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DIASTEREOSELECTIVE ADDITION OF y-METHOXY-ALLYLBORONATES TO ALDEHYDES 
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Fachbereich Chemie der Philipps-Dniversitat Marburg 

Hans-Meerwein-Strasse, D-3550 Marburg an der Lahn 

Summary: The E- and Z-y-methoxy-allylboronates 1 and 2 add cleanly to aldehydes 

to give diastereoselectively the adducts 2 and 2. 

The diastereoselective addition of E- and Z-y-methoxy-allylboronates (I) and (2) 

to aldehydes forming methoxy-homoallylalcohols _2 and 1 could be of interest for 
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the synthesis of highly oxygenated natural products such as carbohydrates or 

macrolide antibiotics. This reaction would supplement existing synthetic routes, 

which lead to vie-diol-derivatives by polar addition of a-oxygenated carb= 

anions lr2) or enolates 3) to aldehydes. The question is, whether these 

established reactions are sufficiently diastereoselective, and also whether 

they could give access to either of the two expected diastereomers. So far 

high diastereoselectivity has been only occasionally observed in additions 

of alkoxy-allyl-metal compounds to aldehydes 2) depending on the metal or 

substituents used. Variable diastereoselectivity was recently reported for the 

addition of a-alkoxy enolate reagents to aldehydes 4) . We reasoned from the 

highly diastereoselective addition of crotyl- 5) and y-alkylthio-allylboronates 
6) to aldehydes, that y-alkoxy-allylboronates should be ideal reagents for the 
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generation of either isomer of vie-diol-derivatives. Independent of our studies 

the reactions of the butyl and methyl Z-y-methoxy-allylboronates similar to 2 

with aldehydes to give 4 have been investigated by P.G.M. Wuts 7) . 

The Z-y-methoxy-allylboronate 1 was obtained via Z-methoxy-allyl-lithium, 

generated by metalation of 3-methoxypropene with n-butyllithium/TMEDA instead 

of the more expensive s-butyllithium 2) . 

n-BuLi 
CH30- _- 

ClB[N(CHx)zlz 

TMEDA -780 -25'C 

THF -78' 

5 46 % 80% 3 

It was advantageous to purify reagent 2 by filtration over a short plug of 
8) silica gel . The addition of 2 (> 95% Z according to 'H- and '3C-NMR-spectra) 

to aldehydes proceeded during several days at 40 'C neat, or two weeks at 

reflux in pet. ether (40-60 "C). Apparently the pinacol boronates react more 

slowly than the corresponding butyl or methyl boronates 7) , hence, for convenience 

a 30% molar excess of aldehyde was applied. After the usual workup with tri= 

ethanolamine 5,6) the homoallylalcohols g a) were obtained in good yield and good 

to excellent diastereoselectivity; see table. Since the relative configuration 

of 2 (R = CsH, 1) formed in a similar reaction has been rigorously established 7) , 

and in view of the clearcut stereochemistry of other allylboronate additions 
5,6,9) 

I we have no doubts that the assigned relative configurations are correct, 

cf. table. 

The corresponding reagent _1 with E-configuration required a different synthetic 

approach: By suitable choice of catalyst and temperature the highly exothermic 

addition of thiophenol to methoxyallene IO) could be conducted such that almost 
a) only pure E-5 resulted , although traces of the Z-isomer are noticeable in the 

13C- or 'H-NMR-spectra. 

Reduction of 5 by lithium naphthalenide, cf. lb) , followed by quenching with 

C1B[N(CH3)2]2, led only to 2. Apparently the intermediate y-methoxy-allyl-= 

lithium is not configurationally stable and isomerizes (via the covalent allyl-= 

lithium species?) to the more stable Z-isomer. This isomerization should be 

slower in the corresponding potassium compound 11) . Hence reduction of 5 with 

potassium-naphthalenide at low temperatures in the presence of ClB[N(CH3)z]z 

generated the diaminoborane 2 which alongside with naphthalene was separated 
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CsHsSH C~B[N(CH~)ZIZ 

C",O,/ cH3OASC6Hs * 
Trace HBFIEt20 Trapp-Solvent -120° +25' 

CHzClz -20°c 65% >9o% E 6 - 120°c 

HO 

YCH3)* 
HO 

CH,O&B 
'N(CH3)2 

*_ 

Et*9 

7 25'C 60% 90% E 1 

from the potassium thiophenoxide by vacuum transfer. This had to be done care= 

fully, since after conversion of 2 into 1 traces of thiophenol cause rapid 

equilibration between J and 2. Crude 2 was converted into 3 8) which without 

separation from naphthalene was reacted with the aldehydes for three days at 

25 'C in petrolether (40-60 "C). After workup with triethanolamine, naphthalene, 

the homoallylalcohols 2 8) and pinacol could easily be separated on silica gel 

by sequential elution with petroleumether and CH,Cl,. Again 6) we benefited from 

the observation that the E-isomer J reacted more rapidly with aldehydes than the 

Z-isomer 3. = Hence with 0.9 mol equiv. of the aldehydes the homoallylalcohols 2 

formed, were essentially derived from the E-reagent 1, see table. 

Allylboronate ,Aldehyde Homoallylalcohols 

Entry l : 2 

1 89 : 11 CsH5CHO 

2 89 : 11 CH3CHO 

3 89 : 11 CH3CH2CHO 

4 89 : 11 (CH3) zCHCH0 

5 <5 : >95 CsHsCHO 

6 <5 : >95 CH3CHO 

7 t5 : >95 CH3CHzCHO 

8 <5 : >95 (CH3)zCHCHO 

equiv. yield 

0.9 87 % 

0.9 76 % 

0.9 68 % 

0.9 77 8 

1.3 86 % 

1.3 85 % 

1.3 94 8 

1.3 94 % 

- 

2 :$ = 

95 : 5 

95 : 5 

95 : 5 

>98 : <2 

<5 : >95 

7 : 93 

8 : 92 

11 : 89 
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In summary we report that the E- and Z-y-methoxy-allylboronates 1 and 2 are 

complementary reagents, each of which leads to a different diol-diastereomer 

upon reaction with an aldehyde. 
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