Über Trichlorphosphazo-Verbindungen aus Nitrilen. III

Die Reaktion zwischen Acrylnitril und PCI,

Von E. Fluck und F. Horn

Inhaltsübersicht. Bei der Einwirkung von PCl₅ auf Acrylnitril entsteht bei höheren Temperaturen $\mathrm{CH_2Cl-CCl_2-CCl_2-N=PCl_3}$ (II), das bei der thermischen Zersetzung in $\mathrm{CH_2Cl-CCl_2-CN}$ (IV), bei der Reaktion mit $\mathrm{SO_2}$ in $\mathrm{CH_2Cl-CCl_2-CCl=N-P(O)Cl_2}$ (III) übergeht. Bei niedrigeren Temperaturen und/oder in Gegenwart von $\mathrm{PCl_3}$ reagiert $\mathrm{PCl_5}$ mit Acrylnitril zu den eis-trans-Isomeren VIa und VIb.

On Trichlorophosphazo Compounds from Nitriles. III. The Reaction between A crylonitrile and PCl_5

Abstract. The reaction of PCl₅ with acrylonitrile at higher temperatures gives CH₂Cl-CCl₂-CCl₂-N=PCl₃ (II). On pyrolysis of (II), CH₂Cl-CCl₂-CN (IV) is formed. Treatment of (II) with SO₂ results in CH₂Cl-CCl₂-CCl=N-P(O)Cl₂ (III). At lower temperatures and/or in the presence of PCl₃, acrylonitrile reacts with PCl₅ to give the cis/trans isomers VIa and VIb.

In Fortsetzung unserer Untersuchungen über das Verhalten von Phosphorpentachlorid gegenüber Nitrilen¹)²) studierten wir die Reaktion zwischen Acrylnitril und Phosphorpentachlorid.

Während die Umsetzung von Aerylnitril mit PCl₅ in 1,2-Dichloräthan, Benzol oder Nitrobenzol bei Zimmertemperatur zu keinem einheitlichen Reaktionsprodukt führte, fanden wir bei der Umsetzung im Molverhältnis 1:3 in siedendem Benzol oder siedendem 1,2-Dichloräthan als Endprodukt fast ausschließlich Trichlorphosphin-N-pentachlorpropylimin (II),

$$\begin{array}{c} \mathrm{CH_2 = CH - CN} + 3 \; \mathrm{PCl_5} \rightarrow \mathrm{CH_2Cl - CCl_2 - CCl_2 - N} \\ = \mathrm{PCl_3} \; + \; \mathrm{HCl} \; + \; 2 \; \mathrm{PCl_3} \end{array} \; (1)$$
 If

das nach der Umwandlung evtl. überschüssigen Phosphorpentachlorids durch SO_2 in $OPCl_3$ durch Destillation leicht aus dem Reaktionsgemisch abgetrennt werden kann. Im $^{31}P\text{-NMR}\text{-Spektrum}$ von II in 1,2-Dichlor-

¹⁾ E. Fluck u. W. Steck, Z. anorg. allg. Chem. 387, 349 (1972).

²) E. Fluck u. W. Steck, Phosphorus 1, 283 (1972).

¹⁸ Z. anorg. allg. Chemie. Bd. 398,

äthan tritt ein Singulett mit einer Verschiebung von $\delta_{^{31}\mathrm{P}}=9.2~\mathrm{ppm^3}$), im $^{1}\mathrm{H-NMR-Spektrum}$ der reinen Substanz ein Singulett mit einer Verschiebung von $\delta_{^{1}\mathrm{H}}=5.2~\mathrm{ppm^3}$) auf. Ganz ähnliche chemische Verschiebungen sind für Trichlorphosphazo-Gruppen bzw. Chlormethyl-Gruppen in vergleichbaren Verbindungen beobachtet worden 4)⁵). Im IR-Spektrum von II (s. Experimenteller Teil) wird die Absorptionsbande bei $1\,360~\mathrm{cm^{-1}}$ der P=N-Bindung zugeordnet. Absorptionsbanden, die C=C- oder C=N-Bindungen zugeschrieben werden könnten, sind nicht vorhanden 6).

