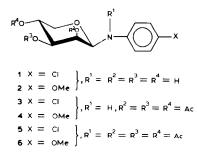
N-ARYL-D-LYXOPYRANOSYLAMINES, THEIR ACYL DERIVATIVES, AND SELECTIVE BENZOYLATION OF *N*-ACETYL-*N*-ARYL-α-D-LYXOPYRANOSYLAMINES

ZYGFRYD SMIATACZ AND ANTONINA MOCZULSKA Institute of Chemistry, University of Gdańsk, 80-952 Gdańsk (Poland) (Received April 18th, 1983; accepted for publication, November 23rd, 1983)

ABSTRACT

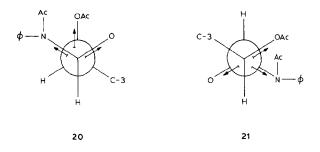

N-p-Chlorophenyl- and *N-p*-methoxyphenyl-D-lyxopyranosylamines have been synthesised, and also their tri-*O*-acetyl, *N*-acetyl-tri-*O*-acetyl, and *N*-acetyl derivatives. The configurations and conformations of these compounds have been established. Some derivatives of the *N*-aryl-D-lyxopyranosylamines were obtained as two stable, crystalline ${}^{4}C_{1}$ and ${}^{1}C_{4}$ isomers. The effect of steric factors on $N \rightarrow O$ acetyl migration has been ascertained. Selective benzoylation of *N*-acetyl-*N*-aryl- α -D-lyxopyranosylamines afforded partially esterified derivatives in which the reactivity of the hydroxyl groups followed the sequence HO-4 > HO-3 > HO-2.

INTRODUCTION

Previous studies have been concerned with the synthesis, elucidation of the structure, and the properties of esters of some *N*-aryl- and *N*-acetyl-*N*-aryl- β -D-xylo-¹, - β -D-ribo-², and - α -L-arabino-pyranosylamines³, and with establishment of the relative reactivity of the hydroxyl groups in these compounds. We now report on some *N*-aryl-D-lyxopyranosylamines and their derivatives.

RESULTS AND DISCUSSION

N-Aryl-D-lyxopyranosylamines (1, 2) are colourless, crystalline, laevorotatory compounds. Mutarotation occurs rapidly in methanol or ethanol, and the value of $[\alpha]_D$ increases. Attempts to determine the anomeric configuration by using ¹H-n.m.r. spectroscopy (80 or 100 MHz) with acetone- d_6 , methanol- d_4 , or pyridine- d_5 as solvents failed because the H-sugar's signals were complex multiplets at δ 4–5. The ¹³C-n.m.r. spectra were also of no value. Crystalline 3 was the sole product obtained on acetylation of 1, but acetylation of 2 gave the β - 4C_1 (4) and α - 1C_4 (7) isomers of 2,3,4-tri-O-acetyl-N-p-methoxyphenyl-D-lyxopyranosylamine, which were isolated by fractional crystallisation. The different behaviour of 1 and 2 on acetylation may be associated with the basicity of the amines. The pK_b values ⁴ of p-chloro- and p-methoxy-aniline are 10.02 and 8.71, respectively. The configu-



7 X = OMe, $R^{1} = H, R^{2} = R^{3} = R^{4} = Ac$ 8 X = CI 9 X = OMe 10 X = CI 11 X = OMe 11 X = OMe 12 X = CI 13 X = OMe 14 X = CI 15 X = OMe 1, $R^{1} = Ac, R^{2} = R^{3} = R^{4} = H$ 15 X = OMe 1, $R^{1} = Ac, R^{2} = R^{3} = R^{4} = Bz$ 16 X = CI 17 X = OMe 1, $R^{1} = Ac, R^{2} = H, R^{3} = R^{4} = Bz$ 16 X = CI 17 X = OMe 1, $R^{1} = Ac, R^{2} = H, R^{3} = R^{4} = Bz$ 18 X = CI 19 X = OMe 1, $R^{1} = Ac, R^{2} = R^{3} = H, R^{4} = Bz$

