# (Tellurolato)chromium Complexes. Syntheses and Crystal Structures of CpCr(CO)<sub>3</sub>(TePh), [CpCr(CO)<sub>2</sub>(TePh)]<sub>2</sub>, and [CpCr(TePh)]<sub>2</sub>Te

Lai Yoong Goh,\* Meng S. Tay, and Chen Wei\*

Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia

Received August 30, 1993®

The predominant product isolated from the reaction of  $[CpCr(CO)_3]_2$  (1;  $Cp = \eta^5 \cdot C_5H_5$ ) with 1 molar equiv of Ph<sub>2</sub>Te<sub>2</sub> varies with reaction conditions as follows:  $CpCr(CO)_3$ (TePh) (2; 67% yield, from an instantaneous reaction at ambient temperature),  $[CpCr(CO)_2(TePh)]_2$  (3; 80% yield, after 4.5 h at 60 °C), and  $[CpCr(TePh)]_2$ Te (4; 70% yield, after 4 h at 80 °C). Thermolysis studies showed an interconversion between 2 and 3, accompanied by slow total decarbonylation to 4. An NMR-tube reaction of  $[CpCr(CO)_2]_2$  with Ph<sub>2</sub>Te<sub>2</sub> at 70 °C for 2 h resulted in the formation of 2 (58%), 3 (4%), and 4 (34%). The complexes, 2–4 have been elementally, spectrally, and structurally characterized. Crystal data: 2, monoclinic, space group  $P2_1/c$ , a = 10.8250(8) Å, b = 8.6891(6) Å, c = 15.5263(7) Å,  $\beta = 98.880(5)^\circ$ , V = 1442.9(2) Å<sup>3</sup>, Z = 4; 3, triclinic, space group  $P\overline{1}$ , a = 10.0493(8) Å, b = 11.0612(6) Å, c = 13.263(1) Å,  $\alpha = 102.021(6)^\circ$ ,  $\beta = 93.791(7)^\circ$ ,  $\gamma = 105.652(5)^\circ$ , V = 1376.7(2) Å<sup>3</sup>, Z = 2; 4, monoclinic, space group  $P2_1/n$ , a = 10.1595(7) Å, b = 21.505(1) Å, c = 10.615(1) Å,  $\beta = 95.607(8)^\circ$ , V = 2308.1(5) Å<sup>3</sup>, Z = 4.

## Introduction

Although the occurrence of thiolate ligands in transitionmetal complexes is frequently reported, complexes containing selenolato and tellurolato ligands are relatively scarce. A few examples are known of tellurolato complexes, and these have been derived from the interaction of Ph<sub>2</sub>-Te<sub>2</sub> with  $[(\eta^5-\text{RC}_5\text{H}_4)\text{Mo}(\text{CO})_3]_2$  ( $\text{R}=\text{H},^1\text{R}=\text{Me}^2$ ), [CpFe-(CO)<sub>2</sub>]<sub>2</sub>,<sup>3</sup> and more recently with [PtX(CH<sub>3</sub>)<sub>3</sub>]<sub>4</sub> (X = Br, I).<sup>4</sup> As part of our continuing investigation of the interaction of [CpCr(CO)<sub>3</sub>]<sub>2</sub> (1) with diphenyl dichalcogenides,<sup>5,6</sup> we have extended this study to diphenyl ditelluride and herein report the results.

# **Results and Discussion**

Synthetic Studies. A deep green suspension of  $[CpCr-(CO)_3]_2$  (1) in toluene reacted instantaneously with 1 molar equiv of  $Ph_2Te_2$  at ambient temperature to give a brownish green homogeneous solution, from which were isolated green crystals of  $CpCr(CO)_3(TePh)$  (2) in ca. 67% yield and trace amounts of  $[CpCr(CO)_2(TePh)]_2$  (3). An identical reaction after 4.5 h at 60 °C gave the compounds 2 and 3 in ca. 10 and 80% yields, respectively. Another similar reaction after 4 h at 80 °C led to the isolation of 3 and  $[CpCr(TePh)]_2Te$  (4) in ca. 30 and 70% yields, respectively.

An NMR spectral study showed that the compounds 2-4 were also formed from the reaction of the Cr=Cr triply bonded dimer [CpCr(CO)<sub>2</sub>]<sub>2</sub>, with 1 molar equiv of Ph<sub>2</sub>-

Te<sub>2</sub>. Thus, a 20 mM solution of  $[CpCr(CO)_2]_2$  in  $C_6D_6$  was found to have undergone a 96% conversion to 2-4 in 58, 4, and 34% yields, respectively, after *ca*. 2 h at 70 °C.