Wie die Aufarbeitung des oben erwähnten Reaktionsgemisches (Gl.(1)) mit Hilfe von SO_2 zeigt, reagiert II bei Zimmertemperatur nicht schnell mit Schwefeldioxid. Dagegen erreicht man eine vollständige, rasch und einheitlich verlaufende Umsetzung nach Gl. (2), wenn SO_2 bei $80\,^{\circ}$ C auf II einwirkt. In flüssigem SO_2 bei $-10\,^{\circ}$ C nimmt sie dagegen 12 Stunden in Anspruch:

$$\begin{array}{c} \mathrm{CH_2Cl-CCl_2-CCl_2-N=PCl_3+SO_2} \rightarrow \mathrm{CH_2Cl-CCl_2-CCl=N-P(O)Cl_2+SOCl_2} \\ \mathbf{HI} \end{array} \tag{2}$$

Im ³¹P-NMR-Spektrum tritt erwartungsgemäß ein einzelnes Resonanzsignal mit einer Verschiebung von $\delta_{^{11}P} = -3.0$ ppm, im ¹H-NMR-Spektrum ein Singulett mit einer Verschiebung von $\delta_{^{11}P} = 4.61$ ppm auf. Im IR-Spektrum werden die C=N- und P=O-Absorptionsbanden bei 1670 bzw. 1290 cm⁻¹ beobachtet.

Während Trichlorphosphazogruppen $-N=PCl_3$ gegenüber SO_2 häufig vollkommen stabil sind, ermöglicht offensichtlich die labile C-Cl-Bindung der an Stickstoff gebundenen CCl_2 -Gruppen die Bildung von $SOCl_2$. Diese Labilität erklärt auch die thermische Zersetzung von II. Bei $140-150\,^{\circ}C$ spaltet die Verbindung unter Bildung von IV, einem Nitril, das sich leicht identifizieren läßt⁷), Phosphorpentachlorid ab. Wegen des fehlenden α -ständigen Protons ist IV nicht mehr in der Lage, mit PCl_5 zu reagieren. Vgl. hierzu⁸)⁹).

³) Alle in der vorliegenden Arbeit angegebenen chemischen Verschiebungen $\delta_{^{31}P}$ beziehen sich auf 85proz. wäßr. Orthophosphorsäure, alle chemischen Verschiebungen $\delta_{^{1}H}$ auf Tetramethylsilan als äußere Standards.

⁴⁾ E. Fluck, Die kernmagnetische Resonanz und ihre Anwendung in der anorganischen Chemie, Springer-Verlag, Heidelberg, 1963.

⁵) M. CRUTCHFIELD et al., Topics in Phosphorus Chemistry, Vol. V: ³¹P Nuclear Magnetic Resonance, Interscience Publishers, New York, 1967.

⁶) B. J. Bellamy, The Infra-red Spectra of Complex Molecules, Methuen & Co., Ltd., London 1958.

⁷) F. Scotti u. E. Frazza, J. org. Chemistry 29, 1800 (1964).

⁸⁾ V. I. SHEVCHENKO, E. E. NIZHNIKOVA, N. D. BODNARCHUK u. P. P. KORNUTA, Ž. obšč. Chim. (J. allg. Chem. [UdSSR]) 37, 1358 (1967); C. A. 68, 39055a (1968).

⁹⁾ M. Becke-Goehring u. D. Jung, Z. anorg. allg. Chem. 372, 233 (1970).

$$\begin{array}{c} \text{CH}_2\text{Cl}-\text{CCl}_2-\text{CCl}_2-\text{N}=\text{PCl}_3 \xrightarrow{140-150\,^\circ\text{C}} \text{CH}_2\text{Cl}-\text{CCl}_2-\text{CN}+\text{PCl}_5. \\ \text{IV} \end{array} \tag{3}$$

II war von Shevchenko et al. schon auf anderem Wege dargestellt und ebenfalls nach Gl. (2) in III übergeführt worden⁸)¹⁰).

Die an Phosphor gebundenen Chloratome in III werden bei der Einwirkung von Ammoniumrhodanid in flüssigem Schwefeldioxid bei $-60\,^{\circ}\mathrm{C}$ durch Isothiocyanatgruppen substituiert. Aus der gelben Lösung wird NH₄Cl ausgeschieden, das bei tiefer Temperatur durch Filtration abgetrennt werden kann.

$$\begin{aligned} \text{CH}_2\text{Cl} - \text{CCl}_2 - \text{CCl} &= \text{N} - \text{P(O)Cl}_2 + \text{NH}_4\text{NCS} \rightarrow \\ &\quad \text{III} \\ &\quad \text{CH}_2\text{Cl} - \text{CCl}_2 - \text{CCl} &= \text{N} - \text{P(O)(NCS)}_2 + \text{NH}_4\text{Cl} \\ &\quad \text{V} \end{aligned} \tag{4}$$

V fällt als hellgelbes, nicht unzersetzt destillierbares Öl an. Das ³¹P-NMR-Spektrum besteht aus einem Singulett mit einer Verschiebung von $\delta_{^{21}P}=40,0$ ppm ¹¹). Die Verschiebung $\delta_{^{1}H}$ wurde zu 5,4 ppm gemessen.

