Hydrogen Bonding and Proton Transfer in Hydrido-bis-phenolate Complexes in Acetone

BY ZENON PAWLAK AND BOGUSŁAW NOWAK

Institute of Chemistry, University of Gdańsk, 80-952 Gdańsk, Poland AND MALCOLM F. FOX*

School of Chemistry, Leicester Polytechnic, Leicester LE1 9BH

Received 2nd September, 1981

The homoconjugation, $(ArO)_2H^-$, and heteroconjugation, $Ar'O^- \cdots HOAr$, (where Ar is aromatic) with proton transfer have been determined in acetone at 298 K. Tetra-alkylammonium phenolates were titrated with a variety of phenols to given homocomplexes and heterocomplexes. Potentiometric data give the overall equilibria constants, K_0 , proton-transfer constants, K_{PT} and formation constants, K_t . Two types of heterocomplexes were studied. When ArO^- is a weaker base than $Ar'O^-$, the complexation occurs without proton transfer, as confirmed by the low K_0 values for the reaction. The overall equilibrium constants, K_0 , are large when ArO^- is a stronger base than $Ar'O^-$, as both the equilibrium proton-transfer constant (K_{PT}) and equilibrium formation constant (K_t) of the hydrogen bond are included in the measurement of $K_0 = K_t K_{PT}$.

It has been shown by many authors studying the proton transfer in molecular complexes $B \cdot HA \Rightarrow BH^+A^-$

that symmetrical hydrogen bonding occurs when the difference of $\Delta p K_a$ (H₂O) ($\Delta p K_a$ being the difference between $p K_a$ values for the acceptor and donor) falls within the range -2 to +7.5. For instance, symmetrical hydrogen bonds in the systems phenol-substituted anilines in cyclohexane, benzoic-acid-substituted pyridines in acetonitrile, and carboxylic acid with base as solvent have been observed at the $\Delta p K_a$ (H₂O) values of -1.75, ¹ 3.75² and 2.3³ in water, respectively.

The conductiometric, spectrophotometric and potentiometric p_aH measurements (where p_aH is the hydrogen-ion activity) in mixtures of phenols with their tetraalkylammonium salts^{4, 5} shows stable complex formation of hydrido-bis-phenolate. Formation constants for homo- and hetero-complexes in acetonitrile have been determined.

In conductivity studies some phenols in acetone⁶ exhibited a considerable associative ability to form complex anions, $(ArO)_2H^-$. In this study the phenols were found to exhibit a stronger interaction in acetone [anion (ArO^-) -molecule (ArOH)] than carboxylic acids of approximately the same strength in water.

The enthalpy changes for the formation of hydrogen-bonded complexes of the form $(\text{RCOO})_2\text{H}^-$ and $(\text{ArO})_2\text{H}^-$ have been determined in propylene carbonate as solvent by a calorimetric method.⁷

The hydrogen-bond energy of homocomplexes decreases almost linearly with decreasing acidity of the proton donor. The ratio of the slopes of the curves for hydrido-bis-carboxylate and hydrido-bis-phenolate is ca. 4.5. This result may mean that substituent effects in aromatic acids are attenuated to a large degree through charge delocalization on hydrogen bonding to the negative phenoxide or benzoate ions.

2158 PROTON TRANSFER IN PHENOL COMPLEXES IN ACETONE

Anions with a localized charge can be stabilized in polar aprotic solvents either by homoconjugation:

$$ArO^{-} + HOAr \rightleftharpoons (ArO)_{2}H^{-}$$
 (1)

or by heteroconjugation without proton transfer or, alternatively, with proton transfer

$$ArO^{-} + Ar'OH \rightleftharpoons ArO^{-} \cdots HOAr \text{ or } ArOH^{-} OAr'$$
 (2)

where Ar'OH is a weaker or stronger acid than ArOH.^{8,9}

Studies on p_aH in acetone solution showed that the interaction between phenols (Ar'OH) and phenolates resulted in two distinct types of products. One would be a hydrogen-bonded complex, Ar'OH···-OAr, with the proton still attached to the oxygen of the original Ar'O⁻, whilst for the other, the complex would be formed by proton transfer to the oxygen of ArO⁻, ArOH···-OAr. The hydrogen is transferred to the equilibrium position of proton-transfer anionic bridges, (-OH···-O-) \rightleftharpoons (-O⁻···HO--), and is determined from a study of the hydrogen-ion activity, p_aH .