Product Characterization. The compounds 2-4 have been fully characterized via elemental analyses, spectral data, and single-crystal X-ray diffraction analyses. While the mononuclear complex 2 shows a singlet Cp resonance in both its <sup>1</sup>H and <sup>13</sup>C NMR spectra, as expected, it was found that the dinuclear complex 3 also exhibits only a singlet Cp resonance. In both complexes, the proton chemical shift of the Cp resonance is slightly temperature dependent over the range 30-75 °C. In their IR spectra, the pattern and relative intensities of CO stretching frequencies of 2 correlate very well with those of its Se analogue (2000 vs, 1940 vs, and 1920 vs  $cm^{-1}$ ), while those of 3 resemble closely those of its S analogue (1945 vs, 1920 vs, 1870 vs, and 1850 s cm<sup>-1</sup>),<sup>5</sup> suggesting similar molecular geometries and symmetries of the analogues, as was also shown by their crystal structures described below. The FAB<sup>+</sup> mass spectrum of 3 (Figure 1A) gives the molecular ion and shows the stepwise simultaneous loss of 2 CO's, followed by loss of a Ph ring to give  $Cp_2Cr_2Te_2Ph$ . The exact match of the observed and calculated isotopic distribution pattern is illustrated in Figure 1B. The FAB<sup>+</sup> spectrum of 2 shows its molecular ion and the loss of 3CO's in a single step to give CpCr(TePh) as the most intense fragment. In their EI mass spectra, the molecular ion of 3 is extremely weak and that of 2 is not observed at all. Instead, the highest prominent peak in both (m/z 410)possesses the isotopic distribution pattern of  $(C_6H_5)_2Te$ (Figure 1C), followed by m/z 282 ((C<sub>6</sub>H<sub>5</sub>)<sub>2</sub>Te) and 207  $((C_6H_5)Te).$ 

The non-carbonyl compound 4,  $[CpCr(TePh)]_2$ , has been isolated as green crystals, unlike the purple crystals of its S<sup>5</sup> and Se<sup>6b</sup> analogues. As distinct from the single broad Cp resonances of the S and Se analogues at  $\delta$  13.24 ( $\nu_{1/2}$  = 78 Hz) and  $\delta$  15.91 ( $\nu_{1/2}$  = 66 Hz), respectively, the <sup>1</sup>H NMR spectrum of 4 over the temperature range from -90 to +80 °C shows two broad Cp resonances. Both peaks maintain approximately equal relative intensity through-

Abstract published in Advance ACS Abstracts, April 1, 1994.
 (1) Tillay, E. W.; Schermer, E. D.; Baddley, W. H. Inorg. Chem. 1968,
 7, 1925.

<sup>(2)</sup> Jaitner, P. J. Organomet. Chem. 1982, 233, 333.

<sup>(3)</sup> Schermer, E. D.; Baddley, W. H. J. Organomet. Chem. 1971, 27, 83.

<sup>(4)</sup> Abel, E. W.; Beckett, M. A.; Orrell, K. G.; Sik, V.; Stephenson, D.;
Singh, H. B.; Sudha, N. Polyhedron 1988, 7, 1169.
(5) Goh, L. Y.; Tay, M. S.; Mak, T. C. W.; Wang, R. J. Organometallics

<sup>(5)</sup> Goh, L. Y.; Tay, M. S.; Mak, T. C. W.; Wang, R. J. Organometallics 1992, 11, 1711.

<sup>(6) (</sup>a) Goh, L. Y.; Lim, Y. Y.; Tay, M. S.; Mak, T. C. W.; Zhou, Z.-Y.
J. Chem. Soc. Dalton Trans. 1992, 1239. (b) Goh, L. Y.; Tay, M. S.; Lim,
Y. Y.; Chen, W.; Zhou, Z.-Y.; Mak, T. C. W. J. Organomet. Chem. 1992, 441, 51.



Figure 1. (A, top) FAB<sup>+</sup> mass spectrum of 3. (B, bottom left) Observed and calculated isotopic distribution patterns of 3. (C, bottom right) Observed and calculated isotopic distribution patterns of  $(C_6H_5)_2$ Te.

out the temperature range studied and undergo downfield shifts of similar magnitudes with a rise in temperature. These observations support the existence of two distinct species in solution. Whether crystalline samples of 4 exist in one isomeric form or as a mixture of two remains uncertain, though the observation of two Cp resonances in a solution sample prepared and scanned at -90 °C would seem to suggest the presence of a mixture. It is evident that it is not possible to assign the particular Cp proton resonance pertaining to the structurally determined isomer described below. The broad character and the large temperature dependence of the chemical shifts of the proton Cp resonances suggest paramagnetism. Unfortunately, the presence of isomers would make any attempts at investigation futile. In this context, however, one may note that the similar complex  $[CpCr(SCMe_3)]_2S^{25}$  and its



<sup>a</sup> Legend: (i) 60-80 °C.



Figure 2. Molecular structure of CpCr(CO)<sub>3</sub>(TePh) (2).

derivatives<sup>26</sup> have been found to be antiferromagnetic. The <sup>13</sup>C Cp resonances of the two isomers are observed as an unresolved broad singlet, much broader than those of the S and Se compounds at  $\delta$  100.44 and 99.22, respectively. Both the EI and FAB<sup>+</sup> mass spectra of 4 do not give the molecular ion or show any meaningful fragmentation pattern.