Läßt man PCl₅ in 1,2-Dichloräthan, Benzol oder auch in OPCl₃ bei 45°C auf Acrylnitril (Molverhältnis 3:1) einwirken, so treten im ³¹P-NMR-Spektrum des Reaktionsproduktes drei Resonanzsignale mit den chemischen Verschiebungen a) $\delta_{\text{sip}} = 9.2 \text{ ppm}$, b) $\delta_{\text{sip}} = 21.6 \text{ ppm}$ und c) $\delta_{\text{sip}} =$ 25,9 ppm. Das Intensitätsverhältnis der drei Linien beträgt etwa 2:3:3. Außerdem entstehen geringe Mengen eines Festkörpers. Die Linie a) rührt von der Verbindung II her, während die beiden anderen Signale, wie durch die milderen Reaktionsbedingungen nahegelegt wird, vermutlich chlorärmeren Produkten zuzuschreiben sind. Die Richtigkeit dieser Annahme konnte dadurch bestätigt werden, daß die Umsetzung von Acrylnitril mit PCl₅ in PCl₃ durchgeführt wurde. Wie sehon früher beobachtet²), wird in diesem Lösungsmittel die chlorierende Wirkung von PCl₅ stark herabgesetzt. Tatsächlich wird bei der Einwirkung von PCl₅ auf Aerylnitril in PCl₃ die Bildung von II fast völlig unterdrückt, und es entsteht nach Aussage des ³¹P-NMR-Spektrums ein Reaktionsgemisch, das nur die Resonanzsignale b) und c) im Intensitätsverhältnis 1:1 zeigt. Nach der Umwandlung überschüssigen Phosphorpentachlorids in OPCl₃ mittels SO₂ läßt sich durch fraktionierte Destillation eine farblose Flüssigkeit (91-93°C; 0,2 mmHg) isolieren, deren ³¹P-NMR-Spektrum aus den beiden Linien b) und c) besteht und die stets das Intensitätsverhältnis 1:1 aufweisen. Die chemischen Verschiebungen weisen darauf hin, daß es sich um eine zu einer C=C-Bindung benachbarte Phosphazogruppe handelt1), so daß, auch in Überein-

¹⁰) V. I. SHEVCHENKO, V. P. KUKHAR u. A. V. KIRSANOV, Ž. obšč. Chim. (J. allg. Chem. [UdSSR]) 36, 467 (1966); C. A. 65, 616a (1966).

stimmung mit der Elementaranalyse des Produktes nahegelegt wird, daß die Verbindungen VIa und VIb entstanden sind, die nebeneinander im Molverhältnis 1:1 vorliegen und durch Destillation nicht weiter zu trennen sind:

$$2 \text{ CH}_{2} = \text{CH} - \text{C} = \text{N} + 4 \text{ PCl}_{5} \xrightarrow{60 \, ^{\circ}\text{C}} \xrightarrow{\text{Cl}} \text{C} = \text{C} \xrightarrow{\text{N}} \text{PCl}_{3} + 2 \text{ HCl}$$

$$\text{Cl} \xrightarrow{\text{CH}_{2}\text{Cl}} \text{C} = \text{C} \xrightarrow{\text{N}} \text{PCl}_{3} + 2 \text{ PCl}_{3}$$

$$\text{CH}_{2}\text{Cl} \xrightarrow{\text{VIb}} \text{Cl} \xrightarrow{\text{VIb}} \text{Cl} \xrightarrow{\text{N}} \text{PCl}_{3}$$

Die Annahme, daß es sich um das Gemisch der eis-trans-Isomeren VI a und VI b handelt, wird dadurch erhärtet, daß bei der Chlorierung einer Lösung in 1,2-Dichloräthan mit elementarem Chlor bei -10°C ausschließlich II entsteht:

$$(\mathbf{VIa} + \mathbf{VIb}) + \mathbf{Cl_2} \to \mathbf{II}. \tag{6}$$

Das ¹H-NMR-Spektrum des cis-trans-Isomerengemisches VIa/VIb zeigt 2 Dubletts gleicher Intensität. Die chemischen Verschiebungen betragen $\delta_{^{1}H}=5,39$ ppm (J = 4,6 Hz) und $\delta_{^{1}H}=5,29$ ppm (J = 3,2 Hz). Die Aufspaltung der Signale in Dubletts ist auf die PNCCCH-Kopplung zurückzuführen. Sie ist im ³¹P-NMR-Spektrum wegen der zu großen Linienbreite nicht sichtbar. Das Dublett mit der kleineren Kopplungskonstante wird versuchsweise der eis-Konfiguration VIa, das Dublett mit der größeren Kopplungskonstante der trans-Konfiguration zugeordnet. Das IR-Spektrum des Isomerengemisches VIa/VIb zeigt die Absorptionsbande der C=C-Bindung bei 1620 cm⁻¹, die der N=P-Bindung bei 1380 cm⁻¹.