rations and conformations of 3, 4, and 7 were assigned on the basis of ¹H-n.m.r. data. In the spectra of 3 and 4, the coupling constants $(J_{1,2} = J_{2,3} = 2, J_{4,5e} 2, J_{4,5a} 9)$ Hz) together with the $[\alpha]_D$ value indicate the β - 4C_1 structure. Also, the $\Delta\delta_{\text{H-Se,H-Sa}}$ value of ~0.7 p.p.m. is characteristic of this conformation^{1,5,6}. On the other hand, the data for 7 $(J_{1,2} 9, J_{2,3} = J_{3,4} = 2, J_{4,5e} = J_{4,5a} = 2$ Hz; $\Delta\delta_{\text{H-Se,H-Sa}} 0.12$ p.p.m.)^{1,5,6} reveal the α - 1C_4 structure. The direction of changes of the chemical shift values on going from 4 to 7 accords with the rule of Lemieux and Stevens⁷.

N-Acetylation of **3**, **4**, and 7 by the Frérejacque method⁸ afforded *N*-acetyl-2,3,4-tri-*O*-acetyl-*N*-aryl-D-lyxopyranosylamines as mixtures of the ${}^{4}C_{1}$ and ${}^{1}C_{4}$ isomers. Each isomer was obtained homogeneous by chromatography or fractional crystallisation of the crude reaction products. The configurations and conformations of **5**, **6**, **8**, and **9** were established on the basis of 1 H-n.m.r. data. The $\beta {}^{4}C_{1}$ structure of **5** and **6** follows from the signal structure for H-1(s), H-2(s) (the $J_{1,2}$ and $J_{2,3}$ values were not discernible), H-5e(dd), and H-5a(dd), the coupling constants $J_{4,5e}$ 3 and $J_{4,5a}$ 9 Hz, and the magnitude (~0.65 p.p.m.) of $\Delta \delta_{\text{H-5e},\text{H-5a}}$. For **8** and **9**, the structure of the signals and the numerical values of the coupling constants [H-1(d), $J_{1,2}$ 10 Hz; H-2(dd), $J_{2,3}$ 3 Hz; H-5e(dd) and H-5a(dd), $J_{4,5e} = J_{4,5a} = 3$ Hz] reveal the $\alpha {}^{-1}C_{4}$ structure. The $\Delta \delta_{\text{H-5e},\text{H-5a}}$ value of 0.75 p.p.m. likewise supports this structure^{1,5,6}.

Although some pyranoses and their derivatives exist in solution in both chair conformations at equilibrium⁹, the isolation of two "conformational" isomers in the solid state is rarely observed^{10,11}. Presumably, two isomers of *N*-acetyl-*N*-aryl and *N*-aryl derivatives of 2,3,4-tri-*O*-acetyl-D-lyxopyranosylamine were obtained because the energies of the β - 4C_1 and α - 1C_4 structures are similar, as for the β - 4C_1 and α - 1C_4 forms (10.4 and 10.8 kJ.mol⁻¹, respectively¹²) of D-lyxopyranose. The stability of the β - 4C_1 and α - 1C_4 derivatives of the *N*-acetyl-*N*-aryl- and *N*-aryl-D-

lyxopyranosylamines can be compared on the basis of stereoelectronic interactions. For **3-6** (β - 4C_1), the $\Delta 2$ effect^{13,14} and dipole interactions¹⁵ are involved (C-1-N, C-1-O, C-2-OAc dipoles shown in the projection **20** along the C-1–C-2 bond). On the other hand, in the α - 1C_4 structure (**7–9**), AcO-2,3 are axial, but there is no $\Delta 2$ effect and the dipole–dipole interactions are more favourable, because the direction of the C-1-O dipole is opposite to the resultant dipole of the C-1-N and C-2-OAc bonds (projection **21**).

