

PII: S0040-4039(96)00976-8

Synthesis of 5,6-Difluoroarachidonic Acid, a Potential Inhibitor of 5-Lipoxygenase

Sylvia Bildstein, Jean-Bernard Ducep*, Detlef Jacobi and Pascale Zimmermann

Marion Merrell Research Institute, Strasbourg Research Center, 16 rue d'Ankara, 67080 Strasbourg, France

Abstract: The synthesis of 5,6-difluoroarachidonic acid 1 is described. The vicinal difluorinated double bond was prepared from the α -phenylthio- β -ketoester 4. Copyright © 1996 Elsevier Science Ltd

Introduction of fluorine into biologically active compounds very often alters their pharmacological properties¹. Fatty acids, which are involved in several metabolic pathways, were modified by fluorination of the double bonds involved in those pathways². Such chemical modification had been already fruitful with arachidonic acid : 5- and 6-fluoroarachidonic acids were found to be potent inhibitors of 5-lipoxygenase³. Difluorination of the 5,6- double bond in arachidonic acid might lead to a more potent 5-lipoxygenase inhibitor. The synthesis of 5,6-difluoroarachidonic acid (1) is thus described hereafter.

The retrosynthetic strategy is built around the preparation of Z tetrasubstituted vicinal difluorinated olefine and is shown in scheme 1. Wittig reaction between phosphonium 2, containing a Z difluoroolefine, and (Z,Z)-3,6-dodecadienal³ would generate double bond 8,9. Phosphonium 2 could be obtained from α , β -unsaturated difluoroester 3a which derives from α -phenylthio- β -ketoester 4.

4941

Treatment of methyl 2-phenylthioacetoacetate⁴ **5** with one equivalent of sodium hydride followed by n-butyllithium (1 eq) at 0°C afforded, after alkylation by 3-benzyloxy-1-bromopropane, the β -ketoester **4** (73%). Thus, **4** was converted into Z difluoroolefine **3a** using a method described by us⁵ after exchanging the benzyl ether with a t-butyldiphenylsilyl ether. A 8/2 mixture of Z and E olefines **3a**, **3b**¹⁰ was obtained and the two isomers were easily separated by silica gel chromatography (Scheme 2).

a) NaH (1eq), n-BuLi (1eq), THF, 0°C; then BnO(CH₂)₃Br, THF, 0°C to RT; b) MeDAST (1.25eq), CH₂Cl₂, 0°C then RT, 48h; c) (n-Bu)₃SnH (1.6eq), AIBN (cat.), C₆H₅CH₃, reflux, overnight; d) Pearlman's catalyst, H₂ (1atm), CH₃COOC₂H₅, 6h; e) TBDPSCl (1.1eq), (C₂H₅)₃N, DMAP (cat.), CH₂Cl₂, RT, overnight; f) [(CH₃)₃Si]₂N^{*}Na⁺ (1.02eq), THF, RT, 1h.

Scheme 2

Reduction of ester 3a afforded pure Z isomer of alcohol 10 which was converted into bromide 11 using 1-bromo-N,N-2-trimethyl-propenylamine⁶. 11 was homologated to phosphonium 12 by alkylation with trimethylsilyl methylenetriphenylphosphorane⁷ which reacted exclusively on the allylic carbon of bromide 11. Treatment of phosphonium 12 with Amberlyst A21[®] (HCl form), without isolation, cleaved the trimethylsilyl group to yield phosphonium 2. The counter ion of the phosphonium salt was homogenized with Amberlyst A26[®] Cl⁻ form (Scheme 3).

a) DIBAL (1M hexane) (3eq), Diethyl ether, -78°C to RT, 1h; b) (CH₃)₂C=CBr[N(CH₃)₂] (1.5eq), CH₂Cl₂, 0°C 15min; c) (C₆H₅)₃P=CHSi(CH₃)₃ (2eq), THF, 12h, RT; d) Amberlyst A21 HCl form, 1.5h; Amberlyst A26 Cl⁻. Scheme 3

Phosphonium 2 underwent Wittig reaction with (Z,Z) 3,6-dodecadienal³ 13 in THF using n-butyllithium (1 eq) in presence of HMPTA (9 eq) to yield tetraene 14⁹. Cleavage of the silyl ether followed by Jones oxidation⁸, afforded 5,6-difluoroarachidonic acid 1¹⁰ (Scheme 4).

a) n-BuLi (1eq), THF, -78°C, 5min, then -18°C, 10min; HMPTA (9eq), -78°C; **13** (1.1eq), THF, -78°C, 30min, 0°C, 1h,then RT, 30min; b) n-Bu₄N⁺F⁻ (1.5eq), THF, 2h, RT; c) Jones reagent 2.76M, CH₃COCH₃, 0°C.

Scheme 4

The biological activity of 5,6-difluoroarachidonic acid will be published in due course.

References and Notes

1. Filler, R. J. Fluorine Chem. **1986**, 33, 361-374; Welch, J.T. Tetrahedron **1987**, 43, 3123-3197; Welch, J.T.; Eswaanakrishaman, S. Fluorine in Bioorganic Chemistry, John Wiley; New York, 1991.

2. Taguchi, T.; Takigawa, T.; Igarashi, A.; Kobayashi, Y.; Tanaka, Y.; Jubiz, W.; Briggo, R.G. Chem. Pharma. Bull. 1987, 37, 1666-1689.

