
This article was downloaded by: [McGill University Library] On: 27 October 2014, At: 18:26 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

SIGMATROPIC-[2,3]-WITTIG REARRANGEMENT OF a-ALLYLIC-HETEROSUBSTITUTED METHYLPHOSPHONATES. REARRANGEMENT IN THE SULFUR SERIES

Hubert Makomo^a, Serge Masson^a, Didier Putman^a, Monique Saquet^a, Fabrice Simeon^a, Elie About-jaudet^b & Noël Collignon^b ^a Laboratoire de Chimie Moléculaire et Thio-organique, URA CNRS 480, Université de Caen et ISMRA, 6 Bd Mal Juin, 14050, Caen, France

^b Laboratoire d'Hétérochimie Organique, INSA-IRCOF, Place E. Blondel, BP 08, 76131, Mont-Saint-Aignan, Cedex, France Published online: 04 Oct 2006.

To cite this article: Hubert Makomo , Serge Masson , Didier Putman , Monique Saquet , Fabrice Simeon , Elie About-jaudet & Noël Collignon (1996) SIGMATROPIC-[2,3]-WITTIG REARRANGEMENT OF α -ALLYLIC-HETEROSUBSTITUTED METHYLPHOSPHONATES. REARRANGEMENT IN THE SULFUR SERIES, Phosphorus, Sulfur, and Silicon and the Related Elements, 112:1-4, 193-202, DOI: 10.1080/10426509608046363

To link to this article: http://dx.doi.org/10.1080/10426509608046363

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Phosphorus, Sulfur, and Silicon, 1996, Vol. 112, pp. 193-202 Reprints available directly from the publisher Photocopying permitted by license only © 1996 OPA (Overseas Publishers Association) Amsterdam B.V. Published in The Netherlands under license by Gordon and Breach Science Publishers SA Printed in Malaysia

SIGMATROPIC-[2,3]-WITTIG REARRANGEMENT OF α-ALLYLIC-HETEROSUBSTITUTED METHYLPHOSPHONATES. REARRANGEMENT IN THE SULFUR SERIES

HUBERT MAKOMO, SERGE MASSON,* DIDIER PUTMAN, MONIQUE SAQUET and FABRICE SIMEON

Laboratoire de Chimie Moléculaire et Thio-organique, URA CNRS 480, Université de Caen et ISMRA, 6 Bd Mal Juin, 14050 Caen, France

and

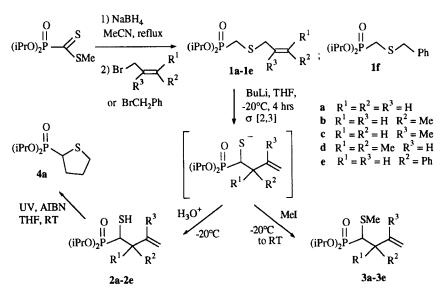
ELIE ABOUT-JAUDET and NOËL COLLIGNON Laboratoire d'Hétérochimie Organique, INSA-IRCOF, Place E. Blondel, BP 08, 76131 Mont-Saint-Aignan, Cedex, France

(Received October 26, 1995; in final form November 14, 1995)

The diisopropyl (allylthiomethyl)phosphonates (variously substituted on the allylic group) are submitted to the [2,3]-sigmatropic rearrangement, via either the carbanions or the sulfonium ylides. Synthetic potentialities are examined, and in particular new (1-mercaptobut-3-enyl)phosphonates are conveniently prepared.

Key words: Thia-[2,3]-Wittig sigmatropic rearrangement, (allylthiomethyl)phosphonates, (1-mercaptobut-3-enyl)phosphonates, (1-alkylthiobut-3-enyl)phosphonates, 2-thiolanylphosphonate, allyl-phosphonomethyl-methyl-sulfonium tetrafluoroborates.

INTRODUCTION

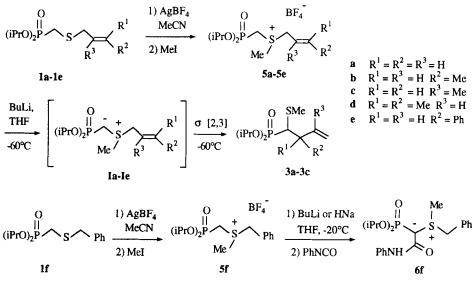

 α -Heterosubstituted alkylphosphonates have focused interest, due to their biological activities, as antibacterial, antiviral and herbicidal agents.¹⁻³ Among phosphonates containing a sulfur functionality, the α -phosphorylated thiols, and their derivatives (sulfides, sulfoxides, or sulfones) have recently been reviewed.⁴ Of particular interest for further functional transformations⁵ are the scarcely studied (1-mercaptoalkyl)-phosphonates.^{4,6,7}

We previously reported a convenient synthesis of diisopropyl and diethyl (mercaptomethyl) phosphonates,^{8,9} via the reduction with sodium borohydride of the easy accessible phosphonodithiofomates,¹⁰ and further hydrolysis of the thiolates thus formed. α -Phosphorylated thiols are precursors of various derivatives,⁹ in particular of the allylic phosphonomethyl sulfides which are obtained by *in situ* allylation of the corresponding thiolates.^{8,9} These allylic phosphonomethyl sulfides may lead to the formation of new carbon-carbon bonds via the well-known [2,3]-sigmatropic rearrangement¹¹⁻¹⁵ of either the corresponding carbanions (we reported a preliminary example⁸) or sulfonium ylides. Syntheses of (1-hydroxybut-3-enyl)phosphonates have been performed¹⁶ using the oxa-[2,3]-Wittig sigmatropic transposition of α - phosphono carbanions, and the aza-[2,3]-sigmatropic rearrangement of α -phosphono ammonium ylides was also examined.¹⁷ We herein report our results in the sulfur series.

RESULTS AND DISCUSSION

Syntheses of (1-mercaptobut-3-enyl)phosphonates, and S-methyl Derivatives, via the Carbanions obtained from (allylthiomethyl)phosphonates with Butyllithium

The allylic or benzylic phosphonomethyl sulfides 1a-1f (Scheme 1) were prepared by reduction of the methyl diisopropoxyphosphinylmethanedithioate and allylation (or benzylation) in situ.^{8,9} The diisopropyl group was chosen in order to avoid any dealkylation by ionic species, reaction often encountered with diethyl phosphonates.^{17,18} Deprotonation of compounds 1a-1e with a slight excess of butyllithium in THF at -20° C, and subsequent hydrolysis or methylation, afforded thiols 2a-2eor sulfides 3a-3e respectively in 70 to 97% yields (Scheme 1). Two diastereoisomers were obtained (in the mentioned ratio) for the crotyl [2b₁:2b₂ (51/49), 3b₁:3b₂ (60/ 40)] derivatives, and for the cinnamy $[2e_1:2e_2 (70/30), 3e_1:3e_2 60/40)]$ derivatives. The thiol function of the new compounds 2 was identified in IR spectroscopy by the expected¹⁹ two weak ν_{sH} bands at 2520 and 2560 cm⁻¹ (in the neat), and in ¹H NMR spectroscopy by the SH signal at ≈ 1.8 ppm showing a doublet of doublet, with ${}^{3}J_{HP}$ \approx 9.5 Hz and ${}^{3}J_{\rm HH} \approx$ 7 to 10 Hz. Both series of compounds 2 and 3 exhibited in ³¹P NMR spectroscopy a signal at \approx 23 ppm, as reported in similar phosphonomethyl sulfides,⁶ and in ¹³C NMR spectroscopy a signal for the PCHS group at \approx 45 ppm. Moreover, the ¹H NMR signal for the PCHS group was found ≈ 0.3 ppm downfield in the thiols 2, compared to the sulfides 3. Benzyl sulfide 1f did not rearrange when treated with buthyllithium even at $+60^{\circ}$ C; the corresponding carbanion has been



SCHEME 1

deuterated, but could not be methylated at -20° C. The thiol **2a** underwent cyclisation in THF, at room temperature, in the presence of AIBN and with ultra-violet irradiation (Scheme 1). The resulting diisopropyl 2-thiolanylphosphonate **4a**, thia- and phosphono- analogue of proline, which was not previously described, may present biological interest (similarly 2-pyrrolidinylphosphonate was mentioned as an inhibitor of the angiotensine-converting enzyme²⁰).