Thermolytic Degradations: An NMR Study.  $CpCr(CO)_3(TePh)$  (2). At ca. 60 °C in the NMR probe, a 10 mM solution of 2 in  $C_6D_6$  showed a slow conversion to the dinuclear species  $[CpCr(CO)_2(TePh)]_2(3)$ , reaching 17% after 6 h, accompanied by minute traces of the complex 4. Formation of 4 reached 8% after 17 h and 90% after 37 h.

In a second experiment, a solution of 2 after 40 min at 80 °C showed in its proton NMR spectrum a 10%conversion to 3, the relative quantity of which slowly decreased to zero within 2.5 h, accompanied by ca. 20%conversion of the starting complex 2 to thermolyzed products. After 9 h there was 80% conversion to the compound 4, in addition to small amounts of other Cpcontaining species.

[CpCr(CO)<sub>2</sub>(TePh)]<sub>2</sub> (3). At ca. 78 °C in the NMR probe, a 2 mM solution of 3 in  $C_6D_6$  underwent conversion to mixtures of 3 and 2 as follows: 1:1 molar equiv (1 min). 4:1 molar equiv (3 min), and 7:3 molar equiv (28 min). After 1.5 h, 50% decomposition to 4 had occurred, leaving behind a 2:3 molar equiv mixture of 3 and 2. Complete conversion to 4 took ca. 15 h. A more concentrated 30 mM solution undergoes a higher conversion to 2 (20 min,  $23\,\%$  ; 40 min, 50 % ; 60 min, 63 % ), before thermolysis to 4.

Reaction Pathways. The nature of the products obtained under various conditions of synthesis and the results of thermolytic studies are consistent with reaction pathways illustrated in Scheme 1. Consistent with our earlier proposals for reactions of compound 1 with  $S_{8}$ ,<sup>7</sup>  $Se_{8,8} Ph_2S_{2,5} Ph_2Se_{2,6} P_{4,9}$  and  $As_{4,10}$  the facile nature of the reaction of 1 with  $Ph_2Te_2$  must arise from the appreciable concentration of the extremely reactive 17e radical species CpCr(CO)<sub>3</sub><sup>•</sup> in solution<sup>11-15</sup> and the susceptibility of the Te-Te bond in Ph2Te2 to radical cleavage, as was observed for  $Ph_2S_2^5$  and  $Ph_2Se_2^{.6}$  In the absence of such a radical mechanism, the reactions of Ph<sub>2</sub>Te<sub>2</sub> with transition-metal complexes had generally necessitated more forcing conditions.<sup>1-3</sup> The isolation of compound 2 as the principal product under mild reaction conditions and of 3 and 4, respectively, as the major products under progressively more rigorous conditions suggests that the mononuclear complex 2 is the primary product, as was the case in the analogous reaction with Ph<sub>2</sub>Se<sub>2</sub>.<sup>6</sup> Indeed, thermolysis studies at 60 °C via NMR spectral observations showed a 17% conversion of 2 after 6 h to the dimeric tellurido-bridged complex 3, before degradation to the noncarbonyl-containing complex 4 was observed to set in. The partial loss of CO to form the intermediate [CpCr(CO)-(TePh)]<sub>2</sub> was not observed, though the S and Se analogues were readily isolated in moderate yields after 3 h at 50-60 °C. Total degradation of 3 to 4 took more than 37 h at 60 °C. At 80 °C, the formation of 3 as an intermediate was not obvious, indicating similar rates for its formation and decomposition. The sequence of products described above is also reminiscent of that obtained from the analogous reaction of  $[CpMo(CO)_3]_2$  under various reaction conditions, i.e.  $CpMo(CO)_3(TePh)$  from infrared irradiation at 25 °C after 3 h, [CpMo(CO)<sub>2</sub>(TePh)]<sub>2</sub> from refluxing benzene after 14 h, and the completely decarbonylated compound  $[CpMo(TePh)_2]_x$  from refluxing xylene after 5 h.<sup>1</sup> Likewise, UV irradiation of  $Ph_2Te_2$  in the presence of  $[(MeCp)Mo(CO)_3]_2$  had yielded the doubly  $\mu$ -TePh bridged complex [CpMo(CO)<sub>2</sub>(TePh)]<sub>2</sub>, which underwent decarbonylation by mild thermolysis in vacuo to give  $[CpMo(CO)(TePh)]_2$  in good yield.<sup>2</sup> Similarly, the reaction of  $Ph_2Te_2$  with  $[CpFe(CO)_2]_2$  for 3 h in refluxing benzene gave initially the mononuclear complex CpFe-

(7) Goh, L. Y.; Hambley, T. W.; Robertson, G. B. J. Chem. Soc., Chem. Commun. 1983, 1458, Organometallics 1987, 6, 1051. (8) Goh, L. Y.; Chen, W.; Sinn, E. J. Chem. Soc., Chem. Commun.

(9) Goh, L. Y.; Wong, R. C. S.; Chu, C. K.; Hambley, T. W. J. Chem.

Soc., Dalton Trans. 1989, 1951.

