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Abstract: A rapid and efficient method is developed to synthesize
new polysubstituted indeno[1,2-b]pyridines via three-component
microwave-assisted reaction of arylidenemalononitrile, 1,3-indane-
dione and aromatic amine. This method has the advantages of short
synthetic route, operational simplicity, increased safety for small-
scale high-speed synthesis, and minimal environmental impact.
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The use of combinatorial chemistry has tremendously
changed the theory and practice of design and synthesis of
new substances for pharmaceutical research. Great efforts
have been focused on synthesizing libraries of small
heterocyclic molecules because of their high degree of
structural diversity and extensive utility as therapeutic
agents.1 However, the range of suitably functionalized
heterocyclic building blocks for the synthesis of structur-
ally diverse libraries is rather limited. The development of
new, rapid, and clean synthetic routes toward focused
libraries of such compounds is therefore of great impor-
tance to both medicinal and synthetic chemists.2 Undoubt-
edly, synthetic strategies involving multicomponent
reactions (MCRs) have manifested themselves as a
powerful tool for the rapid introduction and expansion of
molecular diversity.3 Consequently, the design and
development of new MCR routes for the generation of
heterocycles receives growing interest.4

Figure 1 Onychnine

Six-membered nitrogen-containing heterocycles are
abundant in nature and exhibit diverse and important
biological properties.5 Alkaloids that contain the pyridine
ring continue to be the targets of extensive synthetic in-
terest, partly because there are many biologically active

natural products of this type and also because this cyclic
framework is found in many rigid structures that show
substantial selectivity in their interaction with enzymes or
receptors.6 The 4-azafluorenone alkaloids comprise a
small but biologically intriguing group of alkaloids.
Onychnine (1, Figure 1), the simplest member of this
family, was first isolated from the Brazilian Annonaceae
species (onychopetalum amazonicum, Guatteria
dielsiana) in 1976 and was shown to have anticandidal
activity.7 Recently, onychine derivatives were found to
exhibit adenosine A2a receptor binding and phospho-
diesterase inhibiting activities for the treatment of neuro-
degenerative disorders and inflammation related
diseases.8 They were also used as calcium antagonists9

and herbicides.10 Therefore, these compounds have distin-
guished themselves as heterocycles of profound chemical
and biological significance. As a result, the synthesis of
these molecules has attracted considerable attention,11 and
the synthesis of new heterocyclic compounds containing
indenopyridine scaffold and development of more rapid
and efficient entry to these heterocycles are strongly de-
sired. With the aim to develop more efficient synthetic
processes, shorten the synthetic route and minimize by-
products, and in continuation of our recent interest in the
construction of heterocyclic scaffolds,12 we develop a
facile, three-component reaction between arylidenema-
lononitrile 2, 1,3-indanedione 3 and aromatic amine 4
under microwave irradiation (MWI) to afford a series of
new heterocyclic compounds, the polysubstituted in-
deno[1,2-b]pyridines (Scheme 1).

Scheme 1

To explore the scope and versatility of this method,
various reaction conditions were investigated, including
solvent and temperature. Highlighted in Table 1 for
compound 5j (Scheme 2), for example, is the influence
of solvent and temperature on the reaction yield. In N,N-
dimethylformamide (DMF) (1.0 mL), the reaction of
4-chlorobenzylidenemalononitrile (2c, 1 mmol), 1,3-in-
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danedione (3, 1.0 mmol) and p-toluidine (4b, 1.2 mmol)
was carried out at temperatures ranging from 80 °C to
130 °C, with an increment of 10 °C each time. The yield
of product 5j was increased and the reaction time was
shortened as the temperature was increased from 80 °C to
120 °C (Table 1, entries 1–5). However, further increase
of the temperature to 130 °C failed to improve the yield of
product 5j (Table 1, entry 6). Therefore, 120 °C was cho-
sen as the reaction temperature for all further microwave-
assisted reactions. To further optimize reaction condi-
tions, similar tests were carried out in various solvents
including DMF, glycol, glacial acetic acid, and water. As
listed in Table 1 (entry 5) DMF gave the best result.

We therefore selected DMF as the reaction solvent for fur-
ther studies. At the beginning, we made a search for the
arylidenemalononitrile substrate scope with 1,3-indane-
dione and aniline as model substrates (Table 2, entries 1–
7), and the results indicated that arylidenemalononitrile
bearing functional groups such as nitro, bromo, chloro, or
methoxy were able to affect the synthesis of compounds
5. We have also observed delicate electronic effects: that
is, arylidenemalononitrile with electron-withdrawing
groups (Table 2, entries 1–4) reacted rapidly, while sub-
stitution of electron-rich groups (Table 2, entry 6) on the
benzene ring decreased the reactivity, requiring longer
reaction times. Moreover, the 2-thienylmethylenemalono-
nitrile (Table 2, entry 7) still displayed high reactivity
under this standard condition. To further expand the scope
of aromatic amine substrates, we used arylidenemalono-
nitrile and 1,3-indanedione as model substrates and exam-
ined various aromatic amines including 4b, 4c, and 4d. In
all these cases, the reactions proceeded steadily to pro-
duce corresponding polysubstituted indeno[1,2-b]pyr-
idines in good yields of 78–91%.

In order to further expand the scope of the present method,
the replacement of aromatic amines 4 with aliphatic
amines 6 such as (S)-1-phenylethanamine (6a), (R)-1-
phenylethanamine (6b), and cyclohexanamine (6c) were
examined. To our delight, under the optimized conditions
described above, the reactions proceeded smoothly, too.
However, instead of the indeno[1,2-b]pyridines 5, inde-
no[1,2-b]pyran derivatives 7 were generated (Scheme 3).
These results suggest that the basicity of amines may in-
fluence the synthesis of compounds 5. Aliphatic amines
have stronger basicity than aromatic amines, and therefore
have acted as a base rather than a reactant (Table 3, entries
1–5).

