Chem. Pharm. Bull. 32(8)3291—3298(1984)

Syntheses and Antimicrobial Activities of Five-Membered Heterocycles Having a Phenylazo Substituent¹⁾

Kuniyoshi Tanaka,* Keizo Matsuo, Ai Nakanishi, Misako Jo, Hironori Shiota, Mikiko Yamaguchi, Sakiko Yoshino, and Keiko Kawaguchi

Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-Osaka 577, Japan

(Received March 16, 1984)

Several five-membered heterocycles having a phenylazo substituent, 3-phenylazotetronic acids (2a—n), 3-phenylazotetramic acids (4a—i), 4-phenylazo-5-isoxazolinones (6a—g, 8a—f) and 5-phenylazo-4-thiazolidinones (10a—f, 12a—e), were synthesized and tested for antimicrobial activities. Tetronic acid and tetramic acid derivatives (2 and 4) inhibited the growth of gram-positive bacteria. 5-Isoxazolinone and 4-thiazolidinone derivatives (8 and 10) showed inhibitory activities against fungi as well as bacteria.

Keywords—substituted phenylazo group; tetronic acid; tetramic acid; 5-isoxazolinone; 4-thiazolidinone; antimicrobial activity

In the previous papers, $^{2,3)}$ we reported the antimicrobial activities of 3-acyltetronic acids and 3-acyltetramic acids, and concluded that the tricarbonylmethane structure was essential for the actitivites. We therefore planned to synthesize tetronic acids and tetramic acids having a phenylazo substituent at the 3-position, in which one of the tricarbonyl groups is replaced by the electron-withdrawing azo group, and also to synthesize 4-phenylazo-5(4H)-isoxazolinone and 5-phenylazo-4-thiazolidinone derivatives as related five-membered compounds. The antimicrobial activities of these compounds were tested and the structure-activity relationships were considered.

Chemistry

3-Phenylazotetronic Acid Derivatives

Tetronic acid (1a) and 5-methyltetronic acid (1b) were prepared by the method reported in the previous paper.²⁾ Compounds 1a and 1b were each coupled with diazonium salts derived from substituted anilines to yield various 3-phenylazotetronic acid derivatives (2a—n, Chart, Table I). The structures of these compounds were confirmed by elemental analyses, and infrared (IR) and nuclear magnetic resonance (NMR) spectral data.

3-Phenylazotetramic Acid Derivatives

5-Methyltetramic acid (3) prepared by the known method,^{3,4)} was converted to 5-methyl-3-phenylazotetramic acids (4a—i) by means of the azo-coupling reaction as shown in the Chart and Table II.

4-Phenylazo-5(4H)-isoxazolinone Derivatives

Condensation of ethyl benzoylacetate with hydroxylamine provided 3-phenyl-5(4H)-isoxazolinone (5), from which 3-phenyl-4-phenylazo-5(4H)-isoxazolinone derivatives (6a—g) were obtained by means of the azo-coupling reaction. On the other hand, as 3-methyl-

HO
$$_{R}$$
 $_{NaNO_2}$ $_{HCl}$ $_{R}$ $_{NaNO_2}$ $_{HCl}$ $_{R}$ $_{NaNO_2}$ $_{HCl}$ $_{Hcl}$ $_{Hcl}$ $_{NaNO_2}$ $_{HCl}$ $_{Hcl}$ $_{Hcl}$ $_{NaNO_2}$ $_{Hcl}$ $_{Hcl}$ $_{Hcl}$ $_{NaNO_2}$ $_{Hcl}$ $_{NaNO_2}$ $_{Hcl}$ $_{Hcl}$ $_{NaNO_2}$ $_{Hcl}$ $_{Hcl}$ $_{NaNO_2}$ $_{Hcl}$ $_$

5(4H)-isoxazolinone was difficult to isolate from the condensation products of ethyl acetoacetate and hydroxylamine, 3-methyl-4-phenylazo-5(4H)-isoxazolinone derivatives (8a-f) were synthesized by condensation of ethyl 2-phenylazo-3-oxobutyrate derivatives $(7a-f)^{6}$ with hydroxylamine (Chart, Table III). These compounds $(6a-g\alpha, 8a-f\alpha)$ were presumed to have the tautomeric structures $(6a-g\beta, 8a-f\beta)$ from their NMR spectra. 8,9 The NMR spectrum of 6a, for example, showed a singlet peak at 13.30 ppm, which is consistent with the proton of =N-NH-.