Syntheses and [2,3]-sigmatropic Rearrangement of S-methyl Sulfonium Ylides of (allylthiomethyl)phosphonates

S-methyl sulfonium tetrafluoborates of (allylthiomethyl)phosphonates 5a-5f were quantitatively obtained by reaction of the sulfides 1a-1f with methyl iodide and silver tetrafluoroborate in acetonitrile, at 50°C (Scheme 2). The use of the low nucleophilic tetrafluoroborate anion²¹ was recommended owing to the well-known susceptibilities of sulfonium salts towards nucleophilic attack. Crude compounds 5 were obtained as viscous and hygroscopic oils, with 90% yields. They exhibited a characteristic signal in ³¹P NMR spectroscopy at $\delta \approx 11$ ppm (starting material 1: $\delta \approx$ 23 ppm). Deprotonation of the sulfonium salts 5a-5c with butyllithium at $-60^{\circ}C$ in THF led to the methyl [α -allylic (phosphonomethyl)] sulfides **3a**-**3c** via the [2,3]signatropic rearrangement of the reactive, not isolated ylides Ia-Ic. From the crotyl substituted sulfonium salt 5b, the rearranged compound 3b was obtained as two diasteroisomers $3b_1$ and $3b_2$ in the ratio 90/10. This high diastereoselectivity in the [2,3]-sigmatropic rearrangement of ylide **Ib**, as compared to that of the related carbanion issued from 1b, is in agreement with previously mentioned results in other series.^{11,22} With the more crowded prenyl and cinnamyl derivatives 5d and 5e, no rearrangement product 3d or 3e was obtained, with butyllithium between -60° C and -20° C. Also, the observed failure of [2,3]-sigmatropy from 5f, with BuLi in THF

at -20° C, is in concordance with the results of Warren *et al.*²³ concerning some arylthio sulfonium ylides. However, stable intermediate sulfonium ylide **If**, when treated with phenylisocyanate according to a described procedure,^{24,25} led to the sulfonium ylide **6f**.

A surprising very high selectivity was observed with the "mixed" sulfonium salt 7, synthesized from diisopropyl (methallylthiomethyl)phosphonate 1c and allyl iodide. Deprotonation of 7 with LDA at -60° C led, via the sulfonium ylide II, to the sulfide 8 (90% yield), resulting from the migration of the non substituted allyl group only (Scheme 3). The two possibly expected sulfides 8 and 9 have been independently and quantitatively prepared via the carbanions of sulfides 1a and 1c respectively, by using butyllithium and adequate allylic halides at -20° C (Scheme 3).

CONCLUSION

Thia-[2,3]-Wittig sigmatropic rearrangement of carbanions, obtained from the (allylthiomethyl)phosphonates and butyllithium, offers a convenient route to new (1-mercaptobut-3-enyl)phosphonates, and to their alkylated derivatives. The corresponding sulfonium ylides, prepared from the sulfonium salts with butyllithium, also underwent an *in situ* [2,3]-sigmatropic shift (except in the case of crowded derivatives), leading to the same sulfides. It is interesting to remind that, in the oxygen and nitrogen series, the [2,3]-sigmatropic rearrangement was observed respectively with the carbanions of (O-allylic methyl) phosphonates, and with the ylides of (N-allylic methyl)phosphonates. In the sulfur series, the [2,3]-sigmatropy is obtained with both ylides and carbanions. As far as stereochemistry is concerned, it was shown from the (crotylthiomethyl)phosphonate that the diastereoselectivity is different according to the use of a carbanion or an ylide as an intermediate for the sigmatropic rearrangement. Further studies are now in progress to investigate more extensively the possibility of asymmetric induction in these rearrangements and of stereocontrolled formation of α -mercapto or α -alkylthio alkyphosponates.

EXPERIMENTAL

General Methods. The ¹H NMR spectra were recorded with a "Bruker AC 250" spectrometer at 250.13 MHz in CDCl₃ using TMS as internal standard. The ¹³C NMR spectra were recorded with a "Bruker AC 250" spectrometer at 62.89 MHz, in CDCl₃ with TMS as internal standard (proton decoupled, J_{CP} given). With a "Bruker WP 80 SY" spectrometer were recorded the ³¹P NMR spectra at 32.44 MHz, the ¹¹B NMR spectra at 25.70 MHz and the ¹⁹F NMR spectra at 75.30 MHz, with H₃PO₄, Et₂O₃BF₃ or CFCl₃, respectively, as external standard. Chemical shifts are given in δ ppm and coupling constants in Hz. Conventional abbreviations were used. The infra-red spectra were recorded with a "Perkin-Elmer 16 PC" spectrometer on the liquid film; ν are given in cm⁻¹, and the following abbreviations are used (s): strong; (vs): very strong; (m): medium; (w): weak, (vw): very weak. Mass spectra were recorded with a "Nermag R 10 10H" spectrometer with electronic impact at 70 eV; m/z and relative abundance are given.

Syntheses of disopropyl (allylthiomethyl)phosphonates 1. The experimental procedure, and compounds 1a and 1b have already been described.⁹

Diisopropyl (methallylthiomethyl)phosphonate 1c. Pale yellow liquid. Yield = 85%. Analysis: $C_{11}H_{23}O_3PS$: calc. %: S 12.03; obs. %: S 12.07. ¹H NMR: 1.20 and 1.21 (2d, J = 6.2.12H); 1.67 (s, 3H); 2.42 (d, J = 13.4, 2H); 3.12 (s, 2H); 4.61 (sept d, J = 6.2 and J = 7.6, 2H); 4.74 and 4.77 (2s). ¹³C NMR: 20.5 (s); 24.0 and 24.1 (2d, J = 4.9 and J = 3.8); 24.5 (d, J = 150.8); 40.2 (d, J = 3.9); 71.0 (d, J = 6.8); 114.8 (s); 140.0 (s). ³¹P NMR: 22.7 (s). IR: 3078 (w); 2978 (m); 2934 (m); 2874 (m); 1648 (w); 1552 (m); 1514 (m); 1466 (m); 1452 (m); 1384 (m); 1374 (m); 1254 (s); 1178 (m); 1142 (m); 1108 (m); 1008 (s); 984 (vs); 898 (m); 888 (m); 806 (m); 758 (m); 700 (w). Mass: 266 (19, M⁺; 204 (12); 203 (10); 182 (11); 181 (16); 180 (9); 165 (8); 97 (35); 96 (87); 95 (100, (HO)_2P(O)CH⁺_2); 94 (64); 87 (7); 85 (9); 58 (10); 55 (25); 54 (17); 45 (11); 44 (9); 43 (38); 42 (20); 41 (23).

