Novel Synthesis of 1-Substituted 4-Hydroxypyrazoles

Michel ALBRAND, Suzanne GELIN*

Laboratoire de Chimie Organique, Institut National des Sciences Appliquées, F-69621 Villeurbanne Cedex, France

Only a limited number of 4-hydroxypyrazoles 5 have been reported $^{1-4}$. A recently proposed synthesis is based on the reaction of 2-acetoxy-1,3-dione derivatives with hydrazines. However, unsymmetrically substituted β -diketones afford inseparable mixtures of N-substituted isomeric pyrazoles 4 .

We now report a new method for the preparation of 4-hydroxypyrazoles 5 starting from the readily available 4-ethoxycarbonylpyrazoles 1. Reaction of methylmagnesium iodide with the starting compounds 1 at room temperature in benzene yields, after aqueous work-up, the tertiary alcohols 2 which are partly dehydrated in the isopropenyl compounds 3. The mixtures of 2 and 3 are used without purification in the acidcatalyzed addition of hydrogen peroxide to afford intermediate tertiary hydroperoxides 4. Finally, the 4-hydroxypyrazoles 5 are formed by in situ rearrangement of the hydroperoxides 4 (for the mechanism, see Ref.⁵).

1-4	R ¹	R ²	R ³	
а	C ₆ H ₅	н	CH ₃	
ь	C ₆ H ₅	Н	C_2H_5	
С	C ₆ H ₅	н	C_6H_5	
d	C ₆ H ₅	CH ₃	C ₆ H ₅ CH ₃ C ₆ H ₅	
е	C ₆ H ₅	CH₃		
f	CH ₃	CH ₃		
g	CH ₃	CH ₃	CH ₃	

Table. 4-Hydroxypyrazoles 5a-g prepared

Reaction of Compounds 1 with Methylmagnesium Iodide; General Procedure:

To a solution of methylmagnesium iodide (0.1 mol) in benzene (50 ml) is added dropwise with stirring a solution of the pyrazole 1 (0.03 mol) in benzene (60 ml). The mixture is refluxed for 6 h. After cooling to room temperature, the mixture is poured into saturated aqueous ammonium chloride (300 ml) and extracted with ether (2 × 50 ml). The combined extracts are washed with 10% sodium hydrogen sulfite solution (50 ml), dried with sodium sulfate, and the solvent is removed under reduced pressure. ¹H-N.M.R. analysis of the residue indicates that it consists essentially of the tertiary alcohols 2 in the case of 1a-c, e or of the 4-isopropenyl derivatives 3 in the case of 1d, f, g. The crude reaction mixture is submitted without further purification to the next step; yield: 80-90%.

4-Hydroxy-pyrazoles 5; General Procedure:

A solution of 30% hydrogen peroxide (5 ml) in concentrated sulfuric acid (6.5 ml) prepared under cooling (<15°C; exothermic reaction) is added dropwise to a cooled solution of the crude products 2 or 3 (0.022 mol) in dichloromethane (20 ml) at such a rate that the temperature does not rise above 15°C. The solution is then kept at room temperature with stirring for 4 h and aqueous 70% sulfuric acid (7 ml) is added. Vigorous agitation is maintained for 12 h. The organic layer is discarded. The aqueous layer is diluted with ice/water (300 g), neutralized with 5 normal aqueous sodium hydroxide to pH 6-7 and extracted with chloroform (3 × 100 ml). After drying and evaporation of the solvent in vacuo, the residue is recrystallized from ethyl acetate to afford the compounds 5.

Prod- uct	Yield [%]ª	m.p. [°C] ^b	Molecular formula ^c or Lit. m.p. [°C]	I.R. (CH ₃ Cl) OH	ν [cm ⁻¹] C=N	1 H-N.M.R. (CDCl ₃) δ [ppm]
5a	53	139°	$C_{10}H_{10}N_2O$ (174.2)	3600	1605	2.18 (s, 3 H); 7.28 (s, 1 H); 7.3 (br. s, 1 H, exchangeable with D ₂ O); 7.4 (m, 5 H)
5b	51	131°	$C_{11}H_{12}N_2O$ (188.2)	3600	1600	1.03 (t, 3 H, $J = 7$ Hz); 2.60 (q, 2 H, $J = 7$ Hz); 7.20 (s, 1 H); 7.3 (br. s, 1 H, exchangeable with D_2O); 7.4 (m, 5 H)
5c	52	179°	$C_{15}H_{12}N_2O$ (236.3)	3600	1610	5.8 (br. s, 1 H, exchangeable with D_2O); 7.3 (m, 10 H); 7.38 (s, 1 H)
5d	53	175°	175°6	3600	1605	2.25 (s, 3 H); 6.9 (br. s, 1 H, exchangeable with D_2O); 7.2-7.3 (m, 10 H)
5e	75	139°	138-140°4	3600	1605	2.00 (s, 3 H); 2.08 (s, 3 H); 7.2 (br. s, 1 H, exchangeable with D ₂ O); 7.3 (m, 5 H)
5f	51	160°	$C_{11}H_{12}N_2O^d$ (188.2)	3600	1605	2.11 (s, 3 H); 3.57 (s, 3 H); 6.8 (br. s, 1 H, exchangeable with D ₂ O); 7.35 (m, 5 H)
5g	35	186°	187–189° ⁴	3600	1610	2.13 (s, 6H); 3.5 (br. s, 1H, exchangeable with D_2O); 3.65 (s, 3H)

