A THERMALLY-INDUCED RADICAL REARRANGEMENT OF 2-ARYLMETHOXYTROPONES TO 3- AND 5-ARYLMETHYLTROPOLONES

Hitoshi TAKESHITA,* Hiroaki MAMETSUKA, Atsuko CHISAKA, and Norihide MATSUO**

Research Institute of Industrial Science, 86, and **The Graduate School of Engineering Sciences, 39, Kyushu University, Hakozaki, Fukuoka 812

2-Arylmethoxytropones, *i.e.*, 2-benzyloxytropone, 2-(p-tolylmethoxy)tropone, 2-(4-bromophenylmethoxy)tropone, 2-(4-chlorophenylmethoxy)tropone, 2-(4-methoxyphenylmethoxy)tropone, and 2-(1-naphthylmethoxy)tropone, rearranged upon heating to the 3and 5-arylmethyltropolones *via* the radical intermediates. Similarly, 5-bromo-2-(ptolylmethoxy)tropone gave 5-bromo-3-(p-tolylmethyl)tropolone.

The Claisen rearrangement, a typical 3,3-sigmatropic reaction, of the various troponoids has revealed some fascinating features in synthetic aspect.¹⁻⁴⁾ However, no other sigmatropy on troponoids seems to be investigated in detail. Herein, we wish to report a newly occurred thermal rearrangement on the 2-arylmethoxytropones which can be potential candidates for a 5,5-sigmatropy:⁵⁾ The major process was a formation of 3-arylmethyltropolones *via* the radical intermediates.

TABLE 1	1.	THE	THERMAL	REARRANGEMENT	OF	2-ARYLMETHOXYTROPONES.
---------	----	-----	---------	---------------	----	------------------------

_	_		Conditions			Products (Yield/			d/%, Mg	/%, Mp/°C)		Yield/% of	
Reactants -		Temp/°C	Time/h		3-4	ArCH2-			5-Ar	^{CH} 2 ⁻	Rege	nerated 2	
1a:	X=H,	Ar=4-MeC ₆ H ₄	190	11	3 a(60,	94-96)	4 a (6.6,	136-138)	10
b:	X≖H,	Ar=C ₆ H ₅	190	12	b(47,	51-52)	b(3.1,	119-120)	10
c:	X=H,	Ar=4-BrC ₆ H ₄	190	17	c(46,	90-91)	c(3.2,	151-153)	11
d:	X=H,	$Ar=4-C1C_6H_4$	190	14	d(59,	87-88)	d(3.5,	154-156)	15
e:	X=H,	Ar=4-MeOC ₆ H ₄	190	9	e(41,	79-80)	e(6.1,	109-110)	20
f:	X=H,	$Ar=1-C_{10}H_7$	190	7.5	f(52,	91-93)	f(20.0,	150-152)	5
g:	X=Br,	Ar=4-MeC ₆ H ₄	190	10	g(22,	128-130)					20

When a decalin solution of 2-(p-tolylmethoxy)tropone(1a) was heated in a sealed tube on a refluxing decalin bath for 11 h, the products identified, along with small amounts of regenerated tropolone(2a), were 3-(p-tolylmethyl)tropolone (3a)[δ^{6}): 2.30(3H, s), 4.11(2H, s), 6.91(1H, ddd, J=10, 7.5, 3 Hz), 7.09(4H, s), 7.25(1H, dd, J=7.5, 1 Hz), 7.28(1H, dd, J=3, 1 Hz), 7.39(1H, dt, J=10, 1 Hz), and 7.35(1H, br., OH)], 60%, and 5-(p-tolylmethyl)tropolone(4a)[δ : 2.32(3H, s), 3.89(2H, s), 7.05(4H, m), 7.22(4H, s), and 7.35(1H, br., OH)], 6.6%. Methylation of 3a by diazomethane gave two methyl ethers, 5a[δ : 2.27(3H, s), 3.85(3H, s), 4.00(2H, s), 6.6-6.9(3H, m), 7.0-7.2(4H, m), and 7.20(1H, m)], pale yellow needles, mp 90-92°C, and 6a[δ : 2.28(3H, s), 3.85(3H, s), 3.99(2H, s), 6.6-7.2(4H, m), and 7.03(4H, s)], a yellow oil, while 4a gave a single product, 7a[δ : 2.30(3H, s), 3.81(2H, s), 3.88(3H, s), 6.65(1H, d, J=10 Hz), 6.92(1H, dm, J=10 Hz), 7.12(2H, m), 7.0-7.2(4H, m)], pale yellow crystals, mp 155-157°C. The structures of 3a and 4a thus identified were further supported by the ¹³C-NMR spectra.