Diisopropyl (prenylthiomethyl)phosphonate 1d. Pale yellow liquid. Yield = 80%. Analysis: $C_{12}H_{25}O_3PS$: calc. %: S 11.43; obs. %: S 11.52. ¹H NMR: 1.35 (d, J = 6.2, 12H); 1.69 and 1.75 (2s, 6H); 2.62 (d, J = 13.2, 2H); 3.32 (d, J = 7.8, 2H); 4.76 (sept d, $J \approx 6.2$ and $J \approx 6.2$, 2H); 5.20 (t, J = 7.8, 1H). ¹³C NMR: 17.8 (s); 23.9 and 24.1 (2d, J = 4.5 and J = 3.7); 24.9 (d, J = 151.3); 25.7 (s); 30.8 (d, J = 3.5); 70.9 (d, J = 6.8); 119.7 (s); 136.8 (s). ³¹P NMR: 22.9 (s). IR: 3040 (vw, shoulder); 3000 to 2850 (m); 1665 (w); 1470 (m); 1465 (m); 1380 (m); 1370 (m); 1250 (vs and broad); 1175 (m); 1140 (m); 1100 (m); 1000 and 984 (vs and broad); 925 (w); 805 (w); 730 (m). Mass: 280 (21, M⁺); 238 (4); 212 (15); 196 (14); 194 (21); 169 (28); 155 (24); 154 (25); 139 (18); 128 (46); 127 (43); 101 (19); 96 (85); 95 (100, (HO)₂(P(O)CH⁺₂); 94 (53); 69 (40); 68 (29); 43 (33); 42 (33); 41 (48).

Diisopropyl (cinnamylthio)phosphonate 1e. Pale yellow liquid. Yield = 73%. Analysis: $C_{16}H_{25}O_3PS$: calc. %: S 9.76; obs. %: S 9.52. ¹H NMR: 1.34 (d, J = 6.2, 12H); 2.63 (d, J = 13.0, 2H); 3.49 (d, J = 7.5, 2H); 4.73 (sept d, J = 6.2 and J = 7.7, 2H); 6.14 (t d, J = 7.5 and J = 15.7, 1H); 6.51 (d, J = 15.7, 1H); 7.2 to 7.4 (m, 5H). ¹³C NMR: 24.1 and 24.2 (2d, J = 5.3 and J = 3.6); 24.3 (d, J = 151.0); 35.2 (d, J = 2.9); 71.2 (d, J = 6.6); 124.7 (s); 126.5, 127.8 and 128.7 (3s); 133.5 (s); 136.6 (s). ³¹P NMR: 22.7 (s). IR: 3060 (w); 3026 (w); 2978 (m); 2934 (m); 1648 (w); 1596 (w); 1578 (w); 1490 (m); 1466 (m); 1450 (m); 1422 (w); 1386 (m); 1374 (m); 1250 (s); 1178 (m); 1142 (m); 1106 (m); 1074 (s); 984 (vs); 888 (w); 786 (m); 752 (w). Mass: 328 (7, M⁺); 244 (19); 243 (19); 149 (20); 117 (39); 116 (12); 115 (56); 99 (17); 97 (22); 96 (24); 91 (17); 84 (13); 77 (8); 65 (15); 59 (15); 51 (20); 49 (46); 47 (19); 45 (27); 43 (100, $C_3H_7^+$); 41 (57).

Diisopropyl (benzylthiomethyl)phosphonate 1f. Pale yellow liquid. Yield = 79%. Analysis: $C_{14}H_{23}O_3PS$: calc. %: S 10.60; obs. % S 10.66. ¹H NMR: 1.33 (d, J = 6.2, 12H); 2.51 (d, J = 13.0, 2H); 3.90 (s, 2H); 4.76 (sept d, J = 6.2 and J = 7.6, 2H); 7.2 to 7.4 (m, 5H). ¹³C NMR: 24.0 and 24.1 (2d, J = 5.1 and J = 3.8); 24.8 (d, J = 151.0); 36.9 (d, J = 3.5); 71.1 (d, J = 6.8); 127.2, 128.5, 129.2 and 137.4 (4s). ³¹P NMR: 22.5 (s). IR: 3030 (w); 3025 (w); 3010 (w); 3000 to 2800 (s); 1605 (w); 1460 (m); 1445 (m); 1440 (m); 1380 (w); 1375 (w); 1240 (s); 1195 (m); 1165 (m); 1100 (m); 1040 (w); ~1000 (vs and broad); 910 (w); 905 (m); 885 (m); 812 (m); 805 (m); 785 (m); 730 (m); 710 (m). Mass: 302 (10, M⁺); 218 (5); 217 (14); 139 (29); 123 (15); 97 (100, (HO)₃PCH⁺₃); 91 (99); 86 (45); 84 (68); 77 (4); 65 (19); 51 (26); 49 (94); 43 (77).

Procedure A

Thia-[2,3]-Wittig sigmatropic rearrangement of the carbanions issued of sulfides 1 and butyllithium: syntheses of (1-mercaptobut-3-enyl)phosphonates 2 and of (3-methylthiobut-3-enyl) phosphonates 3. The allylic phosphonomethyl sulfides 1 (1 mmol) were dissolved in dry THF (10 ml) under N₂ and the solution was cooled into a bath at -20° C. Butyllithium (1 mmol, solution 1.32 M in hexane) was added, and the solution was stirred for 4 hours at -20° C and then either quenched with HCl 5% (10 ml), or alkylated with iodomethane (2 mmol) and stirred for 12 hours at room temperature for complete alkylation. Extraction with ether, washings with brine, drying over Na₂SO₄, and evaporation of the solvent under reduced pressure yielded crude thiols 2 or sulfides 3 respectively, which were further purified by column chromatography (silicagel Merck 60 M, eluent:petroleum ether/ethyl acetate 80/20). Attribution of the signals of PCHS and SCH₂(C=C) in ¹H NMR of compounds 2a, 2c, and 3a, 3c were performed by 2D (¹H-¹³C) NMR, and the ¹H NMR and ¹³C NMR published⁸ for 2a are revised.

Diisopropyl (1-mercaptobut-3-enyl)phosphonate 2a. Colourless liquid. Yield: 90%. Analysis: $C_{10}H_{21}O_3PS$: calc. %: S 12.70; obs. %: S 12.91. ¹H NMR: 1.35 (d, J = 6.1, 12H); 1.93 (d d, $^{3}J_{HH} = 8.7$ and $^{3}J_{HP} = 8.7$, 1H, SH); 2.3 (m, 1H of CH₂); 2.7 to 2.9 (m, 2H: PCHS and 1H of CH₂); 4.77 (sept d, J = 6.1 and J = 7.4, 2H); 5.15 (d, $J \approx 11$, 1H); 5.16 (d, $J \approx 16$, 1H); 5.85 (d d t, $J \approx 11$, $J \approx 16$ and $J \approx 7$, 1H). ¹³C NMR: 24.0 and 24.2 (2d, J = 4.9 and J = 3.4); 34.4 (d, J = 150.6); 36.8 (s); 71.6 and 71.7 (2d, J = 7.2); 118.3 (s); 134.4 (d, J = 13.8). ³¹P NMR: 23.7 (s). IR: 3078 (w); 3020 (w); 2978 (s); 2924 (s); 2852 (s); 2560 and 2520 (w, ν_{S-H}); 1642 (m); 1466 (m); 1450 (m); 1416 (w); 1386 (m); 1374 (m); 1356 (w); 1248 (s); 1178 (m); 1142 (m); 1106 and 986 (s); 916 (m); 896 (m); 818 (w); 768 (m); 738 (w). Mass: 252 (6, M⁺); 210 (10); 169 (12); 168 (60); 167 (13); 135 (26); 127 (54); 87 (52); 86 (15); 85 (24); 65 (10); 59 (19); 55 (12); 54 (10); 53 (21); 49 (16); 47 (15); 45 (38); 43 (100, C₃H⁺₇); 41 (63).