5-Phenylazo-4-thiazolidinone Derivatives

5-Phenylazo-2-thioxo-4-thiazolidinone derivatives (10a—f) were prepared from 2-

TABLE I. Physical Properties of 3-Phenylazotetronic Acid Derivatives

Comp	pound R	X	Appearance	mp (°C)	Yield (%)	Formula		nalysis (und (Ca	, 0,
		Α			(/0)		С	Н	N
2a	Н	Н	Orange needles	207—208	41.7	$\mathrm{C_{10}H_8N_2O_3}$	58.80	3.99	14.00
							(58.82	3.95	13.72)
2b	CH_3	Н	Orange prisms	153—155	73.2	$C_{11}H_{10}N_2O_3$	60.55	4.62	12.84
•	CII	2.61	37.11	154 155	5 0.5	C H CDI O	(60.26	4.55	12.79)
2 c	CH_3	2-C1	Yellow powder	174—177	79.5	$C_{11}H_9ClN_2O_3$	52.39	3.43	10.89
2d	CH	4-Cl	Valları marridan	100 102	61.2	C H CIN O	(52.29 52.03	3.59	11.09) 11.32
2u	CH_3	4-C1	Yellow powder	190—192	61.3	$C_{11}H_9ClN_2O_3$	(52.29	3.66 3.59	11.32
2e	CH ₃	2,4-Cl ₂	Yellow powder	184—188	20.5	$C_{11}H_8Cl_2N_2O_3$	45.76	2.65	10.02
20	C113	2,4-012	renow powder	104100	20.5	$C_{11} I_{18} C_{12} I_{12} C_{3}$	(46.02	2.81	9.76)
2f	CH_3	3,4-Cl ₂	Yellow powder	177—180	54.4	$C_{11}H_8Cl_2N_2O_3$	45.84	2.76	10.23
	3	0,7 0.2	zonow powacz	177 100		01111801211203	(46.02	2.81	9.76)
2g	CH_3	$2-NO_2$	Orange powder	187—191	57.8	$C_{11}H_{9}N_{3}O_{5}$	49.93	3.14	15.89
Ü	3	2	U 1			11 9 3 3	(50.19	3.45	15.96)
2h	CH_3	3-NO ₂	Yellow powder	207211	61.9	$C_{11}H_9N_3O_5$	50.39	3.56	16.27
		_	-				(50.19	3.45	15.96)
2i	H	4-NO ₂	Orange plates	236—238	62.5	$C_{10}H_7N_2O_5$	47.86	3.69	16.71
							(48.20	3.83	16.86)
2j	CH_3	$4-NO_2$	Red powder	217—222	69.5	$C_{11}H_9N_3O_5$	50.01	3.39	16.24
							(50.19	3.45	15.96)
2k	CH_3	$2,6-(CH_3)_2$	Orange prisms	140—142	47.5	$C_{13}H_{14}N_2O_3$	63.14	5.35	11.59
	~						(63.40	5.73	11.37)
21	CH_3	3-CF ₃	Yellow powder	139143	70.0	$C_{12}H_9F_3N_2O_3$	50.06	2.88	9.78
•	CII	4 00011	3 7 11	251 255	20.2		(50.36	3.17	9.79)
2m	CH_3	4-COOH	Yellow powder	251—255	38.3	$C_{12}H_{10}N_2O_5$	54.75	3.74	10.86
2	CH	4 COOC II	Vallary manual - "	142 144	60.2	CHNO	(54.97	3.84	10.68)
2n	CH_3	4-COOC ₂ H ₅	Yellow powder	143—144	68.3	$C_{14}H_{14}N_2O_5$	57.98 (57.93	4.70 4.86	9.44 9.65)
							(31.73	7.00	7.03)