Taking into account the yield of the $\beta^{-4}C_1$ and $\alpha^{-1}C_4$ isomers formed on acetylation, it appears that *N*-acetylation favours the formation of the $\alpha^{-1}C_4$ isomer, which could reflect an increase in the $\Delta 2$ effect in $\beta^{-4}C_1$ *N*-acetyl-tri-*O*-acetyl-D-lyxopyranosylamines in comparison with the corresponding *O*-acetyl derivatives.

Treatment of the N-acetyl-tri-O-acetyl-D-lyxopyranosylamines 8 and 9 (α - ${}^{1}C_{4}$) with dimethylamine in methanol effected O-deacetylation only, to afford the N-acetyl-N-aryl- α -D-lyxopyranosylamines 10 and 11, respectively, whereas 5 and 6 (β - ${}^{4}C_{1}$) underwent both O- and N-deacetylation, to give N-aryl-D-lyxopyranosylamines 1 and 2, respectively. In both groups of compounds, O-deacetylation occurs first, but for 5 and 6, because HO-2 and N-Ac are *cis*, 1 \rightarrow 2 acetyl migration occurs followed by O-deacetylation.

The relative reactivity of the hydroxyl groups in the N-acetyl-N-aryl- α -D-lyxopyranosylamines 10 and 11 was determined by benzoylation at $\sim -30^{\circ}$, using 1 mol of sugar derivative and 2.5 mol of benzoyl chloride. Under these conditions, the products were N-acetyl-N-aryl-2,3,4-tri- (12, 13), -3,4-di- (14, 15), -2,4-di- (16, 17), and -4- (18, 19) -O-benzoyl- α -D-lyxopyranosylamines, and each was isolated by chromatography. Inspection of the ¹H-n.m.r. data (Table I) reveals the α -¹C₄ structure of each of these benzoates.

The positions of the unsubstituted hydroxyl groups in 14–19 were determined by comparing their ¹H-n.m.r. data with those (Table I) of the corresponding tribenzoate (12 or 13). The unsubstituted hydroxyl group in 14 and 15 was located at C-2 on the basis of the downfield shift (~1.40 p.p.m.) of the H-2 signal compared with those of 12 and 13. Both the direction and magnitude of this shift displacement corresponds to the C-OH \rightarrow COBz transition. Likewise, for 16 and 17, the only shift (~1.43) was associated with the H-3 signals, thus indicating the unsubstituted hydroxyl group to be attached to C-3. The benzoyl group in 18 and 19 must be at C-4,