Diisopropyl (1-mercapto-2-methylbut-3-enyl)phosphonate 2b. Pale yellow liquid. Yield = 97%. Mixture of two diastereoisomers 2b1 and 2b2 (51/49, estimated on ³¹P NMR). Analysis: C11H23O3PS: calc. %: S 12.03; obs. %: S 12.18. ¹H NMR: **2b**₁: 1.19 (d, J = 7.0, 3H); 1.34 (d, J = 6.2, 12H); 1.77 (d d, $J \approx 10$ and $J \approx 10$, 1H, S—H); 2.77 (d d d, J = 18.5, $J \approx 10$ and $J \approx 4$, 1H, PCHS); 2.85 to 2.95 (m, 1H); 4.77 (sept d, $J \approx 6.2$ and $J \approx 6.2$, 2H); 5.07 (d, J = 10.5, 1H); 5.08 (d, J = 16.5, 1H); 5.92 (d d d, J= 10.5, J = 16.5 and J = 7.0, 1H). 2b₂: 1.16 (d, $J \approx 6.8, 3$ H); 1.35 (d, $J \approx 6, 12$ H); 1.79 (d d, $J \approx 10$ and $J \approx 10$, 1H, S—H); 2.77 (d d d, J = 18.5, $J \approx 10$ and $J \approx 4$, 1H, PCHS); 2.85 to 2.95 (m, 1H); 4.79 (sept d, $J \approx 6$ and $J \approx 6$, 2H); 5.10 d, $J \approx 17$, 1H); 5.11 (d, $J \approx 10$, 1H); 5.93 (d d d, $J \approx 17$, $J \approx 10$ and $J \approx 7$, 1H). ¹³C NMR: **2b**₁: 18.2 (d, J = 12.8); 24.2 and 24.3 (2d, J = 3.6 and J = 2.7); 37.9 (s); 40.7 (d, J = 149.7); 71.3 and 71.9 (2d, J = 7.4); 116.2 (s); 138.4 (d, J = 3.3). 2b₂: 14.8 (d, J = 3.4); 14.8 (d, = 2.1); 23.8 and 23.9 (2d, J = 5.8 and J = 3.4); 38.1 (s); 40.2 (d, J = 146.6); 71.4 and 71.9 (2d, J = 146.6); 71.4 and 71.4 and 71.9; 71.4 and 71.9 (2d, 7.5); 114.9 (s); 141.23 (d, J = 15.2). ³¹P NMR: **2b**₁: 23.1 (s); **2b**₂: 22.9 (s). IR: 3082 (w); 2978 (s); 2934 (m); 2874 (m); 2562 and 2520 (w, v_{s-H}); 1640 (m); 1466 (m); 1454 (m); 1416 (m); 1388 (m); 1374 (w); 1248 (s); 1178 (m); 1142 (m); 1106 (s); ~986 (vs); 935 (m); 916 (m); 896 (m); 822 (w); 768 (w); 734 (w). Mass: 266 (1, M⁺); 224 (4); 211 (8); 182 (17); 169 (12); 149 (16); 128 (27); 127 (92); 101 (23); 84 (12); 55 (22); 49 (24); 47 (13); 45 (21); 43 (100, C₃H⁺₇); 41 (56).

Diisopropyl (1-mercapto-3-methylbut-3-enyl)phosphonate 2c. Colourless liquid. Yield = 77%. Analysis: $C_{11}H_{23}O_3PS$: calc. %: S 12.03; obs. %: S 12.13. ¹H NMR: 1.36 (d, J = 6.3, 12H); 1.73 (s, 3H); 1.91 (d d, J = 10.6 and J = 6.7, 1H, S---H); 2.2 to 2.3 (m, 1H of CH₂); 2.7 to 2.9 (m, 1H of CH₂); 3.0 (m, 1H, PCHS); 4.78 (sept d, $J \approx 6.3$ and $J \approx 6.3$, 2H); 4.83 (s, 1H); 4.91 (s, 1H). ¹³C NMR: 24.3 (s); 23.9 and 24.0 (2d, J = 5.1); 32.6 (d, J = 151.5); 40.2 (\approx s); 71.6 and 71.7 (2d, J = 3.8 and J = 4.2); 114.3 (s); 141.0 (d, J = 15.2). ³¹P NMR: 24.3 (s). IR: 3078 (w); 2978 (s); 2926 (s); 2852 (s); 2560 and 2520 (w, v_{SH}); 1642 (w); 1466 (m); 1450 (m); 1384 (m); 1374 (m); 1354 (m); 1246 (s); 1178 (m); 1142 (m); 1106 (m); 986 (vs); 936 (w); 916 (w); 896 (w); 828 (w); 822 (w); 768 (m); 738 (w). Mass: 266 (23, M⁺); 224 (11); 182 (41); 181 (64); 180 (29); 149 (27); 108 (21); 107 (23); 101 (58); 100 (79); 99 (100, CH₂=-C(CH₃)CH==CHS⁺); 98 (43); 97 (35); 96 (20); 84 (91); 83 (87); 82 (25); 67 (24); 59 (25); 58 (24); 55 (14); 49 (36); 48 (37); 47 (24); 46 (26); 43 (57); 42 (55); 41 (41).

Diisopropyl (1-mercapto-2,2-dimethylbut-3enyl)phosphonate 2d. Colourless liquid. Yield = 66%. Analysis: $C_{12}H_{25}O_3PS$: calc. %: S 11.43; obs. %: S 11.79. ¹H NMR: 1.27 and 1.29 (2s, 6H); 1.34 and 1.36 (2d, J = 6.2, 12H); 1.96 (d d, $J \approx 9.5$ and $J \approx 9.5$, 1H, SH); 2.75 (d d, J = 18,0 and J = 9.5, 1H, PCHS); 4.75 (sept d, $J \approx 6.2$ and $J \approx 6.2$, 2H); 5.03 (d, $J \approx 17.5$, 1H); 5.04 (d, $J \approx 10.5$, 1H); 6.00 (d d, $J \approx 17.5$ and $J \approx 10.5$, 1H). ¹³C NMR: 23.7 and 24.0 (2d, J = 4.6 and J = 5.1); 25.8 (d, J = 4.9); 26.1 (d, J = 6.6); 40.3 (s); 45.6 (d, J = 145.1); 71.3 and 72.1 (d, J = 7.5); 112.5 (s); 145.3 (d, J = 7.5). ³¹P NMR: 22.7 (s). IR: 3084 (w); 2977 to 2874 (s); 2560 and 2520 (w, ν_{S-H}); 1639 (m); 1467 (m); 1453 (m); 1414 (w); 1384 (m); 1373 (m); 1244 (s); 1117 (m); 1141 (m); 1106 (m); 985 (vs and broad); 913 (w); 896 (m); 812 (w); 773 (m); 740 (w). Mass: 281 (0.5, MH⁺); 280 (1.5, M⁺); 238 (2); 211 (10); 169 (15); 128 (68); 127 (65); 115 (10); 69 (14); 59 (10); 53 (13); 49 (43); 45 (19); 43 (100, C₃H⁺₇); 42 (10); 41 (80).