thioxo-4-thiazolidinone (rhodanine) $(9)^{10}$ by means of the azo-coupling reaction and 3-methyl-2-methylimino-5-phenylazo-4-thiazolidinone derivatives (12a-e) were similarly synthesized from 3-methyl-2-methylimino-4-thiazolidinone $(11)^{11}$. These compounds were also presumed to have the tautomeric structures $(10a-f\beta, 12a-e\beta)$ from their NMR spectra (Chart, Table IV).

Biology

The synthesized compounds were tested for growth inhibitory activities against grampositive and negative bacteria and fungi. Several 3-phenylazotetronic acids (2) inhibited the growth of *B. subtilis* and *S. aureus*, but did not exhibited any activities against other microorganisms (Table V). Most of the 3-phenylazotetramic acids (4) inhibited the growth of *B. subtilis*, but they did not show inhibitory activity against other microorganisms (Table VI). Although none of the 3-phenyl-4-phenylazo-5(4*H*)-isoxazolinone derivatives (6a—g) inhibited the growth of the microorganisms tested, most of the 3-methyl-4-phenylazo-5(4*H*)-isoxazolinone derivatives (8a—f) showed inhibitory activities against bacteria as well as fungi (Table VII). It has already been reported that 8b has antifungal activity. The 5-phenylazo-2-thioxo-4-thiazolidinone derivatives (10a—f) showed broad antimicrobial spectra, but 3-

TABLE II. Physical Properties of 3-Phenylazotetramic Acid Derivatives

Com	pound	Appearance	mp (°C)	Yield	Formula		nalysis (' und (Cal	
	X	••	• , ,			C	Н	N
4a	Н	Yellow needles	153—155	18.8	$C_{11}H_{11}N_3O_2$	60.96	5.16	19.14
						(60.82)	5.10	19.34)
4b	2-C1	Yellow needles	187192	23.7	$C_{11}H_{10}ClN_3O_2$	52.44	3.92	16.57
						(52.50	4.01	16.70)
4c	2-F	Brown powder	203206	48.5	$C_{11}H_{10}FN_3O_2$	56.22	4.16	17.65
		-				(56.17	4.28	17.86)
4d	2-NO ₂	Orange powder	229—231	7.5	$C_{11}H_{10}N_4O_4$	50.15	3.53	20.97
	2	U 1			11 10 4 4	(50.38	3.84	21.37)
4e	4-NO ₂	Yellow powder	255258	27.5	$C_{11}H_{10}N_4O_4$	50.21	3.78	21.11
	2	•			11 10 4 4	(50.38	3.84	21.37)
4f	2-CH ₃	Yellow powder	151—154	7.0	$C_{12}H_{13}N_3O_2$	62.17	5.49	18.13
	3				12 13 3 2	(62.23	5.67	18.17)
4g	2-CF ₃	Orange powder	173—175	48.2	$C_{12}H_{10}F_3N_3O_2$	50.53	3.43	14.70
-8	3	- · · · · · · · · · · · · · · · · · · ·			12 10 3 3 2	(50.53	3.53	14.73)
4h	3-CF ₃	Yellow powder	189—193	43.8	$C_{12}H_{10}F_3N_3O_2$	50.55	3.45	14.51
	3	F - · · · · · ·			12 10 3 3 2	(50.53	3.53	14.73)
4i	2-OCH ₃	Orange powder	203206	71.7	$C_{12}H_{13}N_3O_3$	58.17	5.17	17.02
					121333	(58.29	5.30	17.00)