(10) Goh, L. Y.; Wong, R. C. S.; Mak, T. C. W. Organometallics 1991, 10, 875.

(11) Adams, R. D.; Collins, D. E.; Cotton, F. A. J. Am. Chem. Soc. 1974, 96, 749.

(12) Hackett, P.; O'Neill, P. S.; Manning, A. R. J. Chem. Soc., Dalton Trans. 1974, 1625

(13) Goh, L. Y.; D'Aniello, M. J., Jr.; Slater, S.; Muetterties, E. L.; Tavanaiepour, I.; Chang, M. I.; Friedrich, M. F.; Day, V. W. Inorg. Chem. 1979, 18, 192. (14) Cooley, W. A.; MacConnachie, P. T. F.; Baird, M. C. Polyhedron

1988, 7, 1965 and references cited therein. (15) Goh, L. Y.; Lim, Y. Y. J. Organomet. Chem. 1991, 402, 209.



Figure 3. Molecular structure of  $[CpCr(CO)_2(TePh)]_2$  (3) without the  $\frac{1}{2}C_6H_6$  molecule of solvation.



Figure 4. Molecular structure of  $[CpCr(TePh)]_2Te$  (4).

 $(CO)_2(TePh)$ , which converted to the dinuclear complex  $[CpFe(CO)(TePh)]_2$  under IR irradiation.<sup>3</sup> As observed previously for  $[CpMo(CO)_3(EPh)]^1$  and  $CpFe(CO)_2$ -(TePh),<sup>3</sup> the ease of dimerization of  $CpCr(CO)_3(EPh)$  with loss of CO follows the order E = S > Se > Te.

A rather unexpected observation, not seen in the analogous S<sup>5</sup> and Se<sup>6</sup> systems, was the reverse formation of 2 from the dinuclear complex 3 at 78 °C. An approximately 1:1 molar equiv mixture was formed within minutes, after which the relative proportion of 2 decreased as decomposition progressed, reaching 50% after 1.5 h. This reverse process is probably the main reason for the insignificant presence of 3 in the thermolysis of 2 at 80 °C, as noted above.

In view of these reverse processes between 2 and 3, it is difficult to ascertain which of them is the precursor complex to the non-carbonyl compound 4 (Scheme 1).

Structures. The Ortep plots of the molecular structures of 2-4 are illustrated in Figure 2-4, respectively. Their positional parameters are given in Table 1. Selected bonding parameters are presented in Tables 2-4.

The structure of 2 shows a strong resemblance to its Se analogue,<sup>6</sup> both possessing a four-legged piano-stool geometry around Cr, which achieves an 18-electron configuration. A comparison of some selected bonding parameters are given in Table 5. The Cr–Te distance (2.7634 Å) is shorter than the sum of the single-bond radii of Cr (1.48 Å)<sup>16</sup> and Te (1.36 or 1.41 Å, which is half the Te–Te bonded distance in Ph<sub>2</sub>Te<sub>2</sub><sup>17</sup>). The difference (0.175 Å) in the Cr–Te and Cr–Se distances is less than the difference (0.20 Å) between the covalent radii of the chalcogens.

The complex 3 is isostructural with its sulfur analogue,<sup>5</sup> and the bonding parameters of their  $M_2E_2$  cores are listed in Table 6, together with those of  $[CpMo(TePh)]_2$ .<sup>18</sup> As in the S analogue, the  $Cr_2Te_2$  fragment is nonplanar, with dihedral angles of 123.18(2)° between the Cr1–Te1–Cr2 and Cr1–Te2–Cr2 planes. The Cr1…Cr2 separation of 4.112(1) Å is much longer than that found in the S analogue (3.808 Å),<sup>5</sup> both consistent with the nonexistence of any M–M bond.

The crystal and molecular structure of  $[CpCr(TePh)]_2$ Te (4) is different from those of its S and Se analogues in its crystal class (monoclinic versus triclinic) and the absence of incorporated solvent molecules.<sup>5,6b</sup> The geometries about the Cr centers are quite similar in all three analogues. However, in the Te complex, the size of the PhE-Cr-EPh angle exceeds those of the other two PhE-Cr-E angles by about 20°, an observation not found in the S and Se analogues. The origin for this difference lies in the much closer disposition of the two phenyl rings (C20-C14 = 5.13 Å) in 4 than in its S and Se analogues (9.67 and 9.82 Å, respectively).

 <sup>(16)</sup> Cotton, F. A.; Richardson, D. C. Inorg. Chem. 1966, 5, 1851.
 (17) Llabres, G.; Dideberg, O.; Duport, L. Acta Crystallogr. 1972, B28, 2438.

<sup>(18)</sup> Jaitner, P.; Wohlgenannt, W.; Gieren, A.; Betz, H.; Hubner, T. J. Organomet. Chem. 1985, 297, 281.

