PX₃-induced migratory insertion reactions of half-sandwich-type carbenerhodium(1) complexes[†]

Ulrich Herber,^a Rita Guerrero Sanchez,^b Olaf Gevert,^a Matthias Laubender^a and Helmut Werner^{*a}

^a Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany. E-mail: helmut.werner@mail.uni-wuerzburg.de

^b Grupo de Química Organometálica, Departamento de Chímica Inorgánica, Facultad de Química, Universidad de Murcia, E-30071 Murcia, Spain

Received (in Strasbourg, France) 23rd October 2000, Accepted 15th November 2000 First published as an Advance Article on the web 15th February 2001

The carbenerhodium(I) complexes *trans*-[RhCl(=CPh₂)(L)₂] (L = PPrⁱ₃, **1a**; SbPrⁱ₃, **1b**) react with PF₃ by cleavage of the rhodium–carbene bond to give the corresponding PF₃ derivatives *trans*-[RhCl(PF₃)(L)₂] **5a**,**b**, in good yield. In contrast, treatment of the half-sandwich-type compound $[(\eta^5-C_5H_5)Rh(=CPh_2)(PPr^i_3)]$, **2a**, with both PF₃ and P(OPh)₃ leads to the migratory insertion of the CPh₂ unit into one of the cyclopentadienyl C–H bonds to form the ring-substituted products $[\{\eta^5-C_5H_4(CHPh_2)\}Rh(PX_3)(PPr^i_3)]$ (X = F, **6a**; OPh, **6b**). The molecular structures of **6a** and **6b** have been determined by X-ray crystallography. The reaction of the stibine complex $[(\eta^5-C_5H_5)Rh(=CPh_2)(SbPr^i_3)]$, **2b**, with PF₃ proceeds by ligand displacement to afford the new carbenerhodium(I) compound $[(\eta^5-C_5H_5)Rh(=CPh_2)(PF_3)]$, **7**. The mechanism of the migratory insertion reaction is discussed.

Recently, we reported that square-planar as well as halfsandwich-type diphenylcarbenerhodium(I) complexes, *trans*-[RhCl(=CPh₂)(PPrⁱ₃)₂], **1a**, and [(η^5 -C₅H₅)Rh(=CPh₂)(PPrⁱ₃)], **2a**, upon treatment with CO easily undergo C–C coupling reactions (Scheme 1).¹ Instead of displacing a phosphine ligand, carbon monoxide induces cleavage of the rhodiumcarbene bond and affords, besides *trans*-[RhCl(CO)(PPrⁱ₃)₂], **3**, and [(η^5 -C₅H₅)Rh(CO)(PPrⁱ₃)], **4**, exclusively diphenylketene. By taking the related σ -donor/ π -acceptor capabilities of CO and PF₃ into consideration,² we became interested to find out how the same starting materials **1a** and **2a** would behave toward PF₃. Although a great number of phosphorus ylides R₃PCR'₂ with R' = aryl are known,³ to the best of our knowledge a corresponding trifluoro derivative F₃PCR'₂ has not been described in the literature as yet.

We report in this paper that, not unexpectedly, a coupling of the diphenylcarbene ligand of either **1a** or **2a** with PF_3 does not take place. However, the surprising and most noteworthy result is that the half-sandwhich-type complex **2a** reacts under mild conditions with both PF_3 and $P(OPh)_3$ by migratory insertion of the CPh_2 unit into one of the cyclopentadienyl

[†] Dedicated to Professor E.-G. Jäger on the occasion of his 65th birthday.

C-H bonds to form a ring-substituted product. Some preliminary observations have already been communicated.⁴