TABLE III. Physical Properties of 4-Phenylazo-5(4H)-isoxazolinone Derivatives

Com	pound	Appearance	mp (°C)	Yield (%)	Formula		nalysis (
	X			(/₀)		C	H	N
6a	Н	Orange prisms	169—172	26.2	$C_{15}H_{11}N_3O_2$	67.81	4.16	15.45
			(lit. ⁵⁾ 166)			(67.92	4.18	15.84)
6b	2-C1	Orange needles	157—160	34.7	$C_{15}H_{10}CIN_3O_2$	60.30	3.31	13.92
						(60.11	3.36	14.02)
6c	4-C1	Yellow flocks	234—237	55	$C_{15}H_{10}ClN_3O_2$	59.84	3.22	14.15
						(60.11	3.06	14.02)
6d	$2-NO_2$	Orange powder	179—180	32.2	$C_{15}H_{10}N_4O_4$	58.24	3.12	17.95
						(58.07	3.25	18.06)
6e	$4-NO_2$	Yellow flocks	265—268	77.4	$C_{15}H_{10}N_4O_4$	58.18	3.13	17.96
						(58.07	3.25	18.06)
6f	$2-CF_3$	Yellow needles	138—142	55.3	$C_{16}H_{10}F_3N_3O_2$	57.75	2.96	12.52
	-					(57.66	3.02	12.61)
6g	$3-CF_3$	Yellow flocks	195—199	37.5	$C_{16}H_{10}F_3N_3O_2$	57.86	2.96	12.46
						(57.66	3.02	12.61)
8a	Н	Yellow plates	192—194	64.6	$C_{10}H_{9}N_{3}O_{2}$	59.23	4.34	20.53
		-	(lit. ⁶⁾ 192)			(59.11	4.46	20.68)
8b	2-C1	Yellow prisms	167—168	34.7	$C_{10}H_8ClN_3O_2$	50.33	3.24	17.74
		-	(lit. ¹²⁾ 164—166)			(50.54	3.39	17.68)
8c	4-C1	Yellow flocks	183—184	66.6	$C_{10}H_8ClN_3O_2$	50.34	3.23	17.61
			(lit. ⁷⁾ 186)		10 0 0 1	(50.54	3.39	17.68)
8d	2-F	Yellow prisms	145—148	71.2	$C_{10}H_8FN_3O_2$	54.52	3.86	18.95
		•			10 0 0 2	(54.30	3.65	19.00)
8e	4-NO ₂	Yellow powder	196—200	41.2	$C_{10}H_8N_4O_4$	48.16	3.61	22.10
	2				20 0 4 4	(48.39	3.25	22.57)
8 f	3-CF ₃	Yellow plates	204208	36.4	$C_{11}H_8F_3N_3O_2$	48.66	3.04	15.50
-	3	<u>F</u>			11,033.2	(48.72	2.97	15.49)