Similarly, 2-benzyloxytropone(1b), 2-(4-bromophenylmethoxy)tropone(1c), 2-(4-chlorophenylmethoxy)tropone(1d), 2-(4-methoxyphenylmethoxy)tropone(1e), and 2-(1-naphthylmethoxy)tropone(1f) gave the 3-(3b-f)⁷⁾ and 5-arylmethyltropolones (4b-f), while 5-bromo-2-(p-tolylmethoxy)tropone(1g) solely gave 5-bromo-3-(p-tolylmethyl)tropolone(3g). The reaction conditions and the yields are shown in Table 1. The products have been characterized by the elemental analyses, the mass spectra, and H- and ${}^{13}C$ -NMR spectra (Table 2).

According to variable temperature experiments, the reaction with 1f revealed following features; a) the reaction rates were second order for the concentration of aryloxytropones; $k^{453.7}$ =5.22 x 10⁻⁴ 1/sec.mol, $k^{44.2}$ =2.1 x 10⁻⁴, $k^{435.2}$ =1.02 x 10⁻⁴, and $k^{426.2}$ =4.3 x 10⁻⁵ (Fig. 1), and b), the ΔS^{\neq} was a distinct positive value (+14.7 cal/deg, E_a=36600 cal/mol).⁸ Log k

In connection with these observations, we have then carried out the cross-over experiments in a hope of obtaining chemical evidence for the intermolecular mechanism; when 1f was similarly heated in a presence of three-fold excess of $2-d_3$, the products isolated after methylation (5f, 6f, and 7f) were deuterium-free on the basis of the mass and NMR spectra.

However, the reaction of a 1:1-mixture

of $1a - d_0$ and $1c - d_3$ at 190°C for 9 h gave a scrambled product mixture: The isotope distributions of 5a and 5c, the main products isolated by means of a high-pressure liquid chromatograph, were determined by the mass spectrometry; 5a showed the 1:1-peaks at m/e: 240 and 242($5a - d_0$ and $5a - d_2$), while 5c showed the 1:2:1-peaks at m/e: 304, 306, and 308($5c - d_0$ and $5c - d_2$ with further splitting due to ⁷⁹Br and ⁸¹Br). These complete shuffling of the isotope verified an intermolecular nature for the rearrangement. Same was the case for the minor products ($7a - d_0$ and $7a - d_2$, and $7c - d_0$ and $7c - d_2$). Moreover, a loss of the specificity in the deuterium-labelling even in the formation of 5-benzyl derivatives ruled out an involvement of

TABLE 2. THE ¹³C-NMR SPECTRA OF NEW COMPOUNDS.