Table 1 Optimization of Reaction Conditions for Compound 5j

Entry Solventa Temp (°C) Time (min) Yield (%)b

1 DMF 80 12 10

2 DMF 90 10 35

3 DMF 100 8 58

4 DMF 110 7 74

5 DMF 120 6 91

6 DMF 130 6 89

7 Glycol 120 8 84

8 AcOH 120 8 59

9 H2O 120 8 42

a The volume of solvent is 1.0 mL.
b Isolated yields.
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In a further test, dimedone was employed instead of 1,3-
indanedione to react with 2 and amines including aromatic
amines 4 (4a–d) and aliphatic amines 6 (6a,b). Surpris-
ingly, we could not get the expected polysubstituted quin-
olines 9 in all cases. Instead, the chromenes 1016 were
obtained (Scheme 4). The results were summarized in
Table 3. The pKa value of 1,3-indanedione (pKa = 7.2)17 is
higher than that of dimedone (pKa = 5.2).17 We think that
the pKa of the 1,3-dicarbonyl compounds plays a critical
role to the success of the reaction. This stimulated us to
find some other 1,3-dicarbonyl compounds with higher
pKa as substrates. As a representative, we selected 2,4-
pentanedione (pKa = 9.0)18 to test our hypothesis. Un-
fortunately, we failed to get the anticipated compounds,
N-aryl-2-aminepyridine derivatives.

Scheme 4

In addition, we performed the reactions for synthesizing
5j under both MW (120 °C) and classical heating condi-
tions in DMF. We found that the reaction was efficiently
promoted by MW irradiation, and the reaction time was

Table 2 Microwave Synthesis of Polysubstituted Indeno[1,2-b]pyridines 520

Entry Product 2 Ar 4 Ar¢ Time (min) Yield (%)a Mp (°C)

1 5a 2a 4-O2NC6H4 4a Ph 4 89 >300

2 5b 2b 3-O2NC6H4 4a Ph 4 91 >300

3 5c 2c 4-ClC6H4 4a Ph 5 84 299–300

4 5d 2d 4-BrC6H4 4a Ph 4 86 >300

5 5e 2e Ph 4a Ph 6 78 279–281

6 5f 2f 4-MeOC6H4 4a Ph 8 79 238–239

7 5g 2g 2-Thienyl 4a Ph 8 81 211–212

8 5h 2a 4-O2NC6H4 4b 4-MeC6H4 6 86 >300

9 5i 2b 3-O2NC6H4 4b 4-MeC6H4 5 88 263–265

10 5j 2c 4-ClC6H4 4b 4-MeC6H4 6 91 301–303

11 5k 2d 4-BrC6H4 4b 4-MeC6H4 5 84 >300

12 5l 2f 4-MeOC6H4 4b 4-MeC6H4 9 81 245–246

13 5m 2h 3,4-Cl2C6H3 4b 4-MeC6H4 4 89 292–294

14 5n 2i 3,4-OCH2OC6H3 4b 4-MeC6H4 9 84 285–287

15 5o 2a 4-O2NC6H4 4c 4-HOC6H4 4 84 >300

16 5p 2b 3-O2NC6H4 4c 4-HOC6H4 5 87 >300

17 5q 2c 4-ClC6H4 4c 4-HOC6H4 6 82 >300

18 5r 2i 3,4-OCH2OC6H3 4c 4-HOC6H4 8 78 292–294

19 5s 2a 4-O2NC6H4 4d 4-ClC6H4 6 84 >300

20 5t 2b 3-O2NC6H4 4d 4-ClC6H4 5 87 282–284

21 5u 2c 4-ClC6H4 4d 4-ClC6H4 5 83 >300

22 5v 2d 4-BrC6H4 4d 4-ClC6H4 4 81 >300

23 5w 2j 4-HO-3-O2NC6H3 4d 4-ClC6H4 4 85 >300

24 5x 2h 3,4-Cl2C6H3 4d 4-ClC6H4 4 83 >300

a Isolated yields.
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strikingly reduced to six minutes under MW irradiation
from four hours required under the traditional heating
conditions, and the yield was increased to 91% from 56%.

The structures of all the synthesized compounds were
established on the basis of their spectroscopic data. The IR
spectrum of compound 5k showed strong absorptions at
3306 cm–1 due to NH group, 2213 cm–1 due to CN (triple
bond) group, and 1713 cm–1 due to C=O functionality.
The 1H NMR spectrum of 5k showed a singlet at d = 2.35
due to -CH3, and a singlet at d = 9.90 due to NH proton
(exchanged with D2O).

A reasonable mechanism for the formation of the products
5 was outlined in Scheme 5. The reaction occurred via an
initial formation of the compound 11 by Michael addition
reaction of 2 and 1,3-indanedione 3, as shown in
Scheme 5, which followed by nucleophilic attack of OH
to CN group to give indeno[1,2-b]pyran 12. Subsequently,
the pyran ring underwent addition and then elimination
(ring opening) to react with aromatic amines to give the

intermediate 13, which then cyclized and dehydrogenated
to afford the aromatized compound 5. This type of dehy-
drogenation was well precedented.19

In conclusion, we have developed a microwave-assisted
three-component reaction of arylidenemalononitrile, 1,3-
indanedione and aromatic amines, and have shown its
application in the synthesis of a number of new poly-
substituted indeno[1,2-b]pyridines in good to excellent
yields. In addition, this series of new indeno[1,2-b]quino-
line derivatives may prove to be of novel biological in-
terest to provide new classes of biological active
compounds for biomedical screening, which is in progress
in our laboratories.
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