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Abstract—A series of imidazo[4,5-b]pyridines with a 7-(3-pyridyl) substituent is described as high affinity CRF receptor ligands.
Individual analogues were synthesized from key intermediates obtained via palladium-catalyzed coupling of 3-pyridyl zinc or
boronic acid organometallic intermediates with 2-benzyloxy-4-chloro-3-nitropyridine 12.
# 2002 Elsevier Science Ltd. All rights reserved.

In a previous communication we described a 7-phenyl-
imidazo[4,5-b]pyridine series as potent CRF receptor
ligands.1 Several of these compounds had high affinity
(Ki�1 nM) for the rat CRF receptor, as well as good
pharmacokinetic parameters. In general, these compounds
were rather lipophilic with limited water solubility, and
introduction of a pyridine ring in the place of the phenyl
substituent was pursued to improve these properties.

A 3-pyridyl ring can be accommodated in that position
without loss of affinity, as has been demonstrated in
the corresponding purine series, where the phenyl and
3-pyridyl analogues were equipotent (Fig. 1, compounds
II and III).2

In order to synthesize and evaluate these analogues of I
we needed to develop a synthesis for the new pyridyl key
4-(3-pyridyl)pyridine intermediates 1 which is described
in Scheme 1. Because of the reactivity of 2-halo pyri-
dines toward nucleophilic substitution we decided to
introduce (2-methyl-6-methoxy) and (2-trifluoromethyl-
6-methoxy)-3-pyridyl substituents as phenyl replacements.

3-Bromo-6-methoxy-2-methylpyridine 9 was coupled
with 12 under Negishi coupling conditions3 to give 1b.

In the case of 3-iodo-6-methoxy-2-trifluoro-methyl-
pyridine 10,4 attempts to effect Li–I exchange, followed
by ZnCl2, were unsuccessful under standard conditions
(nBuLi, sBuLi, and tBuLi), presumably because of the
instability of the lithiated species that was generated.
Similar attempts with the corresponding bromide were
also unsuccessful. However, treatment of the iodide 10
with commercial Rieke Zn1, followed by Pd(PPh3)4
catalyzed coupling to 12 afforded 1c in good yield.5

Negishi or Rieke Zn1 conditions were not successful in
coupling the 5-bromo- or 5-iodo-2-methoxy-4-methyl
pyridine with 12.6 5-Bromo-2-methoxy-4-methyl pyri-
dine 8 was converted to the corresponding 5-boronic
acid 11 by treatment with nBuLi, followed by isopropyl
borate,7 then acidic aqueous workup. Compound 11
was coupled with 12, under Suzuki coupling conditions8

to give 1a.
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Figure 1. Activity of an imidazo[4,5-b]pyridine (in nM) compared to
purines with and without a 3-pyridyl.
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The general synthetic route for the synthesis of the tar-
get analogues is described in Scheme 2. The key inter-
mediates 2-benzyloxy-3-nitro-4-(3-pyridyl)pyridines 1
were deprotected in TFA to give the pyridones 2, which
were converted to the corresponding chloropyridines 3
in refluxing POCl3. In one case, the formation of
dichloropyridine 4 was observed as a contaminant due
to cleavage of the methyl ether and subsequent conver-
sion of the pyridone to the chloropyridine. Intermediates
3 were reacted with the appropriate primary branched
amines to give compounds 5, which were reduced with
Na2S2O4 and cyclized to the imidazo[4,5-b]pyridines 7.

Binding affinities of various analogues synthesized are
listed in Table 1. Data on Table 1 indicate that several
analogues possess high affinity. Generally analogues
with the 20-trifluoromethyl group (7a–7e) are more potent
than the corresponding analogues with a 20-methyl group
(7i–7m). O-Demethylation led to diminished affinity (7f
and 7q) which was not recovered with introduction of a
large substituent (7g). The affinity could be increased by
reduction of the ester functionality to the corresponding
alcohol (7h). Generally affinity of the 20-methyl ana-
logues (7i–7m) seemed to be more sensitive to the alkyl
substitution (R1) than the 20-trifluoromethyl analogues
and the 1-cyclopropylpropyl chain was optimal (7i). On
the 60-position the methoxy substituent was optimal, since
replacing it with chloro- or N,N-dimethyamino led to
compounds of lower affinity (7n and 7p, respectively).

Scheme 1. (a) B(OiPr)3, nBuLi, �90 �C; HCl; (b) 2-BzlO-4-Cl-3-NO2-pyridine (12), Pd(PPh3)2Cl2, Ba(OH)2.8H2O, DME/water, reflux 18 h;
(c) nBuLi, THF, �78 �C; ZnCl2; (d) 12, reflux; (e) Rieke Zn

1, THF, 12, 25 �C; Pd(PPh3)4, reflux.

Scheme 2. (a) TFA, 25 �C, 2 h; (b) POCl3, reflux, 4 h; (c) RNH2, MeCN, 80 �C sealed vial, 48 h; (d) Na2S2O4, NH4OH, dioxane/water, 25
�C, 18 h;

(e) EtCO2H, reflux, 48 h; (f) EtCO2H, EtC(OEt)3, reflux, 18 h; (g) EtCO2H, toluene, reflux, 18 h.

Table 1. Biological data of 30-pyridyl analoguesb

Compd R1
a R2 R3 R4 Ki

(nM)

7a –CH(Me)Pr OMe CF3 H 0.6
7b –CH(Me)Et OMe CF3 H 0.7
7c –CH(cPr)Et OMe CF3 H 0.7
7d –CH(cBu)Me OMe CF3 H 0.8
7e –CH(C2H4OMe)Et OMe CF3 H 1.6
7f 9 –CH(Me)Pr OH CF3 H 602
7g10 –CH(Me)Pr OCH2CO2Et CF3 H 1045
7h –CH(Me)Pr OC2H4OH CF3 H 10.1
7i –CH(cPr)Et OMe Me H 0.7
7j –CH(Me)Pr OMe Me H 1.1
7k –CH(cPr)Me OMe Me H 2.0
7l –CH(cBu)Me OMe Me H 2.1
7m –CH(Me)Et OMe Me H 9.2
7n –CH(cPr)Et Cl Me H 3.3
7o –CH(Me)Pr Cl Me H 6.6
7p –CH(cPr)Et NMe2 Me H 7.5
7q –CH(Me)Pr OH Me H >10,000
7r –CH(Me)Pr OMe H Me 17.1

a-helical CRF9-41 7.6

aRacemic mixtures unless otherwise indicated.
bValues are means of two or more experiments. Receptor binding affinity for all
compounds was determined using rat cortical homogenates.
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Finally the 40-methyl analogue (7r) had significantly lower
affinity than the corresponding 20-methyl analogue (7j).

In summary, a series of 7-(3-pyridyl)imidazo[4,5-b]pyri-
dines was explored and individual compounds were
identified with high affinity for the rat CRF receptor.
Physical and biological data will be described in sub-
sequent publications.
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