TABLE I	

¹ H-N M R. DATA ^{a} FOR COMPOUNDS 3–19	A ^a FOR COM	IPOUNDS3	-19												
Compound	I-H	Н-2	Н-3	H-4	Н-5е	Н-5а	$\Delta \delta_{H^-5\mathrm{e},H^-5\mathrm{a}}$	NAc	0CH3	OAc	J _{1,2}	J _{2,3}	J _{3,4}	J _{4,5c}	J4,5a
3	5.35d	5.05t	4.77m	7m	3.95dd	3.30dd	0.65	1	1	1.87(2×)	3	7	I	3	6
4	5.35d	5.05t	4.77m	7m	3.97dd	3.27dd	0.70	I	3.67	1.95(2×)	7	7	I	7	6
v	5.92s	5.40s	5.07-4.82m	4.82m	4.10dd	3.35dd	0.65	1.35		1.75	I	1	I	3	6
¢	5.90s	5.40s	5.02→	5.02-4.77m	4.07dd	3.35dd	0.68	1.32	3.63	1.87 1.60 1.77	I	I	I	ŝ	6
٢	5.22d	4.24dd	5.02t	4. 75m	3.87dd	3.75dd	0.12	1	3.62	1.87 1.90 1.95	6	7	3	7	5
æ	6.10d	4.37dd	5.25t	4. 62m	3.95dd	3.80dd	0.15	1.70	1	2.00 1.82 1.87	10	3	Э	ę	e
6	6.05d	4.37dd	5.22t	4.60m	3.97dd	3.80dd	0.17	1.70	3.65	2.00 1.82 1.85	10	ŝ	б	ю	ŝ
4		FFUX F						6		2.00	ç	,	,		
8 3	5.95d	4.55dd	5.15t	4.90m				1.85	3.60	i	01	იო	იო		
12	6.55d	4.92dd	5.75t	5.10m	4.27dd	4.05dd	0.22	1.72	I	ł	10	ŝ	ŝ	2	7
13	6.57d	4.92dd	5.77t	5.07m	4.25dd	4.02dd	0.23	1.70	3.60	I	10	<i>ლ</i> ი	ε	ς ε	ლი
15 15	0.100 6.15d	3.45dd	5.35d	тс <u>е</u> .4 топ	4.02dd	3.87dd	0.15 0.15	1.67	<u> </u>		10	n m	n m	2.5 2.5	2.5 2.5
16	6.42d	4.62dd	4.32t	4.92m	4.02dd	3.87dd	0.15	1.62	I	I	6	ŝ	ŝ	7	7
17	6.47d	4.65dd	4.32t	4.90m	4.02dd	3.82dd	0.20	1.57	3.60	I	6	ŝ	Э	6	6
18	5.95d	3.25dd	3.85m	4.95m	4.15dd	3.95dd	0.20	1.75	I	I	10	÷	ŝ	6	2.5
19	5.97d	3.32dd	3.82m	4 .95m	4.15dd	3.97dd	0.18	1.75	3.65	1	10	£	3	7	2.5
^a Chemical shifts (δ scale): s, sir	fts (δ scale)	: s, singlet	duob , b ;	et; m, mul	tiplet; t, tr	iplet. Cou	rglet; d, doublet; m, multiplet; t, triplet. Coupling constants (±0.5 Hz) were determined by first-order analysis.	s (±0.51	Hz) were (determined t	oy first-o	order and	alvsis.		

230

because the H-2 signals are shifted by \sim 1.65 p.p.m., and the H-3 signals by \sim 1.95 p.p.m.

The products obtained after selective benzoylation indicate the reactivity sequence for 10 and 11 to be HO-4 > HO-3 > HO-2.

EXPERIMENTAL

Melting points are uncorrected. Optical rotations were determined (Hilger-Watt instrument) for solutions (c 0.5) in ethanol (1 and 2) or chloroform (3–19) at 22°. T.l.c. was performed on silica gel G with A, carbon tetrachloride-acetone (3:1); or B, di-isopropyl ether-benzene (4:1). Column chromatography was performed on Kieselgel (<0.08 mm). ¹H-N.m.r. spectra (CDCl₃, internal Me₄Si) were recorded with a Tesla-BS 487C (80 MHz) spectrometer. I.r. spectra were recorded for Nujol mulls with a Perkin-Elmer 257 spectrophotometer.

N-Aryl-D-lyxopyranosylamines. — A mixture of 0.1 mol of D-lyxose, the amine (*p*-chloro- or *p*-methoxy-aniline), and dry ethanol (75 mL) was heated at $\sim 100^{\circ}$ for 1 h, cooled, and diluted with ether (10 mL).

The N-p-chlorophenyl derivative 1 (95%) had m.p. 155–158°, $[\alpha]_D = -133 \rightarrow -1^\circ$.

Anal. Calc. for C₁₁H₁₄ClNO₄: C, 50.86; H, 5.39; N, 5.39. Found: C, 50.64; H, 5.39; N, 5.41.

The N-p-methoxyphenyl derivative 2 (84%) had m.p. 115–120°, $[\alpha]_D \sim -160 \rightarrow -5^\circ$.

Anal. Calc. for C₁₂H₁₇NO₅: C, 56.47; H, 6.66; N, 5.50. Found: C, 56.72; H, 6.91; N, 5.47.