3. Ducep, J.B.; Nave, J.F.; Zimmermann, P.R. Bioorg. Med. Chem. 1994, 2, 213-233.

4944

- 4. Sasaki, T.; Hayakawa, K.; Ban, H. Tetrahedron 1982, 38, 85-91.
- 5. Bildstein, S.; Ducep, J.B.; Jacobi, D.; Zimmermann, P. Tetrahedron Lett. 1995, 36, 5007-5010.
- 6. Munyemana, F.; Frisque-Herbain, A.M.; Devos, A.; Ghosez, L. Tetrahedron Lett. 1989, 30, 3077-3080.
- 7. Seyferth, D.; Singh, G. J. Am. Chem. Soc. 1965, 87, 4156-4162.
- 8. Loeffler, L.L.; Britcher, S.F.; Baumgarten, W.J. J. Med. Chem. 1970, 13, 926-935.

9. Wittig reaction, under the same conditions, of phosphonium 2 with a saturated aldehyde, ie hexanal, gave the expected diene with a 90% yield.

10. All new compounds gave analitycal and spectroscopic data in agreement with the assigned structure : 3a (Z isomer) ¹⁹F NMR δ (338 MHz, CDCl₃, C₆F₆) 7.5 (1F, q, J_{FF} = 3 Hz, F₂), 54.8 (1F, td, J_{HF} = 26 Hz, J_{FF} = 3 Hz, F₃); ¹H NMR δ (360 MHz, CDCl₃, TMS) 1.1 (9H, s, t-Bu), 1.4 (3H, J_{HH} = 7 Hz, O-C-CH₃), 1.6-1.7 (2H, m, H₆), 1.7-1.8 (2H, m, H₅), 2.8 (2H, dt, J_{HF} = 26 Hz, J_{HH} = 7 Hz, J_{HF} = 3 Hz, H₄), 3.7 (2H, t, J_{HH} = 7 Hz, H₇), 4.3 (2H, q, J_{HH} = 7Hz, O-CH₂), 7.3-7.5 (6H, m, Hs arom), 7.6-7.7 (4H, m, Hs arom); MNH₄⁺ = 404; IR vC=O = 1732 cm⁻¹. **3b** (*E* isomer) ¹⁹F NMR δ (188 MHz, CDCl₃, C₆F₆) -5 (1F, dt, J_{FF} = 129 Hz, J_{HF} = 7 Hz, F₂), 37.1 (1F, dt, J_{FF} = 129 Hz, J_{HF} = 23 Hz, F₃). 15 ¹⁹F NMR δ (188 MHz, CDCl₃, C₆F₆) 21.9 (1F, tdt, $J_{HF} = 23Hz$, $J_{FF} = 9$ Hz, $J_{HF} = 2$ Hz, F_5), 23.2 (1F, tdt, $J_{HF} = 23$ Hz, $J_{FF} = 9$ Hz, $J_{HF} = 2$ Hz, F_6); ¹H NMR δ (200 MHz, CDCl₃, TMS) 0.9 (3H, t, $J_{HH} = 7$ Hz, H_{20}), 1.2-1.5 (6H, m, $H_{17, 18, 19}$), 1.5-1.7 (4H, m, $H_{2, 3}$), 1.9-2.2 (2H, m, H₁₆), 2.2 (2H, J_{HF} = 23 Hz, J_{HH} = 6 Hz, J_{HF} = 2 Hz, H₄), 2.7-2.9 (4H, m, H_{10, 13}), 3.0 (2H, dd, $J_{HF} = 23 Hz$, $J_{HH} = 7 Hz$, H_7), 3.7 (2H, t, $J_{HH} = 6 Hz$, H_1) 5.3-5.6 (6H, m, H_8 , 9, 11, 12, 14, 15); $MH^+ = 6 Hz$, H_1 , H_2 , H_3 , H_4 , H_4, H_4 , H_4 , H_4 , H_4 , H_4, 327. 1 ¹⁹F NMR δ (188 MHz, CDCl₃, C₆F₆) 21.6 (1F, td, J_{HF} = 23 Hz, J_{FF} = 9 Hz, F₅), 24.5 (1F, td, J_{HF} = 23 Hz, $J_{FF} = 9$ Hz, F_6); ¹H NMR δ (200 MHz, CDCl₃, TMS) 0.9 (3H, t, $J_{HH} = 7$ Hz, H_{20}) 1.2-1.5 (6H, m, H_{17, 18, 19}), 1.9 (2H, p, J_{HH} = 7 Hz, H₃), 2.04 (2H, q, J_{HH} = 7 Hz, H₁₆), 2.2 (2H, ddt, J_{HF} = 2 Hz, J_{HF} = 2 Hz, $J_{HH} = 6$ Hz, H_4), 2.4 (2H, t, $J_{HH} = 7$ Hz, H_2), 2.8 (2H, t, $J_{HH} = 7$ Hz, H_{13}), 2.84 (2H, t, $J_{HH} = 7$ Hz, H_{10}) 3.0 (2H, dd, $J_{HF} = 23$ Hz, $J_{HH} = 7$ Hz, H_7), 5.2-5.6 (6 H, m, Hs vinylic); $MNH_4^+ = 358$; IR vC=O = 1711cm⁻¹.

(Received in France 6 May 1996; accepted 20 May 1996)