(Tellurolato)chromium Complexes

| 14010 1, $1001000000000000000000000000000000000$ | Table | 1. | Positional and | Equivalent Dis | splacement <b>F</b> | Parameters for | Compounds 2- |
|--------------------------------------------------|-------|----|----------------|----------------|---------------------|----------------|--------------|
|--------------------------------------------------|-------|----|----------------|----------------|---------------------|----------------|--------------|

|                 |                         |                        |                        |                         |          |            |                        | -                       |                                  |
|-----------------|-------------------------|------------------------|------------------------|-------------------------|----------|------------|------------------------|-------------------------|----------------------------------|
| atom            | x                       | У                      | Z                      | $B(Å^2)^a$              | atom     | x          | у                      | Z                       | B (Å <sup>2</sup> ) <sup>a</sup> |
|                 | (A) Compound 2          |                        |                        |                         |          |            |                        |                         |                                  |
| Te              | 0.10564(2)              | 0.00088(4)             | 0.38182(2)             | 4.707(6)                | - C6     | 0.2240(4)  | 0.4372(5)              | 0.5343(3)               | 4.9(1)                           |
| Cr              | 0.23832(5)              | 0.26453(7)             | 0.43548(4)             | 3.22(1)                 | C7       | 0.2036(4)  | 0.5083(5)              | 0.4521(3)               | 4.9(1)                           |
| <b>O</b> 1      | 0.2533(3)               | 0.2437(5)              | 0.2444(2)              | 6.62(9)                 | C8       | 0.0963(4)  | 0.4443(5)              | 0.4048(3)               | 4.7(1)                           |
| O2              | 0.3619(3)               | 0.0171(4)              | 0.5537(2)              | 6.68(9)                 | C9       | 0.2285(4)  | 0.1352(4)              | 0.3199(3)               | 3.78(9)                          |
| O3              | 0.5072(3)               | 0.3470(5)              | 0.4386(3)              | 7.4(1)                  | C10      | 0.1754(4)  | -0.2415(6)             | 0.2604(3)               | 5.1(Ì)                           |
| C1              | 0.2458(4)               | 0.2452(5)              | 0.3172(3)              | 4.44(9)                 | C11      | 0.2492(5)  | -0.3414(6)             | 0.2208(4)               | 6.5(1)                           |
| C2              | 0.3117(4)               | 0.1062(5)              | 0.5060(3)              | 4.36(9)                 | C12      | 0.3766(5)  | -0.3332(6)             | 0.2412(4)               | 6.4(1)                           |
| C3              | 0.4048(4)               | 0.3147(5)              | 0.4369(3)              | 4.6(1)                  | C13      | 0.4307(4)  | -0.2292(7)             | 0.3003(4)               | 6.5(1)                           |
| C4              | 0.0495(4)               | 0.3352(5)              | 0.4575(3)              | 4.41(9)                 | C14      | 0.3570(4)  | -0.1294(6)             | 0.3398(3)               | 5.6(1)                           |
| C5              | 0.1287(4)               | 0.3311(5)              | 0.5367(3)              | 4.54(9)                 |          |            |                        |                         |                                  |
|                 |                         |                        |                        | (B) Com                 | pound 3  |            |                        |                         |                                  |
| Tel             | 0.20517(3)              | 0.41448(3)             | 0.38876(2)             | 2.803(5)                | . C12    | 0.4627(5)  | 0.6897(5)              | 0.2238(5)               | 4.8(1)                           |
| Te2             | 0.15633(3)              | 0.27230(2)             | 0.15277(2)             | 2.692(5)                | C13      | 0.3568(6)  | 0.6324(5)              | 0.1395(4)               | 4.8(1)                           |
| Crl             | -0.04879(7)             | 0.30647(6)             | 0.26809(5)             | 2.95(1)                 | C14      | 0.2284(6)  | 0.6139(5)              | 0.1766(4)               | 4.6(1)                           |
| Cr2             | 0.35341(7)              | 0.49963(6)             | 0.24018(5)             | 2.87(1)                 | C15      | 0.2661(4)  | 0.2522(4)              | 0.4194(3)               | 3.09(9)                          |
| 01              | -0.1344(4)              | 0.3921(4)              | 0.0808(3)              | 5.71(9)                 | C16      | 0.2208(5)  | 0.2022(1)              | 0.4194(3)               | 4 3(1)                           |
| $\tilde{0}$     | -0.0608(3)              | 0.5698(3)              | 0.3656(3)              | 4 59(8)                 | C17      | 0.2500(0)  | 0.1041(5)              | 0.5297(4)               | 5 2(1)                           |
| 03              | 0.5878(4)               | 0.3825(4)              | 0.3798(3)              | 6 5(1)                  | C18      | 0.3270(6)  | 0.0399(5)              | 0.4679(5)               | 5.2(1)                           |
| 04              | 0.5291(4)               | 0.4020(4)<br>0.3840(4) | 0.1005(3)              | 6.8(1)                  | C19      | 0.3742(6)  | 0.0377(3)              | 0.3845(5)               | 5 2(1)                           |
| CI              | -0.0970(4)              | 0.3589(4)              | 0.1505(3)              | 3.6(1)                  | C20      | 0.3452(5)  | 0.1896(5)              | 0.3602(4)               | $\frac{3.2(1)}{4.1(1)}$          |