2,3,4-Tri-O-acetyl-N-aryl-D-lyxopyranosylamines (3, 4, and 7). — Conventional acetylation of 1 (0.05 mol) with acetic anhydride in pyridine afforded 3 (90%), m.p. 150° (from methanol), $[\alpha]_D - 64 \rightarrow -37^\circ$, R_F (solvent A) 0.75.

Anal. Calc. for C₁₇H₂₀ClNO₇: C, 52.91; H, 5.18; N, 3.63. Found: C, 52.47; H, 5.10; N, 3.70.

Similar acetylation of 2 gave (t.l.c., solvent A) a mixture of two compounds in the ratio ~2:1. Fractional crystallisation from ether–light petroleum gave the β anomer 4 (first fraction, 55%), m.p. 135°, $[\alpha]_D = -88 \rightarrow -54^\circ$, R_F (solvent A) 0.74; ν_{max} 3330 (NH) and 1750 cm⁻¹ (ester CO).

Anal. Calc. for C₁₈H₂₃NO₈: C, 56.69; H, 6.03; N, 3.67. Found: C, 56.41; H, 6.07; N, 3.86.

The second fraction was the α anomer 7 (25%), m.p. 104°, $[\alpha]_D -44 \rightarrow -30^\circ$, R_F (solvent A) 0.76; ν_{max} 3370 (NH) and 1750 cm⁻¹ (ester CO).

Anal. Found: C, 56.74; H, 5.98; N, 3.72.

N-Acetyl-2,3,4-tri-O-acetyl-N-aryl-D-lyxopyranosylamines (5, 6, 8, 9). — A mixture of 3, 4, or 7 (0.03 mol), acetic anhydride (30 mL), and zinc chloride (0.2 g) was heated at ~100° for 10 min, cooled, and poured into ice and water. The crude product from 3 (two components) was fractionally crystallised from ether-

light petroleum (2:1) or ethanol, to furnish the α anomer 8 (first fraction, 55%), m.p. 192°, $[\alpha]_D$ -101°, R_F (solvent A) 0.55; ν_{max} 1750 (ester CO) and 1675 cm⁻¹ (amide CO).

Anal. Calc. for C₁₉H₂₂ClNO₈: C, 53.33; H, 5.14; N, 3.27. Found: C, 53.07; H, 5.00; N, 3.35.

The second fraction was the β anomer 5 (22%), m.p. 129°, $[\alpha]_D$ +4°, R_F (solvent A) 0.60; ν_{max} 1750 (ester CO) and 1660 cm⁻¹ (amide CO).

Anal. Found: C, 53.21; H, 4.98; N, 3.46.

Column chromatography of the products from 4 gave the β anomer 6 as a syrup (25%), $[\alpha]_D$ +6°, R_F (solvent A) 0.58; ν_{max} 1750 (ester CO) and 1680 cm⁻¹ (amide CO).

Anal. Calc for C₂₀H₂₅NO₉: C, 56.73; H, 5.91; N, 3.30. Found: C, 56.47; H, 5.82; N, 3.45.

Likewise, 7 gave the α anomer 9 (53%), m.p. 143°, $[\alpha]_D - 104^\circ$, R_F (solvent A) 0.52; ν_{max} 1750 (ester CO) and 1680 cm⁻¹ (amide CO).

Anal. Calc. for C₂₀H₂₅NO₉: C, 56.73; H, 5.91; N, 3.30. Found: C, 56.77; H, 5.92; N, 3.58.

N-Acetyl-N-aryl- α -D-lyxopyranosylamines (10, 11). — A solution of 0.05 mol of 8 in dry methanol (100 mL) containing 0.5 mol of dimethylamine was kept at 20° for 14 h and then concentrated, and the residue was crystallised from ether to give 10 (80%), m.p. 53°, $[\alpha]_D$ –46°, R_F (solvent A) 0.03; ν_{max} 3300 (OH) and 1650 cm⁻¹ (amide CO).