Diisopropyl (1-mercapto-2-phenylbut-3-enyl)phosphonate 2e. Colourless liquid. Yield = 72%. Mixture of two diastereoisomers $2e_1$ and $2e_2$ [70:30, estimated by ³¹P NMR and ¹H NMR (SH signals)]. Analysis: C₁₆H₂₅O₃PS: calc. %: S 9.76; obs. %: S 10.02. ¹H NMR: $2e_1$: ~ 1.3 (2d, $J \approx 6.2$, 12H); 1.98 (d d, J =

8.9 and J = 11.8, 1H, SH); ~3.1 (m, 1H, PCHS); 4.03 (d d d, $J \approx 8.5$, $J \approx 8.5$ and $J \approx 4.7$, 1H); ~4.7 (m, 2H); ~5.16 (~d, $J \approx 17.1$, 1H); ~5.23 (~d, $J \approx 10.1$, 1H); 6.23 (d d d, $J \approx 17.1$, $J \approx 10.1$ and J = 8.5, 1H); 7.2 to 7.3 (m, 5H). **2e₂**: same signals are observed, except for the SH: 1.81 (d d, J = 8.9 and J = 10.5, 1H); ¹³C NMR: **2e₁**: ~ 24.1 (2d, $J \approx 4$); 40.8 (d, J = 147.0); 49.9 (s); ~7.1.7 (d, $J \approx 7.3$); 118.2 (s); 126.9, 127.2, ~ 128.3 and 128.4 (4s); 136.5 (d, J = 5.34). **2e₃**: ~24.1 (2d, $J \approx 4$); 40.2 (d, J = 147.9); 51.6 (s); 71.7 (d, $J \approx 7.3$); 116.4 (s); around 128 ppm, several signals (aromatic carbons); 139.0 (d, J = 8.9). ³¹P NMR: **2e₁**: 22.3 (s); **2e₂**: 21.8 (s). IR: 3080 (w); 3062 (w); 3028 (m); 2978 (s); 2932 (s); 2874 (m); 2562 and 2520 (w, v_{S-H}); 1638 (m); 1600 (m), 1584 (m); 1494 (m); 1466 (m); 1454 (m); 1418 (w); 1386 (m); 1374 (m); 1354 (m); 1244 (s); 1178 (m); 1142 (m); 1106 (s); 1074 (s); 988 (vs and broad); 762 (m); 732 (m). Mass: 328 (14, M⁺); 242 (11); 241 (32); 213 (13); 212 (62); 186 (38); 170 (16); 164 (15); 163 (49); 162 (10); 130 (12); 115 (10); 86 (54); 84 (100, C_4H_sS⁺); 51 (31); 41 (10).

Diisopropyl (1-methylthio-2-methylbut-3-enyl)phosphonate 3b. Pale yellow liquid. Yield = 90%. Mixture of two diastereoisomers $3b_1$ and $3b_2$ (60:40, estimated by ¹H NMR on the PCHS signals). Pale yellow liquid. Analysis: C12H25O3PS: calc. %: C 51.40; H 8.98; S 11.43; obs. %: C 51.50; H 8.98; S 11.23. ¹H NMR: $3b_1$: 1.25 (d, J = 6.8, 3H); 1.34 and 1.35 (2d, J = 6.2, 12H); 2.27 (s, 3H); 2.48 (d d, $J \approx 17.7$ and $J \approx 3.7$, 1H, PCHS); ≈ 2.8 (m, 1H); 4.79 (sept d, $J \approx 6.2$ and $J \approx 7.6$, 2H); 5.02 ($\approx d$, $J \approx 10, 1$ H); 5.04 (d, $J \approx 17$); 5.97 (d d d, $J = 17, J \approx 10$ and $J \approx 7, 1$ H). **3b**₂: 1.15 (d, J = 6.8, 3 H); 1.34 and 1.35 (2d, $J \approx 6.2$, 12H); 2.25 (s, 3H); 2.58 (d d, $J \approx 17.7$ and $J \approx 3.0$, 1H, PCHS); ≈ 2.8 (m); 4.75 (sept d, $J \approx 6.2$ and $J \approx 7.6$, 2H); 5.09 (d, $J \approx 17$, 1H); 5.11 (d, $J \approx 10$, 1H); 5.95 (d d d, $J \approx 17$, $J \approx 10$ and $J \approx 7$, 1H). ¹³C NMR: **3b**₁: 18.1 (s); 19.0 (d, J = 9.1); 23.9 and 24.0 (2d, J = 3.0); 38.1 (s); 49.7 (d, J = 149.6); 71.0 and 71.4 (2d, J = 7.4); 114.9 (s); 139.9 (d, J = 3.6). **3b**₂: 15.8 (s); (d, J = 149.6); 71.0 and 71.4 (2d, J = 7.4); 114.9 (s); 139.9 (d, J = 3.6). **3b**₂: 15.8 (s); (d, J = 149.6); 71.0 and 71.4 (2d, J = 7.4); 71.0 and 71.4 (2 $J \approx 2.9$; 24.3 and 24.4 (2d, $J \approx 3$); 38.0 (s); 49.7 (d, J = 149.6); 71.4 and 71.5 (2d, $J \approx 7.5$); 114.2 (s); 142.1 (d, $J \approx 15.3$); ³¹P NMR: **3b**₁: 23.0 (s); **3b**₂: 23.1 (s). IR: 3078 (w); 2978 (s); 2924 (s); 2872 (m); 1640 (m); 1550 (m); 1466 (m); 1452 (m); 1422 (m); 1384 (m); 1374 (m); 1288 (m); 1248 (s); 1178 (m); 1142 (m); 1108 (s); 986 (vs); 936 (m); 914 (m); 896 (m); 888 (m); 830 (w); 770 (m); 744 (m); 704 (w). Mass: 280 (6, M^+); 207 (7); 197 (5); 196 (27); 184 (12); 183 (64); 179 (23); 166(7); 165 (11); 151 (13); 150 (99); 149 (29); 143 (45); 142 (48); 141 (71); 115 (15); 99 (6); 96 (2); 56 (39); 45 (100, SCH⁺); 43 (90); 41 (43).

Diisopropyl (1-methylthio-3-methylbut-3-enyl)phosphonate 3c. Pale yellow liquid. Yield = 80%. Analysis: $C_{12}H_{25}O_3PS$: calc. %: C 51.40; H 8.98; S 11.43; obs. %: C 51.40; H 9.04; S 11.28. ¹H NMR: 1.35 and 1.36 (2d, $J \approx 6.2$, 12H); 1.77 (s, 3H); 2.26 (s, 3H); 2.30 (m, 1H of CH₂); 2.67 (m, 2H, PCHS and 1H of CH₂); 4.77 (sept d, $J \approx 6.2$ and $J \approx 6.2$, 2H); 4.85 and 4.90 (\approx 2s, 2H). ¹³C NMR: 14.9 (s); 21.6 (s); 24.0 and 24.3 (2d, J = 3.0); 36.6 (s); 39.1 (d, J = 151.5); 71.3 and 71.4 (2d, J = 7.4 and J = 7.2); 113.5 (s); 141.5 (d, $J \approx 14.6$). ³¹P NMR: 24.0 (s). IR: 3076 (w); 2978 (s); 2926 (m); 2872 (m); 2854 (m); 1650 (m); 1466 (m); 1450 (m); 1384 (m); 1374 (m); 1322 (m); 1244 (s); 1178 (m); 1142 (m); 1106 (s); 982 (vs); 888 (s); 840 (w); 808 (w); 768 (m); 740 (w). Mass: 280 (16. M⁺); 196 (14); 192 (13); 183 (8); 179 (13); 151 (32); 150 (100, (HO)₃PCHCH₂C(CH₃)=CH⁺₂); 149 (35); 143 (8); 141 (20); 123 (8); 115 (22); 109 (8); 99 (16); 85 (9); 69 (60); 68 (15); 67 (46); 65 (19); 61 (11); 59 (11); 43 (37); 41 (37).