Previous studies^{6, 8, 9} were confined to the determination of the formation constants, $K_{\rm f}$, of the homo- and hetero-complexes (hydride-bis-carboxylate). In this paper we progress further to the determination of additional equilibrium constants, overall equilibrium constants, K_0 , and the proton-transfer constants, $K_{\rm PT}$, and the relationship between formation constants, $K_{\rm f}$. We give special attention to proton transfer between anion-proton donors and the interpretation of these data in terms of the acidity scale of non-aqueous solvents.

EXPERIMENTAL

Acetone was purified and rigorously dried.¹⁰ All phenols used (table 1) were recrystallised 2-3 times from methanol or methanol + water mixtures and dried in vacuum over P_2O_5 .

The tetra-n-alkylammonium salts of the substituted phenols were prepared by potentiometric titration of a weighed sample of the phenol with a methanolic solution of the corresponding tetra-alkylammonium hydroxide. After evaporation of the solvent under reduced pressure the salts were recrystallised from ethyl acetate and dried in a vacuum over P_2O_5 . Their purity was checked potentiometric titration with 0.1 mol dm⁻³ perchloric acid in glacial acetic acid. All results fell in the range 99.5-100.5%.

Electromotive-force measurements were made with a PHM-52 digital pH meter (Radiometer, Copenhagen) using an S-60 glass electrode (Gliwice, Poland). The reference half-cell was a saturated calomel electrode with a double junction, and the salt bridge was filled with a 1.0×10^{-2} mol dm⁻³ acetone solution of tetra-n-butylammonium perchlorate. The electrode was checked every day in picric-acid-picrate buffers. All measurements were carried out at 298 ± 0.1 K.

RESULTS

CALIBRATION OF THE GLASS ELECTRODE

The reversibility of the glass electrode was checked by e.m.f. measurements in buffer solutions containing $C_{Bu_4NPi} = 4 \times 10^{-3}$ mol dm⁻³ + picric acid, $C_{HPi} = 1 \times 10^{-1}$ mol dm⁻³. The p_aH values of these solutions were calculated, assuming complete dissociation of Bu₄NPi in dilute solution,¹¹ and

$$pK_{HPi}^{acetone} = 6.3^{12} p_a H_{ref} = pK_{HPi} + \log f_{\frac{1}{2}}$$

where the subscript $\frac{1}{2}$ stands for $C_{\text{HPi}} = C_{\text{salt}}$. The activity coefficient was calculated from the expression $-\log f = 3.76 \sqrt{I}$.

m.	
Ξ.	
÷	
Ξ.	
9	
-	
7	
0	
2	
2	
5	
5	
5	
\mathbf{A}	
8	
Ĕ	
щ	
_ <u>≻</u>	
8	
E.	
-	
ਙ	
×	
5	
\succ	
>	
5	
ž	
έų.	
0	
È	
· 52	
5	
.ĕ.	
Ξ.	
e)	
at	
$\overline{\mathbf{v}}$	
5	
.ھ	
Ч	
e e	
ğ	
9	
×	
Ă	
Ξ.	
СÍ.	
8	
-	
2	
a	
2	
ar	
ŗ	
Ξ	
~	
5	
÷	
ğ	
4	
÷	
Et.	
6	

Table 1.—Hetero- and homo-conjugation of phenolates (ArO⁻) with substituted phenols (ArOH), overall equilibrium constants (K_0), formation constants (K_f) and proton-transfer constants (K_{PT}) in acetone at 298 K

