®

The chemical yield, Ys or Y1, of the Si-born or T;-
born cage product 3 was estimated from data regard-
ing the magnetic field effects in the absence of 1,3-
pentadiene (curve (a) in Fig. 4) in the following way.
The chemical yield (Y°) of 3 at a zero field is equal to
the sum of Ysand Y1 (Eq. 5). The chemical yield (Y¥) of
3 at a magnetic field of 40 mT is given by Eq. 6, where
the chemical yield of the Ti-born cage product 3 at
a magnetic field of 40mT is assumed to be (1/3)Yt
because the number of effective working channels for
the hyperfine-induced intersystem crossing of a radical
pair reduces by the application of a magnetic field from
three (To+«S) to one (To«S). Thus, Ysand Yt were
evaluated by substituting Y °=65% and Y"=54% into

Yo=Y, + Yy (5)
YH = Y, + (1/3) Y (6)

Eqgs. 5 and 6 to be 48.5 and 16.5% respectively. These
values approximately agree with those (Ys=46% and
Y1=19%) obtained by Stern-Volmer analyses (Fig. 2).

Conclusion

The second example of a magnetic field effect due to
the HFI-]J mechanism (ascribed to the S;-born singlet
radical -pair) was found for the case of a photoinduced
substitution reaction of 4-methyl-2-quinolinecarbonitrile
in ethanol (Eq. 1). This reaction also showed the
magnetic field effect due to the Ag mechanism which
can be ascribed to the Ti-born triplet radical pair. In the
case of a photosubstitution reaction in cyclohexane
(Eq. 2), the formation of a Ti-born triplet radical pair
intermediate was concluded by the observation of
magnetic field effects due to the HFI and Ag mecha-
nisms. However, a magnetic field effect which could
be ascribed to an S;-born singlet radical pair was not
observed. From the experimental results, the photo-
substitution reaction of 4-methyl-2-quinolinecarbonitrile
in ethanol or cyclohexane was unambiguously deter-
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mined to proceed according to the mechanism shown
in Scheme 2 or 3. This is consistent with the results
of Stern-Volmer analyses. The present studies explic-
itly demonstrate that magnetic-perturbation experi-
ments are quite useful for the mechanistic elucida-
tion of photochemical reactions in solutions.

Appendix

Magnetic Field Dependence of the Chemical Yield of
Photoproduct. Scheme 1 shows the case of a compound M
in a solution absorbing light and, thus, being excited into S;
and T, states. It thus forms singlet and triplet radical-pair
intermediates. The Si-born singlet radical pair, because of
its singlet character, mostly undergoes recombination or
disproportionation within a solvent cage to giverise to the S;-
born cage product. On the other hand, the Ti-born triplet
radical pair, because of its triplet character, undergoes a
diffusive separation into a solvent bulk to give the T;-born
escape product. Also, the intersystem crossing of the radical-
pair intermediates results in the formation of the Si-born
escape product or Ti-born cage product. If such an inter-
system crossing is subject to a magnetic perturbation, the
chemical yield of the cage- or escape-product comes to show
a magnetic-field dependence (external magnetic field effect
upon photochmical reactions in solution).?

If the exchange interaction between the unpaired electrons
in a radical pair is neglected, the singlet (S) and triplet (To+)
levels being degenerate, the rate of the intersystem crossing
may be affected by an external magnetic field in the follow-
ing ways. (1) Electronic Zeeman interaction (Ag mechanism);
the external magnetic field causes the intersystem crossing
(SeTo) of a radical pair by virtue of the different g-values
of the component radicals. (2) Electron-nuclear hyperfine
interaction (HFI mechanism); the external magnetic field
causes the number of effective working channels for the
hyperfine-induced intersystem crossing of a radical pair to
reduce from three (SeTo+) to one (S Tho).

On the other hand, when the unpaired electrons in a radical
pair is in close proximity as a result of a hydrogen-bonding
interaction between the two componentradicals, the electron-
exchange interaction may be greater than the electron-nuclear
hyperfine energy; the singlet (S) and triplet (To+) levels of the
pair are nondegenerate, having an energy gap of 2|J|, where
J denotes the electron-exchange integral. In this case, the
intersystem crossing ST+ or S&T_ may be induced by an
electron-nuclear hyperfine interaction mechanism at the
magnetic field in which the S level is in resonance with the
T+ or T_ level (HFI-J mechanism).

Figure 5 shows the field dependence of chemical yield of the
Si-born cage product (CP-S;) or the Ti-born escape product
(EP-T1). In Fig. 6 the field dependence of chemical yield of
the Si-born escape product (EP-S;) or Ti-born cage product
(CP-T) is also shown. In the case of a magnetic field effect
due to the Ag mechanism, the chemical yields of CP-S; and
EP-T; (or EP-S; and CP-T;) decrease (or increase) qua-
dratically with an increase in the field strength (curve (1)
in Fig.5 or curve (1’) in Fig. 6). In the case of a magnetic field
effect due to the HFI mechanism, the chemical yields of CP-S;
and EP-T (or EP-S1 and CP-T) increase (or decrease) steeply
at a very low field (curve (2) in Fig. 5 or curve (2’) in Fig. 6).
Also, in the case of a magnetic field effect due to the HFI-J
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Fig. 5. Magnetic field dependence of the chemical

yield of Si-born cage product (CP-S;) and Ti-born
escape product (EP-T).
(1): Ag mechanism, (2): HFI mechanism, (3): HFI-]
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Fig. 6. Magnetic field dependence of the chemical

yield of Si-born escape product (EP-S;) and Ti-born
cage product (CP-T}).

(1’): Ag mechanism, (2’): HFI mechanism, (3"): HFI-
J mechanism.

mechanism, the chemical yields of CP-S;and EP-T1 (or EP-S;
and CP-T;) show a minimum (or a maximum) at a particualr
magnetic field (curve (3) in Fig.5 or curve (3’) in Fig. 6).
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nitrogen and an ethanol in the So state. On the other hand,
the fluorescence spectrum showed a remarkable dependence
on the solvent. The non-fluorescence (or very weak fluo-
rescence) in MCH was interpreted in terms of a mixing of
the S (m,m*) state with a closely lying n, 7* state through
the vibronic coupling, and the fluorescence activation in
ethanol was attributable to a great decrease in such a vi-
bronic mixing owing to the formation of hydrogen bond
between the ring nitrogen and an ethanol in the S; state.
The phosphorescence spectrum, which was observed only in
the case of 2-quinolinecarbonitriles, was not affected
significantly by changing the solvent from MCH to EtOH,
indicating that hydrogen-bonding interaction of the ring
nitrogen with an ethanol is negligibly small in the T; state
as well as in the So state.






