# REACTION OF A CHLOROVINYLCARBENE WITH KETENEALKYL SILYL ACETALS. SYNTHESIS OF NEW $\alpha$ - AND $\beta$ -Allenic Carboxylates.

N. Slougui and G. Rousseau

## Laboratoire des Carbocycles, U.A. CNRS 478, Bâtiment 420 Université de Paris-Sud, 91405 ORSAY CEDEX, France

Abstract. The reaction of ketenealkylsilylacetals with l,l-dimethyl-2,2,3-trichlorocyclopropane in the presence of methyllithium leads to cyclopropane compounds, which, when treated with tetrabutylammonium fluoride give  $\mathbf{a}$ - or  $\mathbf{\beta}$ -allenic carboxylates.

During our study on the reactivity of ketenealkylsilylacetals <u>1</u>, we reported their [2+1] cycloaddition with chlorocarbenes <sup>(1)</sup>, which after rearrangement of the cyclopropane intermediate provides a new synthesis of  $\alpha$ ,  $\beta$ -ethylenic  $\alpha$ -substituted esters <u>2</u>.



It was interesting to check the possibility to obtain by this pathway l,4-butadiene-2-carboxylates (2, R =  $CH=CH_2$ ). After some unsuccessful attempts to add chlorovinylcarbene to keteneacetals, we selected l,2-dichloro-3-methyl but-2-ene-l-ylidene (chloro l-chloro-2,2-dimethylvinyl carbene), which can be easily formed by thermal ring opening of l,2-dichloro-3,3-dimethylcyclopropene, itself generated by reaction of l,l-dimethyl-2,2,3-trichlorocyclopropane with methyllithium <sup>(2)</sup>.

In the presence of ketenealkylsilylacetals  $\underline{l}$ , this chlorovinylcarbene led in good yield to unstable cyclopropane derivatives, whose NMR and IR spectra were consistent with the postulated structures  $\underline{3}$ . By heating in a methanol-triethylamine mixture, they did not lead to the expected I,3-butadiene-2-carboxylates  $\underline{2}$  (cleavage a), but to a complex mixture of products. However in the case of disubstituted keteneacetals  $\underline{l}$ , treatment of the cyclopropane intermediate  $\underline{3}$  with tetrabutyl-ammonium fluoride in THF promoted a clean rearrangement into unknown allenic esters  $\underline{4}$  (cleavage b), the structure of which was derived from spectroscopic properties and elemental analysis (IR =

1652

allene at 1960 cm<sup>-1</sup>, ester at 1740-1750 cm<sup>-1</sup>; NMR : allenic methyl protons, singlet (6H) at  $\delta$  1.85 ppm, ester methoxy protons, singlet (3H) at  $\delta$  3.75 ppm ; MS, two molecular peaks in the 1.3 ratio indicative of the presence of a chlorine atom in the molecule). Several examples are reported in the table (entries 1-3). The formation of esters <u>4</u> was an unexpected reaction since the a cleavage of intermediate chlorocyclopropanone acetals was usually observed <sup>(1)</sup>. This b cleavage was probably favoured by the presence of the double bond, and the subsequent allene formation due to an elimination of the vinylic chloride <sup>(4)</sup>.



In the case of monosubstituted keteneacetals <u>1</u> we also observed the formation of other conjugated allenic carboxylates <u>5</u> (entries 4-6) whose structure was derived from their spectroscopic data (IR : allene at 1950 cm<sup>-1</sup>, ester at 1725 cm<sup>-1</sup>, olefin at 1630 cm<sup>-1</sup>; NMR methyl protons on a carbon-carbon double bond, multiplet (3H) at **b** 1.8 ppm, methoxy protons (3H), 3.75 ppm, exomethylenic protons (2H) ~ 4.90 ppm and allenic proton (1H) ~ 6.15 ppm). We can explain the formation of these compounds by a subsequent reaction of tetrabutylammonium fluoride with the primarily formed chloro allenes <u>4</u>. Indeed, in the presence of an excess of tetrabutylammonium fluoride we observed the total transformation of chloroallenic esters <u>4</u> into the also unknown allenic esters <u>5</u> (50-60% yield). The intermediate formation of trienic esters <u>6</u> formed also by a <u>**β** elimination of a vinylic chloride can be postulated since it had been established that butatrienes are isomerized in basic conditions into enallenes <sup>(3)</sup>.</u>



 $\alpha$ - and  $\beta$ -allenic carboxylates, prepared by various methods <sup>(5,6)</sup>, are often used as intermediates in organic synthesis; for instance they are precursors of 2E, 4Z or 2E, 4E dienoic esters which are pheromones or food aromas <sup>(7)</sup>. Our method opens a new route to substituted  $\alpha$ - and  $\beta$ -allenic esters. Some synthetic applications of these compounds are being examined.