Diisopropyl (1-methylthia-2,2-dimethylbut-3-enyl)phosphonate 3d. Pale liquid yellow. Yield = 71%. Analysis: $C_{13}H_{27}O_3PS$: calc. %: C 53.03: H 9.24; S 10.89; obs. %: C 53.27; H 9.26; S 10.89. ¹H NMR: 1.27 and 1.28 (2s, 6H); 1.34 and 1.35 (2d, $J \approx 6.2$, 12H); 2.25 (\approx s, 3H); 2.30 (d, J = 18.0, PCHS); 4.79 (sept d, J = 6.2 and J = 7.3, 2H); 4.99 (\approx d, $J \approx 10.7$, 1H); 5.02 (\approx d, $J \approx 17.4$, 1H); 6.07 (d d, J = 17.4 and J = 10.7, 1H). ¹³C NMR: 19.9 (\approx s); 23.8, 24.0, 24.4 and 24.5 (4d, J = 6.3, J = 5.3, J = 3.5 and J = 2.8); 26.0 (d, J = 5.7); 26.1 (d, J = 5.4); 40.9 (s); 55.7 (d, J = 146.7, PCHS); 71.1 and 71.6 (2d, J = 7.6 and J = 7.7); 111.5 (s); 146.3 (d, J = 7.7). ³¹P NMR: 23.2 (s). IR: 3084 (w); 2976 (s); 2926 (s); 2874 (m); 1636 (m); 1452 (m); 1414 (m); 1384 (m); 1374 (m); 1316 (m); 1244 (s); 1176 (m); 1140 (m); 1106 (s); 1078 (m); 980 (vs); 936 (m); 912 (m); 894 (m); 886 (m); 822 (w); 776 (w);

744 (m); 702 (w). Mass: 294 (7, M^+); 293 (12); 292 (12); 240 (13); 234 (29); 227 (16); 221 (61); 194 (21); 182 (63); 181 (34); 163 (13); 142 (53); 141 (16); 127 (11); 124 (13); 113 (10); 99 (14); 96 (14); 95 (32); 83 (28); 82 (40); 81 (48); 79 (39); 77 (19); 73 (12); 69 (36); 67 (36); 65 (20); 61 (21); 59 (34); 55 (28); 53 (23); 43 (65); 41 (100, $C_3H_3^+$).

Diisopropyl (1-methylthio-2-phenylbut-3-enyl)phosphonate 3e. Pale yellow liquid, Yield = 76%. Mixture of two diastereoisomers 3e₁ and 3e₂ (60:40, estimated by ¹H NMR on the SCH₃ signals). Analysis: $C_{17}H_{27}O_3PS$: calc. %: S 9.36; obs. %: S 9.11. ¹H NMR: 3e₁: 1.30 (d, $J \approx 6.2$, 12H); 1.97 (s, 3H); 2.83 (d d, J = 18.0 and J = 4.5, 1H, PCHS); 4.05 (d d d, $J \approx 8.7$, $J \approx 8.7$ and $J \approx 4.5$, 1H); ≈ 4.71 (m, 2H); ≈ 5.11 (d, $J \approx 17$, 1H); ≈ 5.17 (d, $J \approx 10.1$, 1H); ≈ 6.26 (d d d, $J \approx 17$, $J \approx 10.1$ and J = 8.7, 1H); 7.2 to 7.4 (m, 5H). 3e₂: 1.31 (d, $J \approx 6.2$, 12H); 2.21 (s, 3H); 2.91 (d d, J = 16.9 and J = 6.6, 1H, PCHS); 3.91 (d d d, $J \approx 8.1$, $J \approx 8.1$ and $J \approx 7.0$, 1H); ≈ 4.71 (m, 2H); ≈ 5.11 (d, $J \approx 17$, 1H); ≈ 5.17 (d, $J \approx 10.1$, 1H); ≈ 6.28 (d d d, $J \approx 17$, $J \approx 10.1$ and $J \approx 8.1$, 1H); 7.2 to 7.4 (m, 5H). 3e₂: 1.31 (d, $J \approx 1.7$, 1H); ≈ 4.71 (m, 2H); ≈ 5.11 (d, $J \approx 1.7$, 1H); ≈ 5.17 (d, $J \approx 10.1$, 1H); ≈ 6.28 (d d d, $J \approx 1.7$, $J \approx 10.1$ and $J \approx 8.1$, 1H); 7.2 to 7.4 (m, 5H). ¹³C NMR: 3e₁: 17.6 (s); around 24.0 (2d, J = 2.5 to 3.0); 49.1 (s); 49.8 (d, J = 148.2); 71.4 (d, J = 7.8); 117.4 (s); 126.8 to 128.9, several signals (aromatic carbons); 137.3 (d, J = 4.5). 3e₂: same signals are observed, except for the C==CH₂ signal at 143.0 (d, J = 12.6). ¹³P NMR: 3e₁ and 3e₂: one signal only at 22.0 (s). IR: 3062 (w); 3028 (w); 2978 (s); 2924 (m); 2872 (m); 1374 (m); 1318 (w); 1244 (s); 1178 (s); 1142 (m); 1106 (s); 1072 (m); 986 (vs); 918 (m); 888 (m); 810 (w); 762 (m); 740 (m); 700 (m). Mass: 342 (1, M⁺); 294 (12); 293 (23); 292 (46); 249 (19); 212 (16); 211 (46); 185 (13); 184 (8); 183 (100, (HO)_3PCCC_8H_3^+; 131 (16); 130 (14); 129 (24); 128 (19); 123 (10); 117 (39); 115 (26); 114 (18); 91 (28); 86 (25); 84 (43); 83 (13); 81 (9); 77 (24); 73 (11); 71 (13); 69 (16); 65 (11); 59 (18); 57 (16).

Synthesis of diisopropyl 2-thiolanylphosphonate 4a. Under N₂, compound 2a (1 mmol) was dissolved in dry THF (100 ml), and a catalytic amount of azoisobutyronitrile was added. The mixture was stirred and irradiated with UV ("Hanovia" lamp, 50 Hz, 125 Watts, 2A) for 2.5 hours. Then the solvent was evaporated at reduced pressure, and the residue was extracted with ether. The organic layer was washed with water, dried over Na₂SO₄, and the ether was evaporated. Crude product was purified by column chromatography (silicagel Merck 60 M, eluent:cyclohexane/ethyl acetate:90/10). Pure 4a was obtained as a pale yellow liquid, with 76% yield. Analysis: $C_{10}H_{21}O_3PS$: calc. %: S 12.70; obs. %: S 12.16 ¹H NMR: 1.33 and 1.64 (2d, $J \approx 6.2$, 12H); 1.9 to 2.3 (m, 4H); 2.90 (d d, ${}^{3}_{HH} \approx 7.2$ and ${}^{3}_{HH} \approx 5.6$, 2H); 3.40 (d t, ${}^{2}_{JHP} \approx 15.5$ and ${}^{3}_{JHH} \approx 6.2$, 1H, PCHS); 4.77 (sept d, $J \approx 6.2$ and $J \approx 6.2$, 2H). ¹³C NMR: 24.0 and 24.3 (2d, J = 2.2 and J = 3.2); 31.4 (d, ${}^{2}_{JCP} = 8.9$); 32.1 (d, ${}^{3}_{JCP} = 2.5$); 33.2 (d, ${}^{3}_{JCP} = 3.0$); 41.6 (d, ${}^{1}_{JCP} = 156.2$); 71.2 and 71.3 (2d, J = 7.1 and J = 7.2). ³¹P NMR: 24.8 (s). IR: 2976 (vs); 2964 (vs); 2868 (s); 1466 (m); 1442 (m); 1384 (s); 1374 (s); 1308 (m); 1248 (vs); 1178 (s); 1142 (s); 1108 (vs); 982 (vs); 896 (s); 884 (s); 856 (m); 822 (m); 770 (m); 736 (m); 700 (w). Mass: 252 (30, M⁺); 169 (11); 168 (100, double McLafferty transposition); 167 (62); 166 (5); 109 (12); 88 (7); 87 (68); 86 (7); 85 (11); 44 (14); 42 (16).