VIa und VIb reagieren nicht mit SO_2 . Mit Ameisensäure kann bei 10° C eine partielle Hydrolyse durchgeführt werden, die zu VIIa und VIIb führt. Vgl. hierzu auch ¹²).

$$(\mathbf{VIa} + \mathbf{VIb}) + 2HCOOH \rightarrow \underbrace{\mathbf{Cl}}_{\mathbf{CH_2Cl}} \mathbf{Cl}_{\mathbf{NH-P(O)Cl_2}} + 2HCl + 2CO \qquad (7)$$

$$\mathbf{CH_2Cl}_{\mathbf{Cl}} \mathbf{Cl}_{\mathbf{NH-P(O)Cl_2}}$$

$$\mathbf{VIIb}$$

Die chemischen Verschiebungen von VIIa und VIIb wurden zu $\delta_{^{31}P}=-10$ bzw. -11.7 ppm³) bestimmt.

¹¹) E. Fluck, Z. Naturforsch. 19b, 869 (1964).

¹²) V. P. KUKHAR, Ž. obšč. Chim. (J. allg. Chem. [UdSSR]) 40, 785 (1970); C. A. 73, 34708j (1970).

Experimenteller Teil

Die NMR-Spektren wurden mit den Kernresonanzspektrometern Varian A 60, Jeol JNM-C-60 HL und HFX-4-2 der Firma Bruker Physik AG aufgenommen.

Alle im folgenden beschriebenen Reaktionen und Operationen wurden unter strengem Ausschluß von Feuchtigkeit durchgeführt.

Darstellung von Trichlorphosphin-N-pentachlorpropylimin (II): In einem mit Rührer, Tropftrichter und Rückflußkühler ausgestatteten 500-ml-Dreihalskolben werden 188 g (0,9 mol) PCl_5 in 200 ml 1,2-Dichloräthan vorgelegt. Zu der auf 60°C erwärmten Lösung werden unter Rühren langsam 16 g (0,3 mol) Acrylnitril getropft. Anschließend wird so lange unter Rückfluß zum Sieden erhitzt bis kein HCl mehr entweicht (etwa 12 Stdn.). Anschließend wird in die zuvor auf 0°C abgekühlte Reaktionsmischung 10 Minuten lang ein schwacher, mit H_2SO_4 getrockneter SO_2 -Strom eingeleitet. Danach werden $OPCl_3$, $SOCl_2$, Lösungsmittel, PCl_3 und evtl. entstandene chlorierte Nitrile im Wasserstrahlpumpenvakuum in einem Rotationsverdampfer abdestilliert. Der Rückstand wird im Ölpumpenvakuum fraktioniert destilliert. II kondensiert als farblose, sehr hygroskopische Flüssigkeit. Kp. 108-110°C (0,1 mmHg) 8)10). Ausbeute 68 g, d. s. 67% d. Th.

IR-Spektrum: 3020 ss, 2970 ss, 1430 st, 1360 sst, 1300 m, 1215 ss, 1063 ss, 970 s, 930 m, 830 ss, 768 s, 720 st, 681 st, 610 sst, 571 sst, 512 m (cm⁻¹).

Darstellung von III: In eine auf 80°C erwärmte Lösung von 14,7 g (0,04 mol) II in 50 ml 1,2-Dichloräthan wird 4 Stunden lang ein schwacher, mit H₂SO₄ getrockneter SO₂-Strom geleitet. Nachdem Lösungsmittel und SOCl₂ im Rotationsverdampfer abdestilliert sind, wird der Rückstand der fraktionierten Destillation im Ölpumpenvakuum unterworfen. Kp. 105°C (0,05 mm Hg). III kondensiert als farblose Flüssigkeit, die durch zeitweiliges Kühlen auf sehr tiefe Temperaturen zur Kristallisation gebracht werden kann. Fp. 38°C. Ausbeute 10,6 g, d. s. 85% d. Th.