Table : Preparation of lpha - and eta-allenic esters.

a) Ratio determined by V.P.C. With 2 equivalents of nBu<sub>4</sub>NF only esters <u>5</u> were isolated (50-60%). b) Yields from <u>1</u>, calculated after purification by liquid chromatography.

#### Preparation of chloroacetals of cyclopropanones

Under argon a solution of methyllithium in ether (7.5 mmol) was added dropwise to a stirred mixture of the ketenealkylsilylacetal (2.5 mmol) and l,l-dimethyl-2,3,3-trichlorocyclopropane (2.5 mmol) at room temperature. After 4 h at r.t., the mixture was diluted with 5 ml of ether and 5 ml of water. The aqueous phase was extracted with ether (2 x 5 ml) and the organic layer washed with water (pH = 7). Then the organic phase was dried over sodium sulfate. The solvent was removed under vacuum and the crude reaction mixture used directly for the rearrangement.

### Preparation of allenic esters

To the crude acetal of cyclopropanone dissolved in dried tetrahydrofuran (5 ml), a solution of tetrabutylammonium fluoride was added (2.5 mmol ; 2.5 ml sol. IM/I). The mixture was stirred under nitrogen for 6 h at room temperature (entries I, 4-6), or 22 h at reflux (entries 2, 3). The solvent was removed under vacuum, then ether and water were added (5 ml). The aqueous phase was extracted with ether (2 x 5 ml) and the organic layer washed with water (pH = 7). The organic phase was dried ( $Na_2SO_4$ ), filtered and concentrated under vacuum. The products were isolated by column chromatography of the residue on SiO<sub>2</sub> (hexane-ether (98/2) (see the table).

#### References

- N. Slougui, G. Rousseau, Tetrahedron, <u>41</u>, 2643 (1985); L. Blanco, G. Rousseau, Bull. Soc. Chim. Fr., 455 (1985).
- 2) M.S. Baird, S.R. Buxton and J.S. Whitley, Tetrahedron Lett., 25, 1509 (1984).
- P.P. Montijn, L. Brandsma, J.F. Arens, Rec. Trav. Chim. Pays Bas, <u>86</u>, 129 (1967); See also E.M. Kosower, T.S. Sorenson, J. Org. Chem., <u>28</u>, 687 (1963).
- 4) H. Hopf, The chemistry of functional groups, Patai Editor, p. 779 (1980).
- 5)  $\alpha$ -allenic carboxylates :

- from propargylic alcohols or derivatives : J.K. Crandall, G.L. Tindell, J.C.S. Chem. Comm., 1411 (1970) ; C.A. Henrick, W.E. Willy, D.R. Mc Kean, E. Bagjiolini, J.B. Siddall, J. Org. Chem., <u>40</u>, 8 (1975); see also the reference (6b) ; - from  $\beta$ -ethynyl  $\beta$ -propiolactones : T. Sato, M. Kawashiwa, T. Fujisawa, Tetrahedron Lett., <u>22</u>, 2375 (1981) ; - from 2,4-pentanedioic acids : K.J. Crowley, J. Amer. Chem. Soc., <u>85</u>, 1210 (1963) ; - from unsaturated aldehydes : P.-H. Bonnet, F. Bohlmann, Tetrahedron Lett., 5183 (1970).

6)  $\beta$ -allenic carboxylates :

- from ketenes : Z. Hamlet, W. Barker, Synthesis, 543 (1970) ; - from acid chlorides : H.J. Bestmann, G. Graf, H. Hartung, S. Kalewa, E. Vilsmaier, Chem. Ber., 103, 2794 (1970) ; R.W. Lang, H.J. Hansen, Helv. Chim. Acta, <u>62</u>, 1025 (1979). - from ketones : G. Buono, Tetrahedron Lett., 3257 (1972) ; - from 3-yne carboxylates : G. Eglinton, E.R.H. Jones, G.H. Mansfield, M.C. WHiting, J. Chem. Soc., 3197 (1954) ; M. VERNY, R. Vessière, Bull. Soc. chim. Fr., 1729 (1969) ; - from propargylic halides : E.R.H. Jones, G.W. Whitham, M.C. Whiting, J. Chem. Soc., 4628 (1957) ; P.M. Greaves, S.R. Landor, M.M. Lwanga, Tetrahedron, <u>31</u>, 3073 (1975) ; - from propargylic carbonates : J. Tsuji, T. Sugiura, I. Minami, Tetrahedron Lett., <u>27</u>, 731 (1986) ; - from  $\beta$ -keto esters : E.C. Taylor, R.L. Robey, A. KcKillop, J. Org. Chem., 37, 2797 (1972).

7) a) S. Tsuboi, T. Masuda, A. Tekeda, J. Org. Chem., <u>47</u>, 4478 (1982); b) R.A. Amos, J.A.Katzenellenbogen, J. Org. Chem., <u>43</u>, 555 (1978).

(Received in France 18 December 1986)