| $\tilde{C}^{1}$ | -0.0513(4)              | 0.3507(4)<br>0.4682(4) | 0.1315(4)<br>0.3275(3) | 3 30(0)                 | C21      | 0.3452(5)  | 0.1670(5)<br>0.2528(4) | 0.3002(4)               | 3.05(0)                          |
|                 | -0.0313(+)<br>0.4927(5) | 0.4885(5)              | 0.3273(3)<br>0.3282(4) | 3.39(9)                 | $C_{22}$ | -0.0191(-) | 0.2528(4)<br>0.1573(5) | -0.0092(3)              | 3.03(9)                          |
| C4              | 0.4527(5)               | 0.4000(5)              | 0.3282(4)<br>0.1520(4) | $\frac{3.9(1)}{4.0(1)}$ | C22      | -0.0191(3) | 0.1373(3)              | -0.0392(4)              | 4.4(1)                           |
| C5              | 0.4300(3)<br>0.1272(6)  | 0.7237(3)              | 0.1520(4)              | 5.7(1)                  | C23      | -0.0349(0) | 0.1330(3)              | -0.1047(4)              | 3.0(1)                           |
| C5<br>C6        | -0.1273(0)              | 0.2077(0)              | 0.3004(4)<br>0.2271(6) | $\frac{3.7(1)}{7.1(2)}$ | C24      | 0.0272(3)  | 0.2024(3)              | -0.2224(4)<br>0.1745(4) | 4.0(1)                           |
|                 | -0.2304(0)              | 0.2334(0)              | 0.3371(0)              | (5(2))                  | C23      | 0.1400(0)  | 0.2979(3)              | -0.1/43(4)              | 4.9(1)                           |
|                 | -0.2360(0)              | 0.1032(0)              | 0.2347(3)              | 5.3(2)                  | C20      | 0.1622(3)  | 0.3232(3)              | -0.0677(4)              | 4.1(1)                           |
|                 | -0.1003(0)              | 0.0970(3)              | 0.2231(3)              | 5.2(1)                  | C27      | 0.4333(7)  | -0.0397(6)             | 1.0/12(6)               | 0.8(2)                           |
| C9<br>C10       | -0.0803(0)              | 0.1249(5)              | 0.3183(4)              | 4.7(1)                  | C28      | 0.3952(6)  | 0.0369(6)              | 1.0432(6)               | 6.4(2)                           |
|                 | 0.2549(5)               | 0.05/8(4)              | 0.2833(4)              | 4.6(1)                  | C29      | 0.4592(7)  | 0.0984(6)              | 0.9/31(6)               | 6.6(2)                           |
| CII             | 0.3988(6)               | 0.7038(4)              | 0.3145(4)              | 4.0(1)                  |          |            |                        |                         |                                  |
|                 |                         |                        |                        | (C) Com                 | pound 4  |            |                        |                         |                                  |
| Tel             | 0.72142(5)              | 0.20257(2)             | 0.34660(5)             | 3.58(1)                 | C10      | 1.0124(9)  | 0.1007(5)              | 0.195(1)                | 6.4(3)                           |
| Te2             | 0.64335(6)              | 0.21193(3)             | 0.01075(6)             | 3.97(1)                 | C11      | 0.6979(8)  | -0.0149(4)             | 0.2327(7)               | 3.4(2)                           |
| Te3             | 0.66035(5)              | 0.05429(2)             | 0.09075(5)             | 3.09(1)                 | C12      | 0.7612(9)  | -0.0028(4)             | 0.3525(8)               | 4.8(2)                           |
| Crl             | 0.5379(1)               | 0.14969(6)             | 0.1865(1)              | 3.02(3)                 | C13      | 0.787(1)   | -0.0479(4)             | 0.4395(9)               | 5.9(3)                           |
| Cr2             | 0.8208(1)               | 0.14861(6)             | 0.1511(1)              | 2.96(3)                 | C14      | 0.7522(9)  | -0.1080(4)             | 0.4105(9)               | 5.7(2)                           |
| C1              | 0.3307(8)               | 0.1609(5)              | 0.1043(9)              | 5.4(2)                  | C15      | 0.691(1)   | 0.1214(4)              | 0.2953(9)               | 5.6(3)                           |
| C2              | 0.3518(8)               | 0.2038(4)              | 0.2010(9)              | 5.0(2)                  | C16      | 0.6601(9)  | -0.0757(4)             | 0.2056(9)               | 4.8(2)                           |
| C3              | 0.3819(8)               | 0.1710(4)              | 0.3146(8)              | 4.5(2)                  | C17      | 0.7555(8)  | 0.1444(4)              | 0.5115(7)               | 3.8(2)                           |
| C4              | 0.3760(8)               | 0.1080(4)              | 0.2839(8)              | 4.4(2)                  | C18      | 0.652(1)   | 0.1181(5)              | 0.5667(9)               | 5.8(3)                           |
| C5              | 0.3428(8)               | 0.1015(4)              | 0.1546(8)              | 4.5(2)                  | C19      | 0.675(1)   | 0.0820(5)              | 0.6751(9)               | 6.4(3)                           |
| C6              | 1.0279(8)               | 0.1627(6)              | 0.2361(9)              | 6.8(3)                  | C20      | 0.7996(9)  | 0.0719(5)              | 0.7290(9)               | 5.9(3)                           |
| C7              | 1.0061(8)               | 0.1988(5)              | 0.129(1)               | 6.7(3)                  | C21      | 0.903(1)   | 0.0989(5)              | 0.6735(9)               | 5.9(3)                           |
| C8              | 0.9848(9)               | 0.1617(6)              | 0.028(1)               | 7.2(3)                  | C22      | 0.8812(9)  | 0.1351(5)              | 0.5656(8)               | 4.9(2)                           |
| C9              | 0.9865(9)               | 0.1036(5)              | 0.066(1)               | 6.4(3)                  |          |            |                        |                         | . /                              |