TABLE IV. Physical Properties of 5-Phenylazo-4-thiazolidinone Derivatives

Com	pound	Appearance	mp (°C)	Yield	Formula		nalysis (
	X			(%)		C	Н	N
10a	Н	Brown needles	243247	59.6	$C_9H_7N_3OS_2$	45.66	2.89	17.49
						(45.55	2.97	17.71)
10b	2-C1	Orange needles	240243	24.0	$C_9H_6CIN_3OS_2$	39.46	2.08	15.26
						(39.78	2.23	15.46)
10c	4-C1	Orange granulus	>250	25.7	$C_9H_6CIN_3OS_2$	39.91	2.24	15.60
						(39.78	2.23	15.46)
10d	2-F	Orange needles	225-228	23.2	$C_9H_6FN_3OS_2$	42.25	2.32	16.48
		-				(42.34	2.37	16.46)
10e	$2-NO_2$	Orange needles	224—228	64.2	$C_9H_6N_4O_3S_2$	38.22	2.05	20.03
	_	_				(38.29	2.14	19.85)
10f	$4-NO_2$	Orange needles	>250	45.5	$C_9H_6N_4O_3S_2 \cdot 1/2H_2O$	37.50	2.44	19.19
	-	_			, , , , , , , , , , , , , , , , , , , ,	(37.11	2.42	19.23)
12a	Н	Yellow needles	218—221	32.9	$C_{11}H_{12}N_4OS$	53.30	4.83	22.57
					/	(53.21	4.87	22.56)
12b	2-C1	Orange needles	188—191	37.6	$C_{11}H_{11}ClN_4OS$	46.89	3.95	19.58
						(46.73	3.92	19.82)
12c	4-C1	Yellow needles	236—240	30.7	$C_{11}H_{11}ClN_4OS$	46.83	3.83	19.65
						(46.73	3.92	19.82)
12d	$2-NO_2$	Orange needles	217219	78.8	$C_{11}H_{11}N_5O_3S$	44.99	3.48	23.77
	~	-				(45.05	3.78	23.88)
12e	$4-NO_2$	Yellow powder	> 250	64.9	$C_{11}H_{11}N_5O_3S$	45.13	3.75	23.81
	_	_				(45.05	3.78	23.88)

Table V. Antimicrobial Activities of 3-Phenylazotetronic Acid Derivatives (MIC: $\mu g/ml$)

			(Compoun	d		
Microorganism	2a	2b	2c	2d	2e	2f	2g
B. subtilis IFO-3513	12.5	3.12	1.56	50	6.25	50	3.12
S. aureus IFO-3061	>100	100	50	100	100	50	25

				Compound			
Microorganism	2h	2i	2j	2k	21	2m	2n
B. subtilis IFO-3513	6.25	12.5	0.78	> 100	1.56	>100	0.78
S. aureus IFO-3061	100	>100	50	>100	50	>100	100

methyl-2-methylimino-4-thiazolidinone derivatives (12a-e) were inactive (Table VIII).

The above mentioned results led us to conclude that the nature of the five-membered heterocycle in phenylazo derivatives has a significant effect on the antimicrobial activities; the

3296 Vol. 32 (1984)

					Compound				
Microorganism	4a	4b	4c	4d	4e	4f	4 g	4h	4i
B. subtilis IFO-3513	100	3.12	3.12	0.39	1.56	100	6.25	12.5	>100
S. aureus IFO-3061	>100	>100	> 100	>100	>100	>100	>100	>100	>100

TABLE VI. Antimicrobial Activities of 3-Phenylazotetramic Acid Derivatives (MIC: μg/ml)

activity spectra of isoxazolinone and thiazolidinone derivatives (8 and 10) were broader than those of tetronic acid and tetramic acid derivatives (2 and 4). In addition, substituents on the heterocycles also affected the activity; that is, in contrast to 3-methyl-4-phenylazo-5(4H)-isoxazolinone and 5-phenylazo-2-thioxo-4-thiazolidinone derivatives (8 and 10), which showed remarkable inhibitory activities, 3-phenyl-5(4H)-isoxazolinone and 3-methyl-2-methylimino-4-thiazolidinone derivatives (6 and 12) were all inactive. On the other hand, it is noteworthy that the inhibitory activity was enhanced by chloro and nitro substituents on the benzene nucleus of the phenylazo group.

Experimental

Melting points were determined on a Yanagimoto micro-melting point apparatus, model MP-S3, and are uncorrected. IR spectra were measured in Nujol mulls with a Hitachi infrared spectrophotometer, model 260-30, and NMR spectra were measured with a JEOL JNM-FX 200 (200 MHz) spectrometer using tetramethylsilane as an internal standard.