Co	mpds:	Chemical Shifts (δ) in CDCl $_3$ Solutions
3 a:	21.0,	40.0, 120.9, 127.2, 129.0*, 129.2*, 135.9, 136.0*, 139.5, 140.6, 168.2, 172.5
b:	40.4,	120.9, 126.5, 127.2, 128.5*, 129.1*, 136.0, 139.1, 139.6, 140.4, 168.2, 172.6
c:	40.0,	120.3, 120.7, 127.3, 130.7*, 131.5*, 136.1, 138.1, 139.5, 140.0, 167.8, 172.7
d:	39.9,	120.6, 127.3, 128.6*, 130.4*, 132.3, 136.1, 137.6, 139.5, 140.1, 167.9, 172.8
e:	39.5,	55.1, 113.9*, 120.8, 127.2, 130.1*, 131.0, 135.8, 139.4, 140.8, 158.2, 168.0, 172.5
f:	36.8, 135.9,	120.6, 124.1, 125.6, 125.8, 126.3, 127.4, 127.7, 128.0, 128.7, 132.2, 134.0, 134.8, 138.9, 140.8, 167.3, 173.0
g:	21.1,	40.1, 119.5, 122.1, 128.9*, 129.4*, 135.1, 136.3, 138.3, 140.6, 142.5, 167.1, 172.4
4 a:	21.0,	45.1, 123.9*, 128.7*, 129.5*, 136.4*, 138.4*, 142.0, 170.8*
b:	45.5,	123.9, 126.8, 128.8**, 138.4*, 139.4*, 141.6, 170.8*
c:	44.8,	120.8, 123.9*, 130.5*, 131.9*, 138.3, 138.4*, 141.6, 170.6*,
d:	44.7,	123.9*, 128.9*, 130.1*, 132.7, 137.9, 138.4*, 141.0, 170.8*
e:	44.6,	55.3, 114.2*, 124.0*, 129.8*, 137.7, 138.4*, 142.3, 158.4, 170.7*
f:	42.4, 141.4,	123.6, 123.9*, 125.5, 125.9, 126.4, 127.6, 127.9, 128.9, 131.8, 134.0, 134.9, 138.2*, , 170.8*
5 a:	21.0, 179.2	40.7, 56.2, 112.1, 126.9, 129.1*, 129.4* 130.9, 135.7, 136.2, 136.6, 149.2, 164.0,
b:	41.2,	56.2, 112.1, 126.2, 126.8, 128.4*, 129.4*, 131.4, 136.3, 139.7, 148.8, 164.0, 179.0
c:	40.9,	56.2, 112.1, 120.0, 126.8, 131.1*, 131.4*, 131.4, 136.4, 138.7, 148.1, 164.2, 178.9
d:	40.8,	56.2, 112.2, 126.8, 128.4*, 130.7*, 131.4, 132.0, 136.4, 138.2, 148.2, 164.2, 178.9
e:	40.3, 179.1	55.1, 56.1, 112.0, 113.8*, 126.8, 130.4*, 130.8, 131.6, 136.0, 149.3, 158.0, 164.0,
f:	37.4, 136.0,	56.3, 112.3, 124.4, 125.6, 126.0, 126.8, 127.4, 128.3, 130.9, 132.2, 133.9, 135.6, 148.2, 163.7, 179.2
g:	21.0,	40.7, 56.4, 111.0, 121.8, 129.2**, 132.7, 135.6, 136.1, 139.7, 148.6, 163.3, 178.5
6 a:	21.0, 181.8	39.5, 58.7, 128.6*, 129.2*, 129.5, 135.2, 135.9, 136.3, 137.2, 138.4, 138.9, 163.7,
b:	40.1,	58.7, 126.1, 128.5*, 128.7*, 129.5, 135.2, 137.3, 138.5, 138.6, 139.4, 163.9, 181.9
c:	39.6,	58.8, 120.3, 129.6, 130.4*, 131.6*, 135.2, 136.9, 137.7, 138.4, 138.5, 163.8, 181.7
d:	39.5,	58.8, 128.6*, 129.7, 130.0*, 132.3, 135.3, 137.0, 137.9*, 138.6, 164.0, 182.0
e:	39.1, 181.9	55.2, 58.7, 113.9*, 129.5, 129.7*, 131.4, 135.2, 137.2, 138.5, 139.0, 158.2, 163.7,
f:	36.5, 136.3,	58.9, 123.6, 125.8, 126.3, 126.9, 127.4, 128.7, 129.4, 132.1, 133.8, 135.1, 135.3, 138.3, 138.7, 164.4, 181.5
g:	21.0, 180.9	39.6, 59.0, 110.5, 124.6, 128.6*, 129.4*, 135.6, 136.3, 137.4, 138.1, 138.9, 163.2,
7a:	21.0, 180.0	44.5, 56.1, 112.6, 128.7*, 129.4*, 131.3, 136.1, 136.3, 136.7, 139.2, 141.3, 163.9,
b:	45.0,	56.1, 112.6, 126.7, 128.7*, 128.8*, 131.5, 136.7, 139.2*, 141.0, 164.0, 180.1
c:	44.4,	56.2, 112.5, 120.8, 130.6*, 131.6, 131.8*, 136.8, 138.2, 138.9, 140.2, 164.2, 180.0
d:	44.3,	56.1, 112.4, 128.9*, 130.2*, 131.5, 132.0, 136.8, 137.7, 138.9, 140.3, 164.1, 180.0
e:	44.1,	55.2, 56.1, 112.7, 114.1*, 129.8*, 131.2*, 136.6, 139.2, 141.5, 158.4, 163.9, 180.0
f:	41.9, 136.5,	56.0, 112.6, 123.6, 125.4, 125.7, 126.3, 127.6, 127.7, 128.7, 131.7, 133.9, 134.7, 138.9, 140.5, 163.9, 179.9