Results and discussion

Treatment of the square-planar bis(phosphine) complex 1a, which is easily accessible from 1b and PPri₃ by ligand exchange,^{1a,b} with PF₃ in benzene at room temperature leads to displacement of the carbene by PF₃. After recrystallization from acetone, compound 5a is isolated as a yellow solid in 68% yield. The reaction of the bis(stibine) counterpart 1b with PF₃ proceeds analogously and gives compound **5b** (Scheme 2). In this case, no free SbPr₃ⁱ can be detected spectroscopically in the reaction mixture, which means that PF₃ behaves completely differently towards 1b compared with PPri₃ and other trialkyl- or triarylphosphines. The latter react with 1b by substitution of the stibine ligands to afford trans-[RhCl(=CPh₂)(PR₃)₂]. The ³¹P NMR spectrum of **5a** exhibits two well-separated resonances at δ 111.9 and 46.8, which due to ${}^{31}P_{-}{}^{103}Rh$, ${}^{31}P_{-}{}^{31}P$ and ${}^{31}P_{-}{}^{19}F$ couplings appear as doublets of doublets of quartets. In the ³¹P NMR spectrum of **5b**, a doublet of quartets at δ 120.2 is observed. With regard to the rhodium-free by-products, a GC/MS analysis of the solution revealed that the CPh₂ moiety is mainly transformed into tetraphenylethene. Small amounts of substituted arenes can also be detected. We note that an analog of 5a with two triphenyl- instead of two triisopropylphosphine ligands is known; it has been prepared from the dimer $[RhCl(PF_3)_2]_2$ and PPh₃ by cleavage of the chloro bridges.⁵

The cyclopentadienyl complex **2a** also reacts with PF₃ at room temperature. Passing a stream of carefully dried phosphorus trifluoride through a solution of **2a** in benzene leads to a smooth change of color from blue to orange and affords, after chromatographic workup and recrystallization from pentane, compound **6a** (being analytically a 1 : 1 adduct of **2a** and PF₃) as an orange air- and moisture-sensitive solid in 72% yield (Scheme 3). The most typical spectroscopic features of **6a** are the signals for the CHPh₂ proton at δ 4.79 in the ¹H NMR and the two resonances for the phosphorus nuclei of the PF₃ and PPrⁱ₃ ligands at δ 119.4 and 79.0 in the ³¹P NMR spectrum. Both ³¹P NMR signals show a strong ³¹P– ¹⁰³Rh coupling of, respectively, 446.3 and 221.0 Hz.

The migratory insertion of the CPh₂ unit into one of the C-H bonds of the ring can be induced not only by PF₃ but also by $P(OPh)_3$. The phosphite, however, is less reactive than PF_3 and therefore the reaction of 2a with a four-fold excess of P(OPh)₃ in toluene at room temperature takes several days. After removal of the solvent and recrystallization of the residue from ether-pentane orange crystals of the insertion product 6b are obtained; they are considerably more thermally stable than the PF₃ analog 6a. In agreement with the proposed structure, the ¹H NMR spectrum of **6b** displays two signals for the pairwise equivalent C_5H_4 protons at δ 4.69 and 4.47 and the ¹³C NMR spectrum equally shows two resonances at δ 86.5 and 84.5 for the respective ring carbon atoms. The two resonances in the ${}^{31}P$ NMR spectrum of **6b** at δ 132.4 and 75.3 reveal a smaller ${}^{31}P{}^{-31}P$ coupling (64.4 Hz) than those of 6a (77.6 Hz).

The reaction of the triisopropylstibine complex 2b with PF₃ follows a different pathway than that of the PPrⁱ₃ counterpart 2a. Instead of the carbene, the stibine ligand is displaced and following chromatographic workup the C₅H₅Rh compound 7 is isolated as a deep red microcrystalline solid in 72% yield (see Scheme 4). In this case, PF_3 behaves analogously to CO toward 2b as the starting material. In contrast, triphenylphosphite does not react with 2b by ligand substitution. While no reaction takes place using equimolar amounts of 2b and P(OPh)₃ (toluene, room temperature, 2 days), with a fourfold excess of the phosphite a mixture of products is formed, which could not be separated by either fractional crystallization or column chromatography. Since as discussed below the half-sandwich-type complexes $[(\eta^5-C_5H_5)M(L)_2]$ with M = Co, Rh and Ir prefer to react with Lewis bases by an associative mechanism, it is conceivable that the low reactivity of P(OPh)₃ toward 2b is due to the larger size of the phosphite compared with PF₃.

Scheme 4

Fig. 1 An ORTEP plot of compound 6a. The ellipsoids are drawn at the 50% probability level.

rhodium has a somewhat distorted trigonal coordination sphere if the midpoint of the substituted cyclopentadienyl ring is taken as one coordination site. The Rh–PF₃ as well as the Rh–P(OPh)₃ bonds are significantly shorter than the Rh-PPrⁱ₃ distance (see Table 1), which confirms the distinct difference in the π -acceptor strength of PF₃ and P(OPh)₃ on one side and of PPrⁱ₃ on the other. The CHPh₂ moiety in **6a** and **6b** is pointing away from the bulky triisopropylphosphine ligand, which probably reduces the steric repulsion between the two units. The distance between rhodium and the substituted ring carbon atom C1 is somewhat larger in the triphenylphosphite complex **6b** than in **6a**, which could also be due to steric requirements.