quaternary salt, R ₄ N ⁺ ArO ⁻	log K _{PT} calcd [eqn (8)]	$\log K_0^b$ calcd [eqn (7)]	log K _f calcd [eqn (9)]
heterocomplexes, (Ar	r'OHOAr) ⁻		
I.),N 2.4-dinitrophenolate	-7.0	3.04 ± 0.08	3.04
I.),N 2.4-dinitrophenolate	-6.6	2.95 ± 0.07	2.95
I, N 2, 4-dinitrophenolate	- 5.4	2.98 ± 0.07	2.98
f,),N pentachlorophenolate	4.4	3.27 ± 0.08	3.27
[,) N pentachlorophenolate	-4.0	3.52 ± 0.08	3.52
[,) N 2,5-dinitrophenolate	-3.5	3.23 ± 0.06	3.23
(a) N 2,5-dinitrophenolate	-2.9	3.78 ± 0.09	3.78
⁵) ⁴ N pentachlorophenolate	- 2.8	3.71 ± 0.08	3.71
) N 2,4-dinitrophenolate	-2.6	3.42 ± 0.07	3.42
) ^A N 2,5-dinitrophenolate	-1.3	3.79 ± 0.09	3.79
N 2,4,6-trichlorophenolate	+0.2	3.58 ± 0.06	3.38
"N 2,6-dichlorophenolate	+1.2	4.33 ± 0.10	3.13
, N 2,4,6-trichlorophenolate	+1.4	4.70 ± 0.12	3.30
") ⁴ N 2,5-dinitrophenolate	+1.5	4.30 ± 0.10	2.80
() N 2,6-dichlorophenolate	+ 2.8	4.85 ± 0.11	2.05
¹ N 2,4,6-trichlorophenolate	+4.2	5.42 ± 0.14	1.22
) ₄ N 2,6-dichlorophenolate	+5.6	6.25 ± 0.12	0.65
homocomplexes, Ar	roHOAr ⁻		
¹ ,N 2,4-dinitrophenolate	0	3.41 ± 0.07	3.41
₅) ₄ N pentachlorophenolate	0	4.28 ± 0.09	4.28
") ₄ N 2,5-dinitrophenolate	0	4.59 ± 0.10	4.59
) ⁴ N 2,4,6-tribromophenolate	0	4.32 ± 0.12	4.32
N ₄ N 2-nitrophenolate	0	4.12 ± 0.09	4.12
₉) ₄ N 2,4,6-trichlorophenolate	0	4.20 ± 0.09	4.20
) ₄ N 3,5-dichlorophenolate	0	4.02 ± 0.12	4.02
) ₄ N 2,6-dichlorophenolate	0	3.50 ± 0.10	3.50

2160 PROTON TRANSFER IN PHENOL COMPLEXES IN ACETONE

The glass electrode was calibrated every day in a picrate buffer. For our electrode13

$$p_a H = (E'_0 - E)/W = (765 - E)/42.5$$

where W is the Nernst slope, and E'_0 and E are the apparent potential of the reference electrode and the measured potential, respectively.

DETERMINATION OF THE PROTON-TRANSFER CONSTANTS, K_{PT} , THE FORMATION CONSTANTS, K_f , AND THE OVERALL EQUILIBRIUM CONSTANTS, K_0

The reaction between the proton donor Ar'OH and proton acceptor ArO^- in an aprotic solvent may lead to the formation of hydrogen-bonded complexes with proton transfer (PT) or without proton transfer.

A general scheme for the formation of the heterocomplexes can be written as follows: κ

$$ArO^{-} + Ar'OH \rightleftharpoons^{R_{PT}} ArOH + Ar'O^{-}$$
 (3)

$$Ar'O^{-} + HOAr \rightleftharpoons^{K_t} Ar'O^{-} \cdots HOAr$$
(4)

$$ArO^{-} + Ar'OH \rightleftharpoons^{K_0} Ar'O^{-} \cdots HOAr$$
(5)

where K_0 , K_{PT} and K_f are the equilibrium constants of the overall reaction, the proton-transfer constant and the formation constant, respectively.

The overall equilibrium constant K_0 is related to K_{PT} and K_f by

$$K_0 = K_{\rm PT} K_{\rm f} \tag{6}$$

and was calculated from the potentiometric data using eqn (7) adapted by us¹⁴ from the study by Kolthoff and Chantooni:⁴

$$K_0 = C_{\rm R_4N^+ArO^-} r^2 - r(C_{\rm Ar'OH} + C_{\rm R_4N^+ArO^-}) + C_{\rm Ar'OH} / r(C_{\rm R_4N^+ArO^-} - C_{\rm Ar'OH})$$
(7)

where $r = a_{\rm H} f/a_{\frac{1}{2}} f_{\frac{1}{2}}$ and $a_{\frac{1}{2}}$ and $f_{\frac{1}{2}}$ are values at midpoint $(C_{\rm R_4N^+ArO^-} = C_{\rm ArOH})$. Plots of $p_{\rm a}H$ against log $C_{\rm Ar'OH}/C_{\rm R_4N^+ArO^-}$ of mixtures of phenols with different

quaternary ammonium salts are presented in fig. 1(a) and (b).