a) Asterisked figures mean overlapped two carbon signals(*) and four carbon signals(**).

the two-fold 3,3-sigmatropy, and the absence of $5f - d_2$, $6f - d_2$, and $7f - d_2$ in the reaction of 1f with $2 - d_3$ shows that the free tropolones must be less reactive than the alkoxytropones toward an attack of the benzyl radical.

Furthermore, the rearrangement of 1a was accelarated by a certain amount of benzoylperoxide, a radical initiator, as shown in Fig. 2. The rearrangement occurring under such mild conditions is therefore a radical chain reaction. Previously, Nozoe *et al.*,⁹⁾ have observed a radical substitution at C-3 of **2**a

to verify the theoretical prediction given by Kurita and Kubo.^{10,11)} It is interesting that the major site of the present reaction is also C-3 of the 2-alkoxytropones.

Currently, some related aspects of this reaction is under intensive investigations, and the results will be reported elsewhere.

References and Notes

- Y. Kitahara and M. Funamizu, Bull. Chem. Soc. Jpn., <u>31</u>, 782 (1958); b). Y. Kitahara and T. Kato, *ibid.*, <u>37</u>, 895 (1964).
- 2) a). R. M. Harrison, J. D. Hobson, and A. W. Midgley, J. Chem. Soc., Perkin Trans. 1, <u>1973</u>, 1960;
 b) A. Pryde, J. Zsindely, and H. Schmid, *Helv. Chim. Acta*, <u>57</u>, 1598 (1974).
- 3) a). H. Takeshita, I. Kouno, and K. Miyake, Kyushu Daigaku Seisan Kagaku Kenkyusho Hokoku, <u>66</u>, 1 (1977); b) H. Takeshita, K. Tajiri, and I. Kouno, Bull. Chem. Soc. Jpn., <u>52</u>, 223 (1979).
- 4) H. Takeshita, K. Tajiri, and I. Kouno, Heterocycles, 6, 1101 (1977).
- 5) G. Frater and H. Schmid, Helv. Chim. Acta, <u>51</u>, 190 (1968).
- 6) The NMR spectra were measured in $CDCl_3$ solutions and the chemical shifts were expressed in the δ unit from the internal standard, Me_LSi .
- 7) For synthesis of **3**b and its derivatives, see T. Nozoe, T. Mukai, and I. Murata, Proc. Japan Acad., <u>29</u>, 167 (1953).
- 8) The measurements of kinetical data were carried out in the NMR tubings with *ca*. 50 mg of the samples, and the integrations of the NMR signals were average values of several runs.
- 9) T. Nozoe, T. Ikemi, N. Miyai, and Y. Kikuchi, Proc. Japan Acad., <u>32</u>, 476 (1956).
- 10) Y. Kurita and M. Kubo, Bull. Chem. Soc. Jpn., 24, 13 (1951).
- Once, Dewar (Nature, <u>166</u>, 790 (1950)) predicted an occurrence of the radical substitution at C-5 of tropolones.