Regarding the mechanism of formation of **6a** and **6b**, two routes are conceivable. Since it is known, mainly due to the

Fig. 2 An ORTEP plot of compound **6b**. The ellipsoids are drawn at the 50% probability level.

Table 1 Selected bond lenghts (Å) and angles (°) for complexes 6a and 6b

	6a	6b
Rh–P1	2.275(3)	2.263(2)
Rh–P2	2.082(4)	2.120(2)
Rh–C1	2.307(5)	2.356(7)
Rh–C2	2.220(5)	2.206(8)
Rh–C3	2.294(6)	2.298(8)
Rh–C4	2.258(3)	2.304(7)
Rh–C5	2.304(6)	2.330(7)
C1–C2	1.434(6)	1.45(1)
C2–C3	1.410(6)	1.43(1)
C3–C4	1.385(7)	1.41(1)
C4–C5	1.438(6)	1.43(1)
C5-C1	1.398(5)	1.40(1)
C1-C6	1.518(5)	1.51(1)
P1-Rh-P2	97.0(1)	98.54(8)
C2C1C5	106.2(3)	105.3(7)
C5-C1-C6	128.6(4)	129.3(7)
C2-C1-C6	125.1(3)	125.3(7)

work of Basolo and his group,⁶ that ligand displacement reactions of cyclopentadienylrhodium(I) complexes $[(\eta^5 C_5H_5$ Rh(L)₂ with Lewis bases L' follow second-order kinetics, we assume that from 2a and PX₃ a labile 1:1 adduct A is initially formed (Scheme 5). This 20-electron intermediate could afford, via ring slippage, a second intermediate B (with an 18-electron configuration at the metal) in which the cyclopentadienyl unit would be η^3 - coordinated. Alternatively, the carbene ligand of intermediate A could attack the fivemembered ring to give the diene alkyl compound C, which by subsequent hydrogen transfer to the CPh₂ carbon and breaking of the Rh–C σ -bond affords **6a,b**. The final insertion product could also be generated from **B** via migration of the carbene to the uncoordinated C-C double bond or from B via C by insertion of the carbene into an η^3 -allylic Rh–C bond. A similar rearrangement probably does occur during formation of the substituted indenylrhodium(I) complexes $[\{\eta^5-C_9H_6\}$ $(CHPh_2)$ Rh(CO)(L)] $(L = SbPr_3^i, PPr_3^i, PPh_3, PPr^iPh_2^i)$ $PPr_{2}^{i}Ph$), which were prepared from $[(\eta^{5}-C_{9}H_{7})Rh(=CPh_{2})]$ (L)] and $CO.^7$ It should be mentioned that the starting material 2a reacts not only with PF₃ and P(OPh)₃ but also with various Brönsted acids HX (X = Cl, Br, I, CF_3CO_2) by formal oxidative addition to yield the ring-substituted hydridorhodium(III) $[\{\eta^5-C_5H_4(CHPh_2)\}$ complexes RhHX(PPrⁱ₃)].^{4,8} In this case, a labelling experiment using $[(\eta^5-C_5D_5)Rh(=CPh_2)(PPr_3^i)]$ and HCl as the substrates suggests that the migratory insertion of the carbene occurs via a η^4 -cyclopentadienerhodium(I) species as an intermediate.

In conclusion, the present investigations have shown that the half-sandwich-type compound **2a** behaves completely dif-

 PX_3

— Ph

.Ph

PΧ

Scheme 5

– Ph

CHPh₂

PX₃

ÝX3

Rh

6a, b

В

С

– Ph

 $(L = PPr_{3}^{i}; X = F, OPh)$

ferently toward CO and PX₃ (X = F, OPh). While carbon monoxide reacts with **2a** to give the substitution product **4** and diphenylketene, treatment of **2a** with PX₃ leads to a migratory insertion of the carbene ligand into one of the ring C–H bonds to produce **6a,b**. This process has, to the best of our knowledge and apart from our own work,^{4,7,9} no precedence.¹⁰ The closest analogy to the formation of C₅H₄CHPh₂ from C₅H₅ and CPh₂ that we are aware of goes back to the work of Guth and Kirmse, which illustrates that arylcarbenes, generated from the corresponding diazo compounds, undergo an intramolecular insertion into the *ortho* C–H bond of a connected phenyl ring.¹¹

Experimental

All experiments were carried out under an atmosphere of argon by Schlenk techniques. The starting materials $1a,b,^{1b}$ $2a,b^{1c}$ and PF₃¹² were prepared as described in the literature. NMR spectra were recorded at room temperature on Bruker AC 200 and Bruker AMX 400 instruments. Melting points were measured by DTA. Abbreviations used: s, singlet; d, doublet; t, triplet; sept, septet; m, multiplet; vt, virtual triplet; br, broadened signal; coupling constants N and J in Hz.