Procedure B

Preparation of the sulfonium salts 5. AgBF₄ (2.6 mmol, 1.4 eq.) was added under N₂ to the sulfide 1 (1.87 mmol) and the mixture was stirred in the dark. After decolourization, methyl iodide (2.6 mmol) and then dry acetonitrile (3 ml) were introduced. The mixture was warmed at 50°C for 3 hours (or kept at room temperature for 6–12 hours) for compounds 5a-5c and 5f, and heated at 50°C for 5 hours for compounds 5d and 5e. The solution was filtered, the solvent was evaporated under reduced pressure at room temperature, and the crude sulfonium salts, not very stable, were used without further purification. Their characterization has been mainly done by ³¹P NMR spectroscopy.

Allyl-diisopropylphosphonomethyl-methyl-sulfonium tetrafluoroborate **5a**. ¹H NMR: 1.39 and 1.40 (2d, J = 6.2, 12H); 3.03 (s, 3H); 3.68 (d, J = 14.5, 2H); 4.23 (d d, $J_{AB} \approx 12.8$ and $J \approx 7, 1H$); 4.29 (d, $d, J_{AB} \approx 12.8$ and $J \approx 7, 1H$); 4.29 (d, $d, J_{AB} \approx 12.8$ and $J \approx 7, 1H$); 4.85 (sept d, J = 6.2 and J = 6.2, 2H); 5.75 ($\approx d, J \approx 10.9, 1H$); 5.80 ($\approx d, J \approx 14.1, 1H$); 5.8 to 6.0 (m, 1H). ¹³C NMR: 23.8 and 24.0 (2d, J = 5.0 and J = 4.1); 24.1 (d, J = 3.1); 33.3 (d, J = 143.5); 45.4 (d, J = 5.0); 74.9 and 75.0 (d, J = 6.7); 122.4 (s); 128.9 (s).³¹P NMR: 11.1 (s). ¹¹B NMR: -0.8 (s). ¹⁶F NMR: -150.0 (s).

Crotyl-diisopropylphosphonomethyl-methyl-sulfonium tetrafluoroborate **5b**. ¹H NMR: 1.39 and 1.40 (2d, J = 6.1, 12H); 1.84 (d, J = 6.6, 3H); 2.99 (s, 3H); 3.62 (d, J = 15.0, 2H); 4.21 (d, J = 8.0, 2H); 4.85 (sept d, J = 6.3 and J = 6.3, 2H); 5.51 (d t, J = 15.2 and J = 8.0, 1H); 6.25 (d qd, J = 15.2 and J = 6.6, 1H). ³¹P NMR: 11.7 (s).

Diisopropylphosphonomethyl-methylallyl-methyl-sulfonium tetrafluoroborate 5c. ³¹P NMR: 11.4 (s).

Diisopropylphosphonomethyl-methyl-prenyl-sulfonium tetrafluoroborate 5d. ³¹P NMR: 11.6 (s).

Cinnamyl-diisopropylphosphonomethyl-methyl-sulfonium tetrafluoroborate 5e. ³¹P NMR: 11.3 (s).

Benzyl-diisopropyl-methyl-sulfonium tetrafluoroborate 5f. ³¹P NMR: 11.4 (s).

Procedure C

Preparation and [2,3]-signatropic rearrangement of the ylides of the sulfonium salts 5. To a solution of the sulfonium salts 5 (1.87 mmol), prepared according to procedure B, in dry THF (3 ml) was added dropwise at -60° C and under N₂ a solution of BuLi (1.87 mmol in hexane). The mixture was stirred for 2 hours at -60° C, and then quenched with 1 ml acidic MeOH (5% HCl, ph = 3). Extraction with ether, washing with brine, and evaporation of the solvent led crude sulfides **3a**-3e which were purified by column chromatography (silicagel Merck 60 M, petroleum ether/ethyl acetate 80/20). Compounds 3 are already described above. The not separated crotyl **3b**₁ and **3b**₂ derivatives were obtained in the ratio 90/10. No product **3d** or **3e** or **3f** has been obtained, even when rising the temperature to -20° C.

Preparation of the diisopropyl [1-(benzyl-methyl-sulfanylidene)-2-phenylamino-2-oxo-ethyl] phosphonate 6f. A solution in dry THF (5 ml) of the sulfonium salt 5f (2 mmol), prepared according to procedure B, was added to a suspension of HNa (2 mmol) in dry THF (5 ml) under N₂ at -20° C, and the mixture was stirred at -20° C for 20 mn. Then phenyl isocyanate (2 mmol) was added at -20° C, and the mixture was stirred for 24 hours, allowing the temperature to rise to $+20^{\circ}$ C. The dark solution thus obtained was dropped into a mixture of saturated aqueous NH₄Cl and ether/pentane (70/30). The organic layer was washed with brine and dried over Na₂SO₄. The solvent was evaporated under reduced pressure. Several column chromatographies (silicagel Merck 60 M, eluent:cyclohexane/ethylacetate 80/20 to 40/60) yielded compound 6f as a yellow oil. Yield = 42%. ¹H NMR: 1.12, 1.23, 1.25 and 1.30, (4d, J = 6.0, 12H); 2.88 (s, 3H); 4.3 and 4.4 (2 sept d, J =6.2 and J = 8.2, 2H); 4.75 (s, 2H); 6.97 (t, $J \approx 7.4, 1H$); 7.29 (t, $J \approx 7.4, 2H$); 7.38 (s, 5H); 7.54 (d, $J \approx$ 7.4, 2H); 9.78 (s, 1H). ¹³C NMR: 24.0 to 26.3 (several signals, (CH₃)₂CH, CH₃S⁺ and C⁻); 49.4 (s); 69.8 and 70.0 (2d, J = 5.5 and J = 5.6); 119.5 (s); 122.1 (s); 128.8 (s); 129.1 (s); 129.3 (s); 130.6 (s); 130.9 (s); 140.2 (s); 167.5 (d, J = 20.7). ³¹P NMR: 24.0 (s).

Syntheses of compounds 7, 8 and 9. The sulfonium salt 7 was prepared according to procedure B by reacting compound 1b with allyl iodide in the presence of AgBF₄. The corresponding "mixed" ylide II, prepared with the salt 7 and 1.1 equivalent of LDA in THF, and submitted to the [2,3]-sigmatropic rearrangement according to procedure C, led to the sulfide 8 only. Sulfides 8 and 9 were independently prepared with compounds 1a and 1b respectively, butyllithium, and the appropriate allylic halides at -20° C, according to procedure A.

Allyl-diisopropylphosphonomethyl-methallyl-sulfonium tetrafluoroborate 7. Viscous yellow liquid. Yield: ~90% (crude material). ¹H NMR: 1.39 and 1.40 (2d, J = 6.2, 12H); 1.92 (s, 3H); 3.60 (d d, $J_{AB} = 15$ and $J_{HP} = 14$, 1H of PCH₂S); 3.68 (d d, $J_{AB} = 15$ and $J_{HP} = 14$, 1H of PCH₂S); 4.19 (d, $J_{AB} \approx 11.6$, 1H, CH₂ of methallyl) and 4.36 (d, $J_{AB} = 11.6$, 1H, CH₂ of methallyl); 4.27 (m, 1H, CH₂ of allyl) and 4.40 (m, 1H, CH₂ of allyl); 4.83 (sept d, J = 6.2 and J = 7.3, 2H); 5.37 (~s, 1H, methallyl) and 5.47 (~s, 1H, methallyl); 5.7 to 6.0 (m, 3H, allyl). ³¹P NMR: 10.9 (s).

