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Triple bonding between transition elements is a feature
commonly encountered in several classes of dimetal complexes.
For the most part such bonding is homonuclear, whereas
heteronuclear triple bonding is generally confined to species
with bonds to first row main group elements, as exemplified in
carbyné or nitrido complexed. Rare exceptions to this
generalization are the recently reported phosphido derivatives
MO(P)(NRAT)34 (R = —C(CD3)2CH3, Ar = 3,5-(C|‘[3)2C5H3—)
and W(P)(NN)> (NN3 {(Me3sSINCH,CH,)3N}3™) which
feature formal triple bonds between phosphorus and molybde-
num or tungsten. Despite the existence of the donor stabilized
silylyne complex [§5-CsMes)(MesP)LRuSK (bipy)(SGH-4-
Me)}[OTf] 2,6 in which the silicon is four-coordinate, no
transition complexes featuring triple bonds to the heavier
elements of the carbon group (i.e., Si, Ge, Sn, or Pb) have bee
isolated as stable molecules. In this paper the synthesis an
characterization of 75-CsHs)(COpMoGeGHs-2,6-Mes (1),
which contains a molybdenufigermanium triple bond, is now
described.

The compound X) was synthesizeédin THF solution by
treatment of Na[Maf>-CsHs)(CO)] with 2,6-MesCeH3GeCl
(generated in situ) as shown in eq 1

THF, 50°C
_—

Na[Mo(;*-CsHg)(CO)] + 2,6-MegCH,GeCl———

(7°-CHg) (COLM0GeGH,-2,6-Mes + NaCl (1)
(1)

The formula ofl was established by spectroscopic and structural
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Figure 1. Thermal ellipsoid plot (30%) of with hydrogen atoms not
shown. Selected bond distances (A) and angles (deg) are as follows:
Mo—Ge = 2.271(1), Me-C(25) = 2.379(12), Me-C(26) = 2.34(1),
0—C(27) = 2.31(1), Mo-C(28) = 2.30(1), Mo-C(29) = 2.34(1),
0—C(30) = 1.950(9), Mo-C(31) = 1.960(13), Ge-C(1) = 1.933-

(7), C(30y-0O(1) = 1.165(10), C(31y0O(2) = 1.174(13), Mo-Ge—

C(1) = 172.2(2y, Ge—-Mo—C(30) = 88.2(2), Ge-Mo—C(31) =
86.6(3), Mo-C(30)-0(1) = 177.2(7), Me-C(31)-0(2) = 173.8(9),
Ge-C(1)-C(2) = 120.6(5), Ge-C(1)—C(6) = 117.9(6).

characterization. The X-ray crystal structti(Eigure 1) reveals

an almost linear coordination (M&Ge—C = 172.2(2)) at the
germanium and a short MeGe bond length of 2.271(1) A.
There are no other close interatomic contacts involving germa-
nium, and the shortest G&CO distances are greater than 2.9
A. Thus, the carbonyls are terminal and not semibridging as
they are in the related dimer [Mg{-CsHs)(CO),],° which fea-
tures Mo—Mo triple bonds. The Me-Ge distance may be com-
pared to the single bond length (2.62 A) predicted from the
sum of the covalent radf of Mo (1.4 A) and Ge (1.22 A) and,

in addition, the Me-Ge single bond lengths im?-CsHs)(CO)-
Mo(GePh){ C(OEt)PR 11 (2.658(2) A) and %°-CsHs)(173-CeH11)-
(NO)MoGePh!2 (2.604(2) A). Clearly, the shortenitgseen

in 1is of the order of 0.35 A and is consistent with the presence
of a Mo—Ge triple bond between the 15-electrgf-CsHs)(CO)-

Mo fragment and the Gefl;-2,6-Mes moiety.

Most of the remaining structural features of the molecule are
not unusual and are consistent with previously published data.
The Mo—CO bonds 1.950(9) and 1.960(10) A are slightly (ca.
0.01 A) longer than those in the phosphenum ion-Mo complex

. .
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2,6-Mes group are slightly longer (ca. 0.1 A) than the others bonding: e.g., 1947 and 1873 cifound for ¢;5-CsHs)(CO)-
(Mo—C(27-29)). This is consistent with the greater steric MoAs(t-Bu)® or 1920 and 1856 cni for (17°-CsHs)(CO)-
congestion imposed by the germanium substituent. The@e  MOo(NCPIp).16

bond length, 1.933(7) A, is at the shorter end of the range of ~ The facile synthesis and the stability bimay be attributed
Ge—C distanced$ perhaps as a result of the approximate sp 1o the stabilizing properties of the 2,6-M&Hs— substitueri’

hybridization of the Ge:C bonding orbital. There is litle ~ Which affords the germanium sufficient steric protection and
distortion apparent in the geometry of the 2,6-h@is— facilitates the elimination of CO under mild conditions to afford

. o - the Mo—Ge triply bonded product. The compléxis unique
Itl)ganc:, amd the ﬁ)laget\(,nvf the fﬁ ntral g romlatlc ring approximately not only because it is the first stable transition metal germylyne
ISects the angle between the carbonyl groups. complex but also it appears to be the first species in which a

The solutionH and 3C NMR spectra ofl are consistent  heavier group 14 element forms a triple bond in a compound
with the structure established by X-ray crystallography. No that is stable at room temperature. Investigations of the
dynamic behavior could be detected at temperatures as low ashemical properties ot and the synthesis of related heavier
—90 °C. The IR spectrum ofl (Nujol mull) displayed the main group 14 analogues are currently underway.
expected two stretching absorptions in the carbonyl region. The
observed stretching frequencies, 1930 and 1872cado not
suggest the unusually hightacceptor properties seen in many
carbyneg: e.g., 1992 and 1919 cmh in Mo(#n°-CsHs)- Supporting Information Available: Tables of data collection
(COX{C(CeH4-2,6-Mey)}. 162 Instead the frequencies resemble parameters, atom coordinates, bond distances, angles, anisotropic

those in otherf®-CsHs)(CO),Mo fragments involved in multiple thermal parameters and hydrogen coordinates (9 pages). See any
current masthead page for ordering and Internet access instructions.
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