Syntheses

trans-[RhCl(PF₃)(PPrⁱ₃)₂], 5a. A slow stream of PF₃ was passed through a solution of 1a (95 mg, 0.15 mmol) in benzene (20 cm³) for 20 min at room temperature. A change of color from green to yellow occurred. After the reaction mixture had been stirred for 20 min, the solvent was removed *in vacuo* and the oily residue was recrystallized from acetone (5 cm³) at -60 °C. A yellow solid was formed, which was separated from the mother liquor and dried *in vacuo*: yield 56 mg (68%); mp 112 °C (decomp.) Anal. found: C, 39.13; H, 8.21%. C₁₈H₄₂ClF₃P₃Rh requires: C, 39.54; H, 7.74%. NMR (C₆D₆): $\delta_{\rm H}$ (400 MHz) 2.69 (6 H, m, PCHCH₃), 1.25 [36 H, dvt, N 13.9, J(H,H) 6.6, PCHCH₃]; $\delta_{\rm C}$ (100.6 MHz) 24.0 (vt, N 10.5, PCHCH₃), 19.0 (s, PCHCH₃); $\delta_{\rm P}$ (162.0 MHz) 111.9 [ddq, J(F,P) 1267.9, J(Rh,P) 390.4, J(P,P) 52.2, PF₃], 46.8 [ddq, J(Rh,P) 111.9, J(P,P) 52.2, J(F,P) 6.4, PPrⁱ₃].

trans-[RhCl(PF₃)(SbPrⁱ₃)₂], 5b. This compound was prepared as described for 5a from 1b (100 mg, 0.12 mmol) and PF₃ in benzene (20 cm³). Yellow solid: yield 59 mg (68%); mp 88 °C (decomp.) Anal. found: C, 29.53; H, 5.79%. C₁₈H₄₂ClF₃PRhSb₂ requires: C, 29.68; H, 5.81%. NMR (C₆D₆): $\delta_{\rm H}$ (200 MHz) 2.37 [6 H, sept, J(H,H) 7.3, SbCHCH₃], 1.38 [36 H, d, J(H,H) 7.3, SbCHCH₃]; $\delta_{\rm P}$ (81.0 MHz) 120.2 [dq, J(F,P) 1256.5, J(Rh,P) 356.2].

 $[\{\eta^5-C_5H_4(CHPh_2)\}Rh(PF_3)(PPr_3)], 6a. A slow stream of$ PF₃ was passed through a solution of 2a (100 mg, 0.20 mmol) in benzene (20 cm³) at room temperature for 20 min. A change of color from blue to red occurred. After the solution was stirred for 20 min at room temperature, the solvent was removed and the oily residue was dissolved in pentane (2 cm^3) . The solution was chromatographed on Al₂O₃. With pentane, an orange-red fraction was eluted, which was evaporated to dryness in vacuo. Recrystallization of the residue from acetone (1 cm^3) at $-78 \,^{\circ}\text{C}$ led to the precipitation of orange crystals, which were separated from the mother liquor, washed with a small amount of pentane at -30 °C and dried: yield 48 mg (41%); mp 42 °C (decomp.) Anal. found: C, 55.49; H, 6.35%. C₂₇H₃₆F₃P₂Rh requires: C, 55.68; H, 6.23%. NMR (C₆D₆): $\delta_{\rm H}$ (200 MHz) 7.26 (4 H, m, ortho-H of C₆H₅), 7.02 (8 H, m, meta- and para-H of C₆H₅), 5.09 [4 H, m, C₅H₄], 4.79 (1 H, m, CHPh₂), 1.20 [3 H, dsept, J(P,H) 13.3, J(H,H) 7.1, PCHCH₃], 0.82 [18 H, dd, J(P,H) 13.7, J(H,H) 7.1, PCHCH₃]; $\delta_{\rm P}$ (81.0 MHz) 119.4 [ddq, J(F,P) 849.3, J(Rh,P)

446.3, *J*(P,P) 77.6, PF₃], 79.0 [dd, *J*(Rh,P) 221.0, *J*(P,P) 77.6, PPrⁱ₃].