^a Yield of recrystallized product based on starting material 1.

The 4-ethoxycarbonylpyrazoles $1a^7$, $1c^8$, $1d^9$, $1e^{10}$, $1f^{11}$, and $1g^{12}$ are prepared according to known methods.

Ethyl 5-Ethyl-1-phenylpyrazole-4-carboxylate (1b):

A solution of dimethylformamide dimethylacetal (9.5 g, 0.08 mol) in benzene (50 ml) is added dropwise at room temperature to a stirred solution of ethyl 3-oxopentanoate (7.2 g, 0.05 mol) in benzene (100 ml). The mixture is refluxed for 30 min. After evaporation of the solvent and excess reagent, the crude ethyl 2-dimethylaminomethylene-3-oxopentanoate is dissolved in ethanol (100 ml), phenylhydrazine (5.4 g, 0.05 mol) in ethanol (50 ml) is added and the mixture is refluxed for 6 h. The solvent is then evaporated and the residue is distilled in vacuo to give 1b; yield: 10.9 g (89%); b.p. 170-172°C/1.5 torr.

C₁₄H₁₆N₂O₂ calc. C 68.83 H 6.60 N 11.47 (244.3) found 68.36 6.68 11.30 ¹H-N.M.R. (CDCl₃/TMS): δ = 1.16 (t, 3 H, J = 7 Hz); 1.38 (t, 3 H, J = 7 Hz); 2.95 (q, 2 H, J = 7 Hz); 4.33 (q, 2 H, J = 7 Hz); 7.45 (s, 5 H); 8.05 (s, 1 H). Received: June 6, 1983

- ⁶ H. Böhme, H. Schneider, Chem. Ber. 91, 1100 (1958).
- ⁷ B. Dains, E. W. Brown, J. Am. Chem. Soc. 31, 1148 (1909).
- ⁸ G. Scherowsky, H. Franke, Tetrahedron Lett. 1974, 1673.
- ⁹ L. Knorr, A. Blank, Ber. Disch. Chem. Ges. 18, 313 (1885).
- ¹⁰ L. Knorr, Ber. Dtsch. Chem. Ges. 20, 1101 (1887).
- ¹¹ F. S. Al-Saleh, I. A. Khawaja, J. A. Joule, J. Chem. Soc. Perkin Trans. 1 1981, 642.
- ¹² C. A. Rojahn, H. E. Kühling, Arch. Pharm. 264, 337 (1926).

b Recrystallized from ethyl acetate.

^c Satisfactory microanalyses obtained: C ± 0.28 , H ± 0.08 , N ± 0.33 .

d In Lit.⁴, a mixture of 4-hydroxy-1,3-dimethyl-5-phenylpyrazole (5f) and 4-hydroxy-1,5-dimethyl-3-phenylpyrazole in a 7:3 ratio is described; m.p. 126-140°C.

^{*} Address for correspondence.

¹ F. Sachs, A. Röhmer, Ber. Dtsch. Chem. Ges. 35, 3307 (1902).

² I. L. Finar, T. Foster, J. Chem. Soc. [C] 1967, 1494.

³ J. P. Freeman, J. J. Gannon, D. L. Surbey, J. Org. Chem. 34, 187 (1969).

⁴ P. J. Fagan, E. E. Neidert, M. J. Nye, M. J. O'Hare, Wah-Piu Tang, Can. J. Chem. 57, 904 (1979).

⁵ E. G. E. Hawkins, Organic Peroxides, E. and F. F. Spon Ltd., London, 1961, p. 90.