Diisopropyl (1-methallylthiobut-3-enyl)phosphonate 8. Pale yellow liquid. Yield = 80%. Analysis: $C_{14}H_{27}O_3PS$: calc. %: S 10.46; obs. %: 10.56. ¹H NMR: 1.34 and 1.35 (2d, J = 6.2, 12H); 1.82 (s, 3H); 2.2 to 2.4 (m, 1H of CH₂ of allyl); ~2.5 to 2.7 (m, 2H, PCHS and 1H of CH₂ of allyl); 3.14 (d, J = 13.2, 1H of CH₂ of methallyl); 3.52 (~d, J = 13.2, 1H of CH₂ of methallyl, by 2D (¹H-¹³C) NMR); 4.78 (sept d, J = 6.2 and J = 7.3, 2H); 4.87 (~s, 2H); 5.08 (~d, $J \approx 10$, 1H); 5.12 (~d, $J \approx 17$, 1H); 5.87 (d d t, $J \approx 17$, $J \approx 10$ and J = 7.5, 1H). ¹³C NMR: 20.8 (s); 24.0 to 24.4 (m); 34.0 (s, CH₂ of allyl); 38.6 (d, J = 151.0); 40.0 (s, CH₂ of methallyl); 10.9 and 71.5 (2d, J = 7.2); 114.7 (s, CH₂=C of methallyl by 2D (¹H-¹³C)NMR); 117.2 (s, CH₂=C of allyl); 135.2 (d, $J \approx 13.3$, allyl); 140.7 (s, methallyl). ³¹P NMR: 23.9 (s). IR: 3078 (w); 3028 (w); 2978 (s); 2934 (m); 2874 (m); 1642 (w, νC =C of allyl); 1558 (w); 1466 (m); 1454 (m); 1440 (m); 1344 (m); 1318 (w); 1252 (s); 1178 (s); 1142 (m); 1108 (s); 982 (vs); 912 (m); 896 (m); 824 (w); νC =C of the methallyl is not seen. Mass: 306 (27, M⁺); 305 (13); 221 (17); 216 (19); 215 (100); 201 (17); 177 (19); 136 (77); 135 (12); 96 (13); 87 (11); 85 (26); 55 (30); 43 (14); 41 (16).

Diisopropyl (1-allylthio-3-methylbut-3-enyl)phophonate 9. Pale yellow liquid. Yield = 80%. Analysis: $C_{14}H_{27}O_3PS$: calc. %: S 10.46; obs. %: S 11.19. ¹H NMR: 1.34 and 1.37 (2d, J = 6.3, 12H); 1.72 (s, 3H); ~2.25 (m, 1H, CH₂ of allyl, by 2D); 2.6 to 2.8 (m, 2H, PCHS and 1H of CH₂ of allyl); 3.21 (d d, $J \approx 13.3$ and J = 6.0, 1H, CH₂ of methallyl); 3.60 (d d, $J \approx 13.3$ and J = 8.6, 1H, CH₂ of methallyl); 4.80 (sept d, J = 6.3 and J = 7.3, 2H); 4.81 (~s, 1H) and 4.87 (~s, 1H); 5.13 (~d, $J \approx 10$, 1H); 5.17 (~d, $J \approx 17$, 1H); 5.78 (d d d d, $J \approx 17$, $J \approx 10$, $J \approx 8.5$ and $J \approx 6.0$, 1H). ¹³C NMR: 21.7 (s); 24.0 to 24.4 (m); 35.2 (s, CH₂ of methallyl); 36.1 (d, J = 152.5); 37.5 (s, CH₂ of allyl); 71.0 (2d, J = 7.2); 113.7 (s, CH₂==C of methallyl) by 2D (¹H-¹³C) NMR); 133.7 (s, allyl); 141.4 (d, $J \approx 14.8$ methallyl). ³¹P NMR: 24.4 (s). IR: 3078 (w); 3028 (w); 2978 (s); 2934 (m); 2874 (m); 2362 (w); 1652 (w, ν C==C of methallyl); 1634 (w, ν C==C of allyl); 1558 (w); 1040 (w); 1506 (m); 1456 (m); 1452 (m); 1384 (m); 1374 (m); 1252 (s); 1178 (s); 1142 (m); 1108 (s); 1008 (s); 982 (vs); 920 (m); 888 (m); 838 (w); 808 (w). Mass: 306 (1, M⁺); 234 (11); 151 (15); 150 (41); 99 (17); 91 (9); 85 (20); 81 (17); 69 (24); 68 (9); 67 (17); 65 (17); 59 (12); 55 (16); 53 (18); 45 (21); 43 (100, C₃H²); 42 (10); 41 (90).

REFERENCES

- 1. R. Engel, Chem. Review, 77, 349-367 (1977).
- 2. Z. Tashma, J. Org. Chem., 47, 3012-3015 (1982), and cited references.
- 3. V. Sum and T. P. Kee, J. Chem. Soc., Perkin Trans. I, 2701-2711 (1993), and cited references.
- 4. M. Mikolajczyk and P. Balczewski, Advances in Sulfur Chemistry, 1, 41-96 (1994).
- 5. G. K. Farrington, A. Kumar and F. C. Wedler, J. Med. Chem., 30, 2062-2067 (1987).
- 6. M. Mikolajczyk, S. Grzejszczak, A. Chefczynska and A. Zatorski, J. Org. Chem., 44, 2967-2972 (1979).
- 7. G. K. Farrington, A. Kumar and F. C. Wedler, Org. Prep. and Proc. Int., 21, 390-392 (1989).
- 8. H. Makomo, S. Masson and M. Saquet, Tetrahedron Letters, 34, 7257-7258 (1993).
- 9. H. Makomo, S. Masson and M. Saquet, Tetrahedron, 50, 10277-10288 (1994).
- 10. D. W. Grisley Jr., J. Org. Chem., 26, 2544-2546 (1961).
- 11. W. Ando, Accounts of Chem. Res., 10, 179-185 (1977).
- 12. A. Padwa and S. F. Hornbuckle, Chem. Rev., 91, 263-309 (1991).
- 13. R. Brückner, Kontakte, 3-14 (1993).
- 14. R. Brückner, Kontakte, 2-14 (1994).
- R. Brückner, in B. M. Trost and I. Fleming, "Comprehensive Organic Synthesis," Pergamon Press, New York, 1991, 1st ed., Vol. 6, Chap. 4-6, pp. 873-908.
- M. Gulea-Purcarescu, E. About-Jaudet and N. Collignon, J. Organometal. Chem., 464, C 14-16 (1994).
- 17. M. Gulea-Purcarescu, E. About-Jaudet, N. Collignon, S. Masson and M. Saquet, *Tetrahedron*, to be published.
- 18. S. Masson, J. F. Saint-Clair and M. Saquet, Synthesis, 485-486 (1993).
- M. G. Zimin, A. R. Burilov, R. G. Islamov and A. N. Pudovik, *Zhurnal Obsh. Khimii*, 53, 46-55 (1983); (V.I. Ul, English Translation, 34-42 (1983); *Chem. Abstr.*, 98, 143545r (1983).
- 20. E. W. Petrillo Jr. and E. R. Spitzmiller, Tetrahedron Letters, 4929-4930 (1979).
- 21. R. W. LaRochelle and B. M. Trost, J. Amer. Chem. Soc., 93, 6077-6086 (1971).
- 22. R. W. Hoffmann, Angew. Chem., Int. Ed., 18, 563-640 (1979).
- 23. R. C. Hartley, S. Warren and I. C. Richards, J. Chem. Soc., Perkin Trans. 1, 507-513 (1994).
- 24. K. Kondo and D. Tunemoto, J. Chem. Soc., Chem. Commun., 952 (1972).
- 25. H. König and H. Metzger, Chem. Ber., 98, 3733-3747 (1965).