 $[\{\eta^5-C_5H_4(CHPh_2)\}Rh\{P(OPh)_3\}(PPr^i_3)], 6b.$ A solution of 2a (150 mg, 0.30 mmol) in toluene (10 cm³) was treated with P(OPh)₃ (316 µl, 1.20 mmol) and stirred for 3 days at room temperature. A change of color from deep blue to orange occurred. The solvent was removed in vacuo and the oily residue was washed three times with 5 cm³ portions of pentane. The remaining solid was recrystallized from etherpentane (1:10, 3 cm³) at 5 °C. Orange crystals were formed, which were separated from the mother liquor and dried; yield 128 mg (53%); mp 89 °C (decomp.) Anal. found: C, 67.59; H, 6.14%. C₄₅H₅₁O₃P₂Rh requires: C, 67.16; H, 6.39%. NMR (C_6D_6) : δ_H (400 MHz) 7.46–6.78 (15 H, m, C_6H_5 and OC_6H_5), 4.69, 4.47 (4 H, both s, C₅H₄), 4.24 (1 H, s, CHPh₂), 2.10 [3 H, dsept, J(P,H) 14.4, J(H,H) 7.3, PCHCH₃], 1.11 [18 H, dd, J(P, H) 13.4, J(H,H) 7.3, PCHCH₃]; $\delta_{\rm C}$ (100.6 MHz) 153.2 [d, J(P, P)C) 7.1, ipso-C of OC₆H₅], 145.9 (s, ipso-C of C₆H₅), 129.8, 128.2, 125.8, 124.5, 123.8, 122.3 (all s, OC₆H₅ and C₆H₅), 86.5, 84.5 (both s, C₅H₄), 49.6 (s, CHPh₂), 28.1 [d, J(P,C) 20.3, PCHCH₃], 20.0 (s, PCHCH₃); δ_P(162 MHz) 132.4 [dd, J(Rh, P) 388.3, J(P,P) 64.4, P(OPh)3], 75.3 [dd, J(Rh,P) 191.6, J(P,P) 64.4, PPrⁱ₃].

[(η⁵-C₅H₅)Rh(=CPh₂)(PF₃)], 7. A slow stream of PF₃ was passed through a solution of 2b (59 mg, 0.10 mmol) in benzene (20 cm³) at room temperature for 20 min. A change of color from blue to red occurred. After the solution was stirred for 20 min at room temperature, it was worked up as described for 6a. Recrystallization from acetone (1 cm³) at -78 °C led to the formation of deep red crystals. Yield 30 mg (72%); mp 46 °C (decomp.) Anal. found: C, 51.02; H, 3.64%. C₁₈H₁₅F₃PRh requires: C, 51.21; H, 3.58%. NMR (C₆D₆): δ_H (200 MHz) 7.30 (4 H, m, *ortho*-H of C₆H₅), 7.02 (6 H, m, *meta*- and *para*-H of C₆H₅), 4.88 [5 H, d, J(Rh,H) 1.8, C₅H₅]; δ_P (81.0 MHz) 117.1 [dq, J(F,P) 1334.9, J(Rh,P) 488.2].

X-Ray crystallography

Single crystals of **6a** were grown from pentane (8 °C); crystal size 0.55 × 0.30 × 0.25 mm; monoclinic, space group C2/c (no. 15); a = 34.48(9), b = 8.96(2), c = 17.67(3) Å, $\beta = 96.85(2)^\circ$, U = 5427(3) Å³, $d_{calc} = 1.426$ g cm⁻³; max. $2\Theta = 48^\circ$ [Mo-K $\alpha \lambda = 0.71073$ Å, graphite monochromator, ω/Θ scan, Zr filter with factor 16.4, T = 293(2) K]; 4548 reflections scanned, 4162 unique [R(int) = 0.0136], 3736 observed [$I > 2\sigma(I)$], Lorentz polarization and empirical absorption corrections (ψ scans, min. transmission 80.0%); direct methods (SHELXS-86),¹³ 408 parameters, reflect/parameter ratio 10.2; $R_1 = 0.0364$, $wR_2 = 0.0972$; residual electron density 1.058/ - 0.425 e Å⁻³. Ref. code PULRIX, Cambridge Structural Database System, 2000. Single crystals of **6b** were grown from acetone (-20 °C); crystal size 0.12 × 0.10 × 0.08 mm; triclinic, space group $P\overline{1}$ (no. 2); a = 10.170(3), b = 11.177(2),