3-Phenylazotetronic Acid (2a)—A solution of aniline (0.7 g, 2 mmol) in 6.5 ml of 1 N HCl was cooled to 0 °C and diazotized with NaNO₂ (0.16 g, in 2 ml H₂O). Tetronic acid (1a) (0.2 g, 2 mmol) dissolved in 2 ml of H₂O containing K₂CO₃ (0.28 g, 2.02 mmol) was added dropwise to the diazotized solution with stirring and ice-cooling. The mixture was allowed to stand for 1 h, then the orange-colored precipitates were filtered off, washed well with water, and recrystallized from glacial acetic acid to yield 2a as orange plates. 0.17 g (41.7%). mp 207—208 °C. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3295 (OH), 1780 (CO), 1690 (C=C), 1605, 1555 (aromatic). NMR (DMSO- d_6) δ : 4.67 (2H, s, CH₂), 7.28—7.64 (5H, m, aromatic), 13.1 (1H, br s, OH). Other derivatives (2b—n) were prepared similarly and are listed in Table I.

5-Methyl-3-phenylazotetramic Acid (4a)—5-Methyltetramic acid (3) (0.5 g, 4.42 mmol) dissolved in 5 ml of $\rm H_2O$ containing $\rm K_2CO_3$ (0.62 g, 4.47 mmol) was slowly added to a solution of benzenediazonium chloride (prepared from 0.41 g aniline) with stirring and ice-cooling. The mixture was allowed to stand for several hours, then the separated oil was extracted with CHCl₃. The organic layer was washed with saturated brine and dried over $\rm Na_2SO_4$. The solvent was removed *in vacuo* to yield a gummy residue (0.8 g), which was purified by silica gel column chromatography using CHCl₃ as an eluent and by recrystallization from AcOEt. Yellow needles, 0.18 g (18.8%). mp 153—155 °C. IR $\nu_{\rm max}^{\rm Nijol}$ cm⁻¹: 3100 (OH, NH), 1670 (CONH), 1590, 1525 (aromatic). NMR (CDCl₃) δ : 1.46 (3H, d, J=8 Hz, CH₃), 4.03 (1H, q, J=8 Hz, CH), 7.2—7.4 (6H, aromatic, CONH), 13.4 (1H, s, OH). Other derivatives (4b—i) were similarly synthesized and are listed in Table II.

3-Phenyl-4-phenylazo-5(4H)-isoxazolinone (6a)—3-Phenyl-5(4H)-isoxazolinone (5) (0.32 g, 2 mmol) dissolved in 2 ml of 1 N NaOH solution was added to the diazotized solution [prepared from aniline (0.2 g, 2 mmol)] with stirring and ice-cooling. The mixture was allowed to stand for half an hour, then the yellow precipitates were filtered off, washed with water and recrystallized from EtOH to yield yellow prisms. 0.14 g (26.2%). mp 169—172 °C. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3170 (= N-NH-), 1704 (CO), 1660 (C=N), 1595, 1580, 1545 (aromatic). NMR (CDCl₃) δ : 7.28—8.12 (10H, m, aromatic), 13.30 (1H, s, = N-NH-). Other derivatives (6b—g) were similarly synthesized and are listed in Table III.

3-Methyl-4-phenylazo-5(4H)-isoxazolinone (8a)—A solution of benzenediazonium chloride prepared from aniline (5.72 g, 61 mmol) was added dropwise to a solution containing ethyl acetoacetate (8 g, 61 mmol in EtOH 180 ml) and NaOAc (27.2 g in H₂O 48 ml) with stirring and ice-cooling to yield ethyl 3-oxo-2-phenylazobutyrate (7a, 7.65 g, 53.6%). NH₂OH·HCl (2.34 g, 33.7 mmol) and NaOAc (4.43 g, 54 mmol) dissolved in H₂O (63 ml) were added dropwise to a boiling solution of 7a (7.65 g, 32.7 mmol) in EtOH (63 ml) with stirring and heating. Refluxing was continued for half an hour, then the reaction mixture was cooled, yielding yellow precipitates which were filtered off,

TABLE VII. Antimicrobial Activities of 3-Methyl-4-phenylazo-5(4H)-isoxazolinone Derivatives (MIC: µg/ml)