Anal. Calc. for C₁₃H₁₆ClNO₅: C, 51.74; H, 5.31; N, 4.64. Found: C, 51.58; H, 5.46; N, 4.52.

Likewise, 9 gave 11 (94%), m.p. 208°, $[\alpha]_D -51^\circ$, R_F (solvent A) 0.03; ν_{max} 3310 (OH) and 1630 cm⁻¹ (amide CO).

Anal. Calc. for C₁₄H₁₉NO₆: C, 56.56; H, 6.39; N, 4.71. Found: C, 56.65; H, 6.49; N, 4.89.

Under the above conditions, 5 or 6 gave only 1 or 2, respectively.

Selective benzoylation of N-acetyl-N-aryl- α -D-lyxopyranosylamines. — To a solution of **10** (0.03 mol) in dry pyridine (50 mL) at -30° was added benzoyl chloride (0.075 mol) dropwise during 30 min. The mixture was kept for 3 h at $\sim -25^{\circ}$ and for 1 h at $+20^{\circ}$. T.l.c. (solvent *B*) then indicated almost complete conversion into four products. Chloroform (150 mL) was added, and the mixture was poured into ice and water. The chloroform layer was washed with 2–3% sulfuric acid and aqueous 5% sodium hydrogencarbonate, dried (Na₂SO₄), and concentrated. Column chromatography (solvent *B*) of the syrupy residue gave, first, *N*-acetyl-2,3,4-tri-*O*-benzoyl-*N-p*-chlorophenyl- α -D-lyxopyranosylamine (**12**, 19%), m.p. 248°, [α]_D -31°, R_F (solvent *B*) 0.7; ν_{max} 1725 (ester CO) and 1670 cm⁻¹ (amide CO).

Anal. Calc. for C₃₄H₂₈ClNO₈: C, 66.50; H, 4.56; N, 2.28. Found: C, 66.55; H, 4.70; N, 2.35.

Eluted second was N-acetyl-3,4-di-O-benzoyl-N-p-chlorophenyl- α -D-lyxo-

pyranosylamine (14, 18%), m.p. 200°, $[\alpha]_D$ -78°, $R_F 0.40$; $\nu_{max} 3280$ (OH), 1725 (ester CO), and 1660 cm⁻¹ (amide CO).

Anal. Calc. for C₂₇H₂₄ClNO₇: C, 63.69; H, 4.71; N, 2.75. Found: C, 63.61; H, 4.92; N, 3.04.

Eluted third was *N*-acetyl-2,4-di-*O*-benzoyl-*N*-*p*-chlorophenyl- α -D-lyxopyranosylamine (16, 14%), m.p. 50°, $[\alpha]_D$ -85°, R_F 0.28; ν_{max} 3350 (OH), 1725 (ester CO), and 1665 cm⁻¹ (amide CO).

Anal. Calc. for C₂₇H₂₄ClNO₇: C, 63.69; H, 4.71; N, 2.75. Found: C, 63.82; H, 5.09; N, 2.56.

Eluted fourth was *N*-acetyl-4-*O*-benzoyl-*N*-*p*-chlorophenyl- α -D-lyxopyranosylamine (18, 34%), m.p. 225°, $[\alpha]_D - 128^\circ$, $R_F 0.10$; $\nu_{max} 3420$, 3490 (OH), 1725 (ester CO), and 1650 cm⁻¹ (amide CO).

Anal. Calc. for C₂₀H₂₀ClNO₆: C, 59.18; H, 4.93; N, 3.45. Found: C, 59.23; H, 4.80; N, 3.68.

Similar treatment of 11 gave the following four products.

N-Acetyl-2,3,4-tri-*O*-benzoyl-*N*-*p*-methoxyphenyl- α -D-lyxopyranosylamine (13, 21%), m.p. 247°, $[\alpha]_D$ -44°, R_F (solvent *B*) 0.65; ν_{max} 1725 (ester CO) and 1675 cm⁻¹ (amide CO).