c = 17.401(3) Å, $\alpha = 85.68(1)$, $\beta = 106.85(1)$, $\gamma = 88.03(2)^{\circ}$, U = 1963.5(7) Å³, $d_{calcd} = 1.361$ g cm⁻³; max. $2\Theta = 48^{\circ}$ [Mo-K α , $\lambda = 0.710$ 73 Å, graphite monochromator, ω/Θ scan, Zr filter with factor 16.4, T = 173(2) K]; 6553 reflections scanned, 6159 unique [R(int) = 0.0467], 4323 observed [$I > 2\sigma(I)$], Lorentz polarization and empirical absorption corrections (ψ scans, min. transmission 64.12%); direct methods (SHELXS-86),¹³ 469 parameters, reflect/parameter ratio 13.13; $R_1 = 0.0730$, $wR_2 = 0.1943$; residual electron density 1.074/ - 1.273 e Å⁻³.

CCDC reference number 440/244. See http://www.rsc.org/ suppdata/nj/b0/b008601k/ for crystallographic files in .cif format

Acknowledgements

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (SFB 347), the Fonds der Chemischen Industrie and BASF AG. We also thank Mrs R. Schedl and Mr C. P. Kneis (DTA and elemental analyses) and Mrs M.-L. Schäfer and Dr W. Buchner (NMR spectra).

References

- (a) P. Schwab, N. Mahr, J. Wolf and H. Werner, Angew. Chem., 1993, 105, 1498; P. Schwab, N. Mahr, J. Wolf and H. Werner, Angew. Chem., Int. Ed. Engl., 1993, 32, 1480; (b) H. Werner, P. Schwab, E. Bleuel, N. Mahr, P. Steinert and J. Wolf, Chem. Eur. J., 1997, 3, 1375; (c) H. Werner, P. Schwab, E. Bleuel, N. Mahr, B. Windmüller and J. Wolf, Chem. Eur. J., 2000, 6, 4461.
- 2 (a) T. Kruck, Angew. Chem., 1967, 79, 27; T. Kruck, Angew. Chem., Int. Ed. Engl., 1967, 6, 53; (b) J. F. Nixon, Adv. Inorg. Chem. Radiochem., 1970, 13, 364; (c) T. Ziegler and A. Rauk, Inorg. Chem., 1979, 18, 1755.
- 3 (a) G. M. Kosolapoff and L. Maier, Organophosphorus Compounds, Wiley-Interscience, New York, 1972, vol. 3; (b) H. Schmidbaur, Adv. Organomet. Chem., 1976, 14, 205.
- 4 U. Herber, E. Bleuel, O. Gevert, M. Laubender and H. Werner, Organometallics, 1998, 17, 10.
- 5 (a) T. Kruck, N. Derner and W. Lang, Z. Naturforsch., B, 1966, 21, 1020; (b) D. A. Clement, J. F. Nixon and M. D. Sexton, J. Chem. Soc., Chem. Commun., 1969, 1509; (c) M. A. Bennett and D. J. Patmore, J. Chem. Soc., Chem. Commun., 1969, 1510.
- 6 (a) H. G. Schuster-Woldan and F. Basolo, J. Am. Chem. Soc., 1966, 88, 1657; (b) F. Basolo, Inorg. Chim. Acta, 1985, 100, 33.
- 7 E. Bleuel, O. Gevert, M. Laubender and H. Werner, Organometallics, 2000, 19, 3109.
- 8 E. Bleuel, P. Schwab, M. Laubender and H. Werner, J. Chem. Soc., Dalton Trans., 2001, 266.
- 9 E. Bleuel and H. Werner, C. R. Acad. Sci. Ser. IIc: Chim., 1999, 341.
- 10 K. H. Dötz, H. Fischer, P. Hofmann, F. R. Kreissl, U. Schubert and K. Weiss, *Transition Metal Carbene Complexes*, Verlag Chemie, Weinheim, 1983.
- 11 M. Guth and W. Kirmse, Acta Chem. Scand., 1992, 46, 606.
- 12 R. J. Clark and H. Belefant, Inorg. Synth., 1989, 26, 12.
- 13 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.