Compound 8a	1 1 2 1 2	2 > 100	3 > 100	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	> 100		Micro 7 12.5	### ##################################	9 > 100	100	11 100	12	13	14 14 25	15
e %	> 100	× 100 × 100	× 100 × 100	× 100 × 100	1.56	0.78	0.39 12.5	001 ^	^ ^ 001 ^	3.23 12.5	8 A 100 100	3.12	5.12	8 8	0.23
P 8	25	> 100	> 100	> 100	1.56		3.12	12.5	> 100	12.5	100	6.25	6.25	25	25
&	6.25	25	100	> 100	0.78		0.78	25	25	6.25	> 100	3.12	6.25	12.5	100
8 ŧ	> 100	> 100	> 100	> 100	> 100	3.12	> 100	> 100	> 100	100	> 100	6.25	> 100	> 100	20

1, Bacillus subtilis, IFO-3513; 2, Staphylococcus aureus, IFO-3061; 3, Escherichia coli, IFO-12734; 4, Pseudomonus aeruginosa, IFO-3080; 5, Aspergillus niger, IFO-6341; 6, Penicillium citrinum, IFO-6352; 7, Cladosporium herbarum, IFO-6348; 8, Mucor spinescens, IFO-6356; 9, Rhodorula rubra, IFO-0907; 10, Pyricularia oryzae, IFO-5279; 11, Pellicularia sasakii, IFO-6330; 12, Helminthosporium sigmoideum, IFO-4867; 13, Botrytis cinerea, Kyoto; 14, Collectorichum lagenerium, IFO-6207; 15, Sclerotinia sclerotiorum, IFO-4876. <u>a</u>

Table VIII. Antimicrobial Activities of 5-Phenylazo-2-thioxo-4-thiazolidinone Derivatives (MIC: μg/ml)

-							Z.	aici ooi gaiiisi							
Compound		2	3	4	. \$	9	7	∞	6	01	=	12	13	14	15
10a	50	50	> 100	> 100	> 100	50	25	100	25	25	100	12.5	50	25	> 100
10b	20	25	> 100	> 100	> 100	20	25	100	12.5	12.5	25	25	20	12.5	100
10c	20	12.5	> 100	> 100	100	12.5	12.5	1.56	20	20	100	6.25	100	20	100
10d	25	25	> 100	> 100	> 100	20	25	> 100	25	25	25	12.5	20	25	100
10e	25	12.5	> 100	> 100	> 100	> 100	25	> 100	100	25	25	100	100	20	20
10f	25	12.5	> 100	> 100	> 100	100	12.5	12.5	20	12.5	100	25	25	20	20

a) The kinds of microbrganisms were the same as listed in Table VII.

washed with 40% EtOH and recrystallized from AcOEt. Yellow plates, 4.29 g (64.6%). mp 198—201 °C. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3200 (= N-NH), 1710 (CO), 1675 (C=N), 1595, 1565 (aromatic). NMR (CDCl₃) δ : 2.32 (3H, s, CH₃), 7.28—7.42 (5H, m, aromatic), 12.65 (1H, s, = N-NH-). Other derivatives (8b—f) were similarly synthesized and are listed in Table III

5-Phenylazo-2-thioxo-4-thiazolidinone (10a) —An aqueous solution containing rhodanine (9) (1.0 g, 7.52 mmol) and K_2CO_3 (1.05 g, 7.6 mmol) was added to the diazotized solution prepared from aniline (0.7 g, 7.52 mmol) with stirring and ice-cooling to yield precipitates, which were recrystallized from MeOH. Brown needles, 2.12 g (59.6%). mp 242—247 °C. IR v_{max}^{Nujol} cm⁻¹: 3400 (CONH), 3240 (=N-NH-), 1700 (CONH), 1600, 1520 (aromatic). NMR (DMSO- d_6) δ : 7.00—7.28 (5H, m, aromatic), 10.8 (1H, s, =N-NH-), 13.6 (1H, br s, CONH). Other derivatives (10b—f) were similarly synthesized and are listed in Table IV.