Anal. Calc. for C₃₅H₃₁NO₉: C, 68.96; H, 5.09; N, 2.29. Found: C, 68.94; H, 5.16; N, 2.55.

N-Acetyl-3,4-di-*O*-benzoyl-*N*-*p*-methoxyphenyl- α -D-lyxopyranosylamine (15, 19%), m.p. 206°, $[\alpha]_D$ -82°, R_F 0.36; ν_{max} 3300 (OH), 1725 (ester CO), and 1645 cm⁻¹ (amide CO).

Anal. Calc. for C₂₈H₂₇NO₈: C, 66.53; H, 5.34; N, 2.77. Found: C, 66.30; H, 5.24; N, 3.00.

N-Acetyl-2,4-di-*O*-benzoyl-*N*-*p*-methoxyphenyl- α -D-lyxopyranosylamine (17, 14%), m.p. 105°, $[\alpha]_D$ -87°, R_F 0.32; ν_{max} 3400 (OH), 1725 (ester CO), and 1660 cm⁻¹ (amide CO).

Anal. Calc. for C₂₈H₂₇NO₈: C, 66.53; H, 5.34; N, 2.77. Found: C, 66.43; H, 5.16; N, 2.78.

N-Acetyl-4-*O*-benzoyl-*N*-*p*-methoxyphenyl- α -D-lyxopyranosylamine (19, 35%), m.p. 182°, $[\alpha]_D$ –133°, R_F 0.08; ν_{max} 3490 (OH), 1725 (ester CO), and 1650 cm⁻¹ (amide CO).

Anal. Calc. for C₂₁H₂₃NO₇: C, 62.84; H, 5.73; N, 3.49. Found: C, 62.72; H, 6.00; N, 3.31.

REFERENCES

- 1 J. SOKOŁOWSKI AND Z. SMIATACZ, *Rocz. Chem.*, 38 (1964) 1511–1522; Z. SMIATACZ, *ibid.*, 47 (1973) 1161–1174; Z. SMIATACZ, *Carbohydr. Res.*, 38 (1974) 117–123.
- 2 Z. SMIATACZ AND E. PASZKIEWICZ, Rocz. Chem., 49 (1975) 909-917.
- 3 Z. SMIATACZ AND J. SOKOŁOWSKI, Rocz. Chem., 40 (1966) 1473-1486, 1881-1888; Z. SMIATACZ, *ibid.*, 47 (1973) 1389-1399.
- 4 A. ALBERT AND E. P. SERJEANT, *Ionization Constants of Acids and Bases*, Methuen, London, 1962, p. 144.

- 5 R. U. LEMIEUX, R. KULLING, H. BERNSTEIN, AND W. SCHNEIDER, J. Am. Chem. Soc., 80 (1958) 6098-6105
- 6 P. L. DURETTE AND D. HORTON, Carbohydr. Res., 18 (1971) 403-418.
- 7 R. U. LEMIEUX AND J. STEVENS, Can. J. Chem., 43 (1965) 2059-2070.
- 8 M. FRÉREJACQUE C.R. Acad. Sci., Ser. C, 202 (1936) 1190-1192.
- 9 P. L. DURETTE AND D. HORTON, Adv. Carbohydr Chem. Biochem., 26 (1971) 49-125.
- 10 Z. SMIATACZ AND J. SOKOŁOWSKI, Rocz. Chem., 45 (1971) 1431-1446.
- 11 J. SOKOŁOWSKI AND E. PASZKIEWICZ, Rocz. Chem., 53 (1979) 305-316.
- 12 S. J. ANGYAL, Aust. J. Chem., 21 (1968) 2737-2746.
- 13 R. E. REEVES, J. Am. Chem. Soc., 72 (1950) 1499-1506.
- 14 K. B. KELLY, Can J. Chem., 35 (1957) 149-157.
- 15 A. C. RICHARDSON, Carbohydr. Res., 10 (1969) 395-402.