 $C_3H_2NPCl_6O$ (311,75). Ber.: C 11,56 (gef.: 11,73); H 0,65 (1,12); N 4,49 (4,84), P 9,99 (10,90); Cl 68,23 (65,18); O 5,13 (-)%.

IR-Spektrum: 3161 s, 3040 s, 1735 st, 1665 sst, 1425 st, 1290 sst, 1230 ss, 1125 ss, 1110 ss, 1090 ss, 1020 m, 1000 m, 960 m, 940 m, 920 m, 860 m, 812 m, 790 s, 748 st, 676 s, 620 sst, 595 sst, 535 st (cm⁻¹).

Darstellung von 2,2,3-Trichlorpropionitril (\dot{I} V): In einem 50-ml-Rundkolben, an den eine Destillationsapparatur angeschlossen ist, werden 7,4 g (0,02 mol) II bei 50 mm Hg Druck auf 140—150°C erwärmt. Nach 2 Stdn. ist II vollständig zersetzt. In das in der Vorlage aufgefangene Rohprodukt, das noch mit PCl₅ verunreinigt ist, wird trockenes SO₂ eingeleitet und das Produkt fraktioniert destilliert. Kp. 154—156°C. Ausbeute 2,3 g, d. s. 91,5% d. Th.

 $C_3H_2NCl_3$ (158,42). Ber.: C 22,75 (gef.: 22,58); H 1,27 (1,56); N 8,84 (8,37); Cl 67,14 (67,27)%.

Darstellung von V: In einem 100-ml-Dreihalskolben werden 10 g (0,032 mol) III in 60 ml auf -60° C gekühltem Schwefeldioxid vorgelegt. Nach Zusatz von 4,7 g (0,062 mol) Ammoniumrhodanid wird bei -60° C 12 Stdn. lang gerührt. Das ausgeschiedene NH₄Cl wird danach in einem geschlossenen Glasfrittensystem bei -60° C von der Lösung abgetrennt. Das Filtrat wird langsam auf -10° C erwärmt. Restliches SO₂ wird bei der gleichen Temperatur im Ölpumpenvakuum entfernt. Das zurückbleibende hellgelbe Öl ist nur bei tiefen Temperaturen stabil. Oberhalb 0°C färbt es sich rasch rot. Ausbeute 10,4 g, d. s. 90,8% d. Th.

 $C_5H_2N_3PS_2Cl_4O$ (357,00). Ber.: C 16,82 (gef.: 17,79); H 0,56 (0,97); N 11,77 (12,77); P 8,68 (8,76); S 17,96 (19,90); Cl 39,72 (35,75); O 4,48 (-)%.

Darstellung von VIa und VIb: In einem 500-ml-Dreihalskolben, der mit Rührer, Rückflußkühler mit aufgesetztem P_4O_{10} -Trockenrohr und Ölbad ausgestattet ist, werden 26,5 g (0,5 mol) Acrylnitril, 150 ml PCl₃ und 208,3 g (1 mol) PCl₅ vorgelegt. Das Reaktionsgemisch wird langsam auf 60°C erwärmt und 8 Stdn. bei dieser Temperatur gehalten. Danach wird in die auf 0°C gekühlte Reaktionsmischung 10 Minuten lang ein schwacher, trockener SO₂-Strom eingeleitet. Gebildetes OPCl₃, SOCl₂, PCl₃ und evtl. unumgesetztes Acrylnitril werden unter Wasserstrahlvakuum im Rotationsverdampfer abdestilliert. Der Rückstand wird anschließend im Vakuum fraktioniert destilliert. Kp. 91—93°C (0,2 mm Hg). (Bei einigen Versuchen wurde bei der Destillation geringfügige Zersetzung beobachtet.) Ausbeute 46 g, d. s. 31% d. Th.

 $C_3H_2NPCl_6$ (295,75). Ber.: C 12,18 (gef.: 12,96); H 0,68 (1,10); N 4,74 (5,16); P 10,47 (10,72); Cl 71,93 (70,06)%.

IR-Spektrum: 2980 ss, 1626 sst, 1435 m, 1385 sst, 1300 s, 1264 st, 1190 ss, 1136 s, 1118 s, 1005 s, 980 s, 914 s, 766 s, 706 s, 611 st, 590 st, 560 sst, 490 s, 460 s (cm⁻¹).

Stuttgart, Institut für Anorganische Chemie der Universität.

Bei der Redaktion eingegangen am 8. November 1972.

Anschr. d. Verf.: Prof. Dr. E. Fluck u. Dr. F. Horn Inst. f. Anorg. Chemie d. Univ. Stuttgart BRD-7 Stuttgart, Pfaffenwaldring 55