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Abstract: Using the non-heme iron oxidase active site as a tem-
plate, a peptidomimetic ligand has been designed, synthesized, and
used to effect the dihydroxylation of alkene substrates. Fenton-type
radical pathways are also observed.
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Nature uses a diverse range of iron-based enzyme systems
to effect the oxidation of hydrocarbon substrates with re-
markable efficiency and exquisite control.1–3 These in-
clude the porphyrin-based cytochrome P450s,1 the soluble
di-iron mono-oxygenases3 and non-heme iron oxidases2

such as naphthalene dioxygenase,4 and isopenicillin N
synthase.5 These biological systems have served as the
starting point for wide-ranging inquiry in search of biomi-
metic iron-based oxidizing systems for application in or-
ganic synthesis.6–9 Amongst the most noteworthy are the
Gif systems pioneered by Sir Derek Barton,6 terpyridyl-
amine-based dihydroxylating agents and other systems
developed by Que et al.,7,9,10 and the bis(pyridinyl/pyrro-
lidinyl) systems applied by the White group to execute an
impressive range of selective C–H activation chemistry.11

As part of our endeavor to develop simple amino acid
based systems as the basis of iron-centered catalysts for
hydrocarbon oxidation,12 we report here the synthesis and
application of a tetradentate ligand based on pyridine-2,6-
dimethanol and (S)-mandelic acid that combines with
iron(II) acetate to effect cis-dihydroxylation of alkene
substrates.

The active site of non-heme iron oxidase enzymes
(NHIOs) is highly conserved and contains an iron(II) cen-
ter coordinated by two histidine residues and an aspartate
or glutamate residue (referred to as the ‘2-His-1-carboxy-
lic acid’ facial triad)13 and one or more water ligands
(Figure 1).

We envisaged a biomimetic complex 2, formed between
iron(II) and the peptidomimetic ligand 3 to mimic the
structure and function of the NHIO active site. The ligand
3 is tetradentate and incorporates two oxygen and two ni-
trogen donors to replicate the iron-binding environment
created by the 2-His-1-carboxylate triad and one water
molecule.

The complex 2 is designed to incorporate two vacant cis
sites at the iron center for dioxygen/peroxide binding: Que
has proposed that the presence of two vacant sites cis to
each other is an absolute requirement for small-molecule
iron complexes to effect cis-dihydroxylation using H2O2

as the oxidant.7 Pyridine and tertiary amine nitrogen at-
oms model the histidine ligands, while mandelic acid
mimics both the carboxylate and a water ligand. This de-
sign incorporates two aromatic groups to increase steric
density around the metal and counter the propensity of
iron complexes to give bridged products via competing in-
termolecular oxidation reactions [e.g., Fe(III)–O–Fe(III)
species].

Our retrosynthesis of 3 (Scheme 1) leads to N-ethylaniline
4, pyridine-2,6-dimethanol 5, and the dioxolonone 6 [de-
rived from (S)-mandelic acid and pivaldehyde as reported
by Seebach].14 Ligand 3 was prepared from these starting
materials in seven steps and an overall yield of 27%
(Scheme 2).12,15

Thus diol 5 was first monoprotected using sodium hydride
and tert-butyldimethylsilyl chloride in moderate yield
(57%). The unprotected alcohol was brominated in excel-
lent yield (94%) using carbon tetrabromide and triphe-

Figure 1 The generalized active-site environment of non-heme iron
oxidase enzymes 1, incorporating the ‘2-His-1-carboxylate’ facial
triad of protein-derived ligands, and two vacant sites for substrate
and/or oxygen binding; and the small-molecule iron(II) complex 2 de-
signed to mimic the NHIO active site in structure and function
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Scheme 1 The tetradentate ligand 3 required to generate complex 2,
and its retrosynthesis to N-ethylaniline 4, pyridine-2,6-dimethanol 5,
and the Seebach dioxolonone 6
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nylphosphine, then the newly established bromide was
displaced using the lithium enolate of 6.14 Removal of the
silyl ether and bromination of the unmasked alcohol both
proceeded smoothly (88% and 77%) to give 9. Nucleophi-
lic attack on 9 by the lithium amide derived from N-ethyl-
aniline 4 introduced the second nitrogen, and alkaline
hydrolysis to open the dioxolonone revealed the target
ligand 3 in excellent conversion (95%). The complex 2
was prepared in situ by mixing equimolar amounts of
ligand 3 (as its sodium salt) and iron(II) acetate in metha-
nol, then used directly in oxidation reactions with five al-
iphatic alkenes using hydrogen peroxide as the oxidant
(Table 1).16 Diol products were observed for all five of
these substrates and epoxides for four of them. In all cases
yields of diol are greater than of epoxide. In control exper-
iments carried out in the absence of ligand 3 no diol prod-
ucts were observed. Thus ligand 3 and iron(II) acetate
combine to mediate an alkene dihydroxylation reaction
not observed without the ligand: using a ‘two-nitrogen-