If we express the ionization constant, K_a , of an acid ArOH in acetone medium (S) by

$$ArOH + S \rightleftharpoons SH^{+} + ArO^{-}$$
$$K_{a} = [SH^{+}][ArO^{-}] f_{SH} + f_{ArO^{-}}/[S][ArOH] f_{S} f_{ArOH}.$$

We assume
$$f_{ArOH}$$
 and f_{S} to be equal to 1 at low concentrations and

$$f_{\rm SH^+} = f_{\rm ArO^-} = f_{\pm}.$$

By replacing $[SH^+] f_{SH^+}$, $[ArO^-]$ and [ArOH] by a_{H^+} , $C_{R_4N^+ArO^-}$ and C_{ArOH} , respectively, and taking logarithms we obtain

$$pK_{a}^{AC} = p_{a}H - \log(C_{R_{4}N^{+}ArO^{-}}/C_{ArOH}) - \log f_{\pm}.$$

For a medium point (subscript $\frac{1}{2}$, at $C_{R_4N^+ArO^-} = C_{ArOH}$) the equation may be written as follows^{13, 14}

$$\mathsf{p}K_{\mathrm{a}}^{\mathrm{AC}} = \mathsf{p}_{\mathrm{a}}\mathsf{H}_{\frac{1}{2}} - \log f_{\frac{1}{2}}.$$

This equation is correct for the homosystems $R_4N^+ArO^- + ArOH$.

FIG. 1.—Relationship between log $C_{\rm Ar'OH}/C_{\rm R_{4}N^{+}ArO^{-}}$ and $p_{\rm a}H$ in acetone at 298 K. Numbers identify the systems listed in table 1.

PROTON TRANSFER IN PHENOL COMPLEXES IN ACETONE

FIG. 2.—Relationship between $p_aH_i(C_{phenol} = C_{quaternary salt})$ in homocomplexes and heterocomplexes in acetone at 298 K plotted against ΔpK_a^{AC} , where

$$\Delta p K_{a}^{AC} = p K_{a(acceptor)}^{AC} - p K_{a(donor)}^{AC}.$$

Numbers identify the systems listed in table 1.

Hence, we consider the reaction of an acid, Ar'OH, which involves the following reaction $ArO^- + Ar'OH \rightleftharpoons ArOH + Ar'O^-$

for which the equilibrium constant, $K_{\rm PT}$ is

$$K_{\rm PT} = K_{\rm a(Ar'OH)}^{\rm AC} / K_{\rm a(ArOH)}^{\rm AC}.$$
(8)

Hence the values of $K_{\rm f}$, the equilibrium constants for the formation of hydrogen bonding of heterocomplexes with proton transfer, may be found, since

$$\log K_{\rm f} = \log K_0 - \log K_{\rm PT}.\tag{9}$$

In the case when $K_{\rm PT}$ is close to, or less than, unity, the value of the overall equilibrium constant, K_0 , is equal to that of the formation constant, $K_0 = K_{\rm f}$. For instance, this case if found in systems where $pK_{\rm a(Ar'OH)}^{\rm AC} > pK_{\rm a(ArOH)}^{\rm AC}$, table 1.

In mixtures of $R_4N^+ArO^-$ with a non-conjugated phenol Ar'OH in acetone, where the proton transfer is not complete, the p_aH change is relatively small, but the decrease in p_aH is sharp where the proton transfer is complete, fig. 1(*a*).

For systems in which the proton is attached to the proton-donor group Ar'OH $(\Delta p K_a^{AC} < 0)$, the plot of the function

$$p_a H = f(\log C_{Ar'OH}/C_{ArO})$$

is linear.

In heterosystems in which proton transfer occurs ($\Delta p K_a^{AC} > 0$) the plot of the function $p_a H = f(\log C_{Ar'OH}/C_{ArO^-})$

is non-linear, and the curve has a sigmoidal shape. The plots of
$$p_aH$$
 of a mixture of

FIG. 3.—Formation constants, log K_t , of homocomplexes, $(ArO)_2H^-$, in acetone at 298 K plotted against $pK_{a(ArOH)}^{AC}$. Numbers identify the systems listed in table 1.

an acid and salt without proton transfer, $pK_{a(acceptor)}^{AC} < pK_{a(donor)}^{AC}$ are linear in fig. 1(a) and (b), curves 1-10.

Some heterosystems in which $pK_{a(acceptor)}^{AC} > pK_{a(donor)}^{AC}$ [fig. 1(*a*) and (*b*), curves 13-17] are indicative of the proton-transfer reaction, *e.g.* curve 17, where $\Delta pK_a^{AC} = 5.6$:

$$C_6Cl_5OH + Cl_2C_6H_3O^- \rightarrow C_6Cl_5O^- \cdots HOC_6H_3Cl_2$$

Consequently, the p_aH greatly decreases, and the plot assumes a sigmoidal shape. Calculated values of K_{PT} , K_0 and K_f obtained from the plots of fig. 1(a) and (b) are given in table 1 for each system.