<sup>a</sup> Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as  $\frac{4}{3}[a^2B_{11} + b^2B_{22} + c^2B_{33} + ab(\cos \gamma)B_{12} + ac(\cos \beta)B_{13} + bc(\cos \alpha)B_{23}]$ .

#### Table 2. Bond Distances (Å) and Angles (deg) for 2

| (i) Coordination Geometry about Te Atom  |                                    |                              |          |  |  |  |  |  |
|------------------------------------------|------------------------------------|------------------------------|----------|--|--|--|--|--|
| Te-Cr                                    | 2.7634(7)                          | Te-C9                        | 2.117(4) |  |  |  |  |  |
|                                          | C9–Te–Cr                           | 105.4(1)                     |          |  |  |  |  |  |
|                                          | (ii) Coordination Constant of Atom |                              |          |  |  |  |  |  |
| C. C)                                    |                                    |                              | 1.050(5) |  |  |  |  |  |
| Cr-CI                                    | 1.857(5)                           | Cr-C2                        | 1.859(5) |  |  |  |  |  |
| Cr–C3                                    | 1.851(5)                           | ⟨Cr–Cp⟩                      | 2.186(5) |  |  |  |  |  |
| O1–C1                                    | 1.147(5)                           | O2C2                         | 1.147(5) |  |  |  |  |  |
| O3-C3                                    | 1.140(5)                           |                              |          |  |  |  |  |  |
|                                          |                                    |                              |          |  |  |  |  |  |
| Te-Cr-C                                  | 1 74.2(1)                          | Te-Cr-C2                     | 73.7(1)  |  |  |  |  |  |
| C1-Cr-C                                  | 2 115.8(2)                         | TeCrC3                       | 131.2(1) |  |  |  |  |  |
| C1-Cr-C                                  | 3 81.0(2)                          | C2-Cr-C3                     | 80.8(2)  |  |  |  |  |  |
| Cr1-C1-0                                 | O1 175.2(4)                        | Cr1-C2-O2                    | 174.7(4) |  |  |  |  |  |
| Cr1-C3-0                                 | D3 179.1(4)                        |                              |          |  |  |  |  |  |
| (iii) Cyclopentadienyl and Phenyl Groups |                                    |                              |          |  |  |  |  |  |
| $(C-C)_{C}$                              | 1.394(7)                           | $\langle C-C \rangle_{C-C}$  | 1.374(7) |  |  |  |  |  |
| , = 0/Cp                                 | (C=C/Cp 1.5/4(7) (C=C/Cp 1.5/4(7)  |                              |          |  |  |  |  |  |
| (CCC)                                    | Cp 108.0(5)                        | $\langle C-C-C \rangle_{Ph}$ | 120.0(5) |  |  |  |  |  |

### **Experimental Section**

General Considerations. All reactions were carried out either by use of conventional Schlenk techniques under nitrogen or under an argon atmosphere in a Vacuum Atmospheres Dribox equipped with a Model HE493 Dri-Train.

<sup>1</sup>H and <sup>13</sup>C NMR spectra were measured on a JEOL FX100 100-MHz or JEOL GSX270 270-MHz spectrometer, and chemical shifts are referenced to residual  $C_6H_6$  in benzene- $d_6$  or to  $(CH_3)_4$ -Si. IR spectra were measured in the range 4000–200 cm<sup>-1</sup> by means of a JASCO IR Report-100 instrument. Elemental analyses were performed by the Analytical Unit of the Research School of Chemistry, Australian National University (for C, H of 2 and 3), Mikroanalytisches Labor Pascher, Remagen 2, Germany (for C, H, Cr, and Te of 4), and ourselves for other Cr analyses as  $CrO_4^{2-.19}$ 

 $[CpCr(CO)_3]_2$  was synthesized from  $Cr(CO)_6$  (Strem Chemicals, Inc.) by the method of Manning *et al.*<sup>20</sup> Ph<sub>2</sub>Te<sub>2</sub> (Strem Chemicals, Inc.) was used without purification. Silica gel (Merck Kieselgel 60, 35–70 mesh) and Florisil (Sigma Chemical Co., 100–200 mesh) were dried at 140 °C overnight before chromatographic use. All solvents used were distilled from sodium/benzophenone prior to use.