3-Methyl-2-methylimino-5-phenylazo-4-thiazolidinone (12a)—A solution of 3-methyl-2-methylimino-4-thiazolidinone (11) (1 g, 6.94 mmol) and K_2CO_3 (0.97 g, 7.01 mmol) in H_2O was added dropwise with stirring to a solution of benzenediazonium chloride prepared from aniline (0.65 g, 6.94 mmol), and the whole was kept for 1 h at 0 °C. The product was filtered off, washed well with H_2O and recrystallized from EtOH. Yellow needles, 0.57 g (32.9%). mp 218—221 °C. IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3250 (= N-NH-), 1690 (CONH), 1660 (C=N-), 1605, 1560 (aromatic). NMR (DMSO- d_6) δ : 3.12 and 3.13 (each 3H, s, CH₃NCO and CH₃N=C), 6.95—7.24 (5H, m, aromatic), 10.32 (1H, s, = N-NH-). Other derivatives (12b—e) were similarly synthesized and are listed in Table IV.

Antimicrobial Activity Test—The minimum inhibitory concentration (MIC, μ g/ml) was measured as follows; bouillon agar (9 ml) was mixed with 1 ml of an aqueous solution containing a test compound (dissolved in small amounts of N,N-dimethylformamide and acetone) at various concentrations. The agar was then poured into a Petri dish. After solidification, the agar was streaked with test organism suspension and incubated at 33 °C for 18—20 h. The MIC for each compound was defined as the lowest concentration inhibiting the growth of the test organisms.

Acknowledgement The authors are indebted to Dr. Kazuo Konishi and Mr. Kiyoshi Okamoto, Pesticide Research Laboratories, Agricultural Chemical Division, Takeda Chemical Industries Ltd., for carrying out antimicrobial activity tests. Thanks are also due to Mr. Masami Kan, Chemical Research Laboratories, Central Research Division, Takeda Chemical Industries Ltd., for microanalysis and to Mrs. Toshie Minematsu, Faculty of Pharmaceutical Sciences, Kinki University, for NMR spectral measurements.

References and Notes

- The work was presented at the Annual Meeting of the Kinki Branch of the Pharmaceutical Society of Japan, Kobe, Nov., 1981.
- 2) K. Tanaka, K. Matsuo, Y. Nakaizumi, Y. Morioka, Y. Takashita, Y. Tachibana, Y. Sawamura, and S. Kohda, *Chem. Pharm. Bull.*, 27, 1901 (1979).
- 3) K. Matsuo, I. Kitaguchi, Y. Takata, and K. Tanaka, Chem. Pharm. Bull., 28, 2494 (1980).
- 4) T. P. C. Mulholland, R. Foster, and D. B. Haydock, J. Chem. Soc., Perkin Trans. 1, 1972, 2121.
- 5) L. Claisen and W. Zedal, Chem. Ber., 24, 140 (1891).
- 6) C. Bülow and P. Neber, Chem. Ber., 45, 3732 (1912).
- 7) H. G. Garg, J. Org. Chem., 27, 1045 (1962).
- 8) L. A. Summers and D. J. Shields, Chem. Ind. (London), 1964, 1264.
- 9) K. Tabei, E. Kawashima, and T. Kato, Chem. Pharm. Bull., 29, 244 (1981).
- 10) C. E. Redemann, R. N. Icke, and G. A. Alles, "Organic Syntheses," Coll. Vol. III, ed. by A. H. Blatt, John Wiley & Sons Inc., New York, 1955, p. 763.
- 11) R. Andreasch, Monatsh. Chem., 8, 407 (1888).
- 12) Imperial Chemical Industries, Ltd., Brit. Patent 1049103 (1966) [Chem. Abstr., 66, 4408 (1967)].