Plots of $p_a H_1$ at the point $(C_{R_4N^+ArO^-} = C_{Ar'OH})$ in the systems studied as a function $\Delta p K_a^{AC}$, where

$$\Delta p K_{a}^{AC} = p K_{a(acceptor)}^{AC} - p K_{a(donor)}^{AC}$$

of mixtures of these phenols with different tetra-alkylammonium salts are presented in fig. 2, and exhibit a pronounced maximum around $\Delta p K_a^{AC} = 0$.

Let us consider the two systems: (1) without proton transfer $[3,5-Cl_2ArOH +2,5(NO_2)_2ArO^-$, $\Delta pK_a^{AC} = -2.90]$ and (2) with proton transfer $[2,4,6-Br_3ArOH +2,6-Cl_2ArO^-$, $\Delta pK_a^{AC} = +2.80]$. The observed p_aH values are comparable, 22 ± 0.2 . From the p_aH_1 values (at the point $C_{R_4N^+ArO^-} = C_{Ar'OH}$) as a function of ΔpK_a^{AC} , fig. 2, the proton concentration has a minimum at $\Delta pK_a^{AC} = 0$, as a result of the formation of homoconjugate $(ArO)_2H^-$ ions.

In fig. 3 the stability constants of the homocomplexes, $\log K_{(ArO)_2H^-}$, are plotted against $pK_{a(ArOH)}^{AC}$ on the acetone scale. The largest increase in stability is observed in the region of 20 pK_a^{AC} units. In acetone, the K_f values of homocomplexes of substituted phenols are of the order of 10⁴ or less. In the series considered in fig. 3, the stability of the homocomplexes increases with pK_a^{AC} up to $pK_a \approx 20$, and then drops with the pK_a^{AC} of phenols.

As can be seen in fig. 4, the plot of the overall equilibrium constant, $\log K_0$ against $\Delta p K_a^{AC}$, is linear over the $\Delta p K_a^{AC}$ range from -7 to 0. Above the latter value, $\log K_0$ markedly increases.

Linear plots of log $K_{ArOHOAr}^{f}$ against $\Delta p K_{a}^{AC}$ were obtained for heterocomplexes. An increase in the formation constant, K_{f} , in acetone was found with decreasing $\Delta p K_{a}^{AC}$, whereas for $\Delta p K_{a}^{AC} > 0$ the stability decreased more markedly.

Systems characterised by $pK_{a(donor)}^{AC}(Ar'OH) > pK_{a(acceptor)}^{AC}(ArOH)$ are represented

2163

FIG. 4.—Plots of overall equilibrium constants, $\log K_0$, and formation constants, $\log K_t$, for homocomplexes (\bigcirc) and heterocomplexes (\bigcirc) in acetone, at 298 K, as a function $\Delta p K_a^{AC}$ on the acetone scale. Numbers identify the systems listed in table 1.

by entries 1-10 in table 1 and in fig. 4. For these $\Delta p K_a^{AC}$ is negative. As shown in fig. 4 the overall constants, K_0 , of the reaction are low under these conditions, as proton transfer does not take place. The intermediate region, where $\Delta p K_a^{AC} = 0$, corresponds to the formation of homocomplexes, $(ArO)_2H^-$, with log K_0 ranging from 3.41 to 4.59.

The largest change of overall equilibria occurs in the region where $\Delta p K_a^{AC} > 0$. In this case, the proton is transferred from the less basic donor Ar'OH to the more basic acceptor ArO⁻. The overall constant K_0 does not represent equilibria for the formation of the hydrogen bond alone (K_f) , but also includes that of the proton transfer (K_{PT}) . The overall equilibrium constant, K_0 , is related to K_{PT} and K_f by

$$\log K_0 = \log K_{\rm PT} + \log K_{\rm f}.$$

This difference is illustrated by comparison of systems 8 and 15.

The values for system 15 are

$$2,6-Cl_2C_6H_3O^- + 2,4,6-Br_3C_6H_2OH \rightarrow (2,6-Cl_2C_6H_3OH \cdots OC_6H_2Br_3-2,4)^-$$

where log $K_0 = 4.85$ and $\Delta p K_a^{AC} = 2.80$, while for system 8 one has

$$C_6Cl_5O^- + 2,4,6$$
- $Br_3C_6H_2OH \rightarrow (C_6Cl_5O^- HOC_6H_2Br_3-2,4,6)^-$

where $\log K_0 = 3.71$ and $\Delta p K_a^{AC} = -2.80$.