two-oxygen’ peptidomimetic ligand to mimic the NHIO
active site we have effected alkene cis-dihydroxylation.

However, the yields and turnover numbers (TON) of diol
products are generally low, and competing pathways are
evidently in operation. Further investigation into the reac-
tion of cyclohexene 11 revealed that as well as the desired
cis-diol 12, significant amounts of the allylic oxidation
products 13 and 14 are also formed (Scheme 3). This
product profile evinces competing reactions via Fenton-
type pathways,17 by which iron(II) and hydrogen peroxide
combine to unleash hydroxyl radicals that effect allylic
C–H abstraction and give rise to products 13 and 14.
These radical processes may also give rise to the epoxide
product 15 and thence the trans-diol 16 via epoxide open-
ing.

Thus while we have observed iron-mediated dihydroxyl-
ation of alkene substrates using a biomimetic ligand,
yields are generally low and turnover numbers show that

Scheme 2 Synthesis of ligand 3. Reaction conditions: i. NaH, TBSCl, CH2Cl2, r.t., 5 h, 57%; ii. CBr4, PPh3, CH2Cl2, r.t., 2 h, 94%; iii. LDA-
6 (premixed), THF, –78 °C, 6 h, 91%; iv. TBAF, THF, r.t., 90 min, 88%; v. CBr4, PPh3, CH2Cl2, r.t., 2 h, 77%; vi. EtNHPh, n-BuLi, DMPU
(premixed), THF, –40 °C, 5 h, 85%; vii 1 M LiOH, THF, reflux, 17 h then 1 M HCl, 95%.15
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Scheme 3 Potential products from the reaction of cyclohexene 11 under the turnover conditions used: the desired cis-dihydroxylation reaction
mediated by the iron complex 2 (path A), and competing Fenton-type reactivity via the allylic radical, to the alcohol 13, ketone 14, and epoxide
15 products (path B); the trans-diol product 16 could arise from subsequent hydrolysis of 15
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Table 1 Turnover Products from Reaction of Alkene Substrates with 3, Fe(OAc)2, and H2O2 in Methanol

Substrate Epoxidea cis-Diola trans-Diola Diol/epoxide

mmol TONb mmol TONb mmol TONb Ratioc

Cyclopentene n.d.d,e 0.78 0.08 n.d.d n.a.

Cyclohexene 0.10 0.010 0.13 0.01 0.13 0.01 1.3:1

Cyclooctene 0.18 0.019 0.21 0.02 n.d.d 1.2:1

1-Heptene 0.01 0.001 1.48 0.15 n.a. 148:1

1-Octene 0.08 0.008 0.92 0.10 n.a. 11.5:1

a Results are the average of at least two runs. Yields were determined by gas chromatography, using the single point internal standard method.
b Turnover number (TON) represents the amount of product (mmol) per amount Fe complex (mmol). Actual yields may be higher as complex 
was synthesized in situ and used immediately.
c Ratio cis-diol/epoxide.
d n.d. = none detected.
e The epoxide product was not detected for the reaction of cyclopentene, however, it is possible that this product was formed in the reaction but 
lost during workup (cyclopentene oxide, bp 102 °C).
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the reaction is far from catalytic. This is due primarily to
competing oxidative chemistry mediated by hydroxyl rad-
icals, which diverts a significant amount of the oxidizing
power and gives rise to C–H abstraction and allylic oxida-
tion. Hydroxyl radical intermediates are generated from
the hydrogen peroxide oxidant either by reaction with un-
complexed iron(II) in solution (the traditional Fenton re-
action) or by reaction with an iron-ligand species on a
‘Fenton-type’ path. Either way, the ligand 3 does not af-
ford sufficient control over the chemistry of iron(II) and
hydrogen peroxide. Work is under way to prepare im-
proved ligand architectures which combine more effec-
tively with iron(II) to suppress these competing Fenton
pathways.
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