Similar results were obtained for other systems with $\pm \Delta p K_a^{AC}$, namely systems 3, 17 and 5, 16: *viz*.

(3) 2,4,6-tribromophenol+2,4-dinitrophenolate, log $K_0 = 2.98$

(17) pentachlorophenol+2,6-dinitrophenolate, log $K_0 = 6.25$

(5) 2-nitrophenol + pentachlorophenolate, $\log K_0 = 3.52$

(16) pentachlorophenol + 2,4,6-trinitrophenolate, $\log K_0 = 5.42$

CONCLUSIONS

The main interaction in our study of phenolate-phenol by hydrogen bonding shows stable homocomplexes with $K_{\rm f} \simeq 10^4$ and heterocomplexes with $K_{\rm f} \approx 10^2$ -10³.

The most important implication of this work is that contained in fig. 4, showing K_0 , K_f and $\Delta p K_a^{solvent}$ to have a complex relationship. When $\Delta p K$ is negative or zero, then log $K_0 = \log K_f$. Formation values K_f at whole range $(-\Delta p K_a)$ are not changed as much. However, when $\Delta p K$ is positive for the systems, then log K_0 diverges rapidly from K_f . Complexes formed after proton transfer at $\Delta p K_a^{AN}$ in the positive range undergo a change information constant more markedly.

In future, simple statements concerning $\Delta p K_a^{solvent}$ and log K_0 for proton transfer should either not be made or should carry the qualification that $\Delta p K_a$ is negative or zero. When $\Delta p K_a^{solvent}$ is positive, then both K_0 and K_f must be given.

Further, it is clear that the $\Delta p K_a$ scale used must be that for the relevant solvent. Whereas comparisons made in the past have used the water scale for $\Delta p K_a$, maxima in the measured quantities, *e.g.* in the proton chemical shift, have been taken as showing symmetrical hydrogen-bond formation between acid and base at $\Delta p K_a^{H_2O}$ values ranging between -2 and +7.5. It is self-evident that symmetry of hydrogen-bond formation will occur for equal basicity/acidity of the two components, at $\Delta p K_a^{solvent} = 0$. This has been demonstrated in another paper⁵ for phenolate complexes in acetonitrile when $\Delta p K_a^{AC}$ was used.

Therefore, we urge that K_0 , K_f and $\Delta p K_a^{solvent}$ for proton transfer systems should be interpreted in a more meaningful manner and that $\Delta p K_a^{solvent}$ values used should be those for the relevant solvent. It should no longer be acceptable to use $\Delta p K_a^{H_2O}$ values when discussing proton-transfer equilibria in non-aqueous systems.

- ¹ G. Dobecker and P. Huyskens, J. Chim. Phys., 1971, 68, 295.
- ² S. L. Johnson and K. A. Rumon, J. Phys. Chem., 1965, 69, 74.
- ³ R. Lidemann and G. Zundel, J. Chem. Soc., Faraday Trans. 2, 1978, 73, 788.
- ⁴ I. M. Kolthoff and M. K. Chantooni Jr, J. Am. Chem. Soc., 1965, 87, 4428; 1966, 88, 8430.
- ⁵ J. Magoński and Z. Pawlak, J. Mol. Struct., in press.
- ⁶ Z. Pawlak, T. Jasinski and B. Nowak, Zesz. Nauk. Wydz. Mat., Fiz. Chem., Uniw. Gdański, Chem., 1972, 2, 5.
- ⁷ Z. Pawlak and R. G. Bates, J. Chem. Thermodyn., in press.
- ⁸ Z. Pawlak, Roczn. Chem., 1973, 47, 641; 1972, 46, 2069.
- ⁹ Z. Pawlak and J. Magoński, J. Mol. Struct., 1980, 60, 179; 1978, 47, 329.
- ¹⁰ J. F. Coetzee and D. K. McGuire, J. Phys. Chem., 1963, 67, 1810.
- ¹¹ M. B. Reynolds and C. A. Kraus, J. Am. Chem. Soc., 1948, 70, 1709.
- ¹² C. M. French and I. G. Roe, Trans. Faraday Soc., 1953, 49, 314.
- ¹³ B. Nowak and Z. Pawlak, J. Pol. Chem., 1981, 55, in press.
- ¹⁴ Z. Pawlak, Z. Szponar and G. Dobrogowska, Roczn. Chem., 1974, 48, 501.

(PAPER 1/1378)