Reaction of  $[CpCr(CO)_3]_2$  (1) with Ph<sub>2</sub>Te<sub>2</sub>. At Ambient Temperature. To a stirred green suspension of compound 1

<sup>(19)</sup> Haupt, G. W. J. Res. Natl. Bur. Stand. (U.S.) 1952, 48, 414.
(20) Birdwhistell, R.; Hackett, P.; Manning, A. R. J. Organomet. Chem.
1978, 157, 239.

| Table 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Bond Distances</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Å) and Angles (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | deg) for 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Coordination Geo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | metry about Te Ato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tel-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.151(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Te2-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.138(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Te1-Te2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.1371(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Te1-C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 116.1(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Te2-C21-C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.6(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Te1-C15-C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124.8(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Te2C21C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Te2-Te1-Cr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54,33(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Te1-Te2-Cr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55.38(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Te2-Te1-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.73(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Te1-Te2-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54,79(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cr1-Te1-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97.67(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cr1-Te2-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98.58(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Coordination Geo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | metry about Cr Ato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cr1-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.841(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cr2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.810(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CrI-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.806(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Cr_2 - C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.831(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 01-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.151(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 03-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.103(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(C_{2}-C_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.104(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (C+2 C+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.147(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.193(0)<br>2.7424(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (CI2-Cp)<br>Te2-Cr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.197(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7424(0)<br>2.7102(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $Te^2-Cr^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7070(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cr1Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4112(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102-012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.7175(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CI I <sup>m</sup> CI Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.112(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Te1-Cr1-Te2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70.29(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Te1-Cr2-Te2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.48(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Te1-Cr1-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.95(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Te1-Cr2…Cr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.38(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Te2-Cr1-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.81(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Te2-Cr2-Cr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.62(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0-1 01 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 176 0(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-1 C1 O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 175 6(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $C_{r1} - C_{2} - O_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 176.0(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_{12} = C_{3} = O_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 173.0(3)<br>174.7(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CI1-C2-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170.2(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 012-04-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 174.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ii) Cyclopentadieny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l and Phenyl Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $(C-C)_{Cpl}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.38(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\langle C-C \rangle_{Cp2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.395(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(C-C)_{Ph1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.375(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\langle C-C \rangle_{Ph2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.374(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (C-C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.36(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ( • • / belizene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1150(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.0(()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (C-C-C) <sub>Cp</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108.0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\langle C-C-C \rangle_{Ph}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ⟨C-C-C⟩ <sub>Cp</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108.0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $(C-C-C)_{Ph}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\langle C-C-C \rangle_{Cp}$<br>Table 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.0(6)<br>Bond Distances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C-C-C) <sub>Ph</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.0(6)<br>deg) for 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\langle C-C-C \rangle_{Cp}$<br>Table 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.0(6)<br>Bond Distances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C-C-C) <sub>Pb</sub><br>(Å) and Angles (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\langle C-C-C \rangle_{Cp}$<br>Table 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.0(6)<br>Bond Distances<br>Coordination Geo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (C-C-C) <sub>Pb</sub><br>(Å) and Angles (d<br>metry about Te Ato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.0(6)<br>deg) for 4<br>m<br>4 1953(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{(C-C-C)_{Cp}}{Table 4.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (C-C-C) <sub>Pb</sub><br>(Å) and Angles (d<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $(C-C-C)_{Cp}$<br>Table 4.<br>(i)<br>Te1-Te2<br>Te2-Te3<br>Te1-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2 15(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (C-C-C) <sub>Pb</sub><br>(Å) and Angles (d<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $(C-C-C)_{Cp}$<br>Table 4.<br>(i)<br>Te1-Te2<br>Te2-Te3<br>Te1-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (C-C-C) <sub>Pb</sub><br>(Å) and Angles (d<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $(C-C-C)_{Cp}$<br><b>Table 4.</b><br>(i)<br>Te1-Te2<br>Te2-Te3<br>Te1-C17<br>Cr1-Te1-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.0(6)<br><b>Bond Distances</b><br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C-C-C) <sub>Pb</sub><br>(Å) and Angles (d<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.0(6)<br><b>deg) for 4</b><br><sup>m</sup><br>4.1953(8)<br>2.13(1)<br>52.70(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $(C-C-C)_{Cp}$ <b>Table 4.</b> (i) Te1-Te2 Te2-Te3 Te1-C17 Cr1-Te1-Cr2 Cr1-Te1-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.0(6)<br><b>Bond Distances</b><br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (C-C-C) <sub>Pb</sub><br>(Å) and Angles (d<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.0(6)<br><b>deg) for 4</b><br><sup>m</sup><br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ Cr1-Te1-Cr2 \\ Cr1-Te1-Cr7 \\ Te2-Te1-Cr1 \\ Te2-Te1-Cr1 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (C-C-C) <sub>Pb</sub><br>(Å) and Angles (d<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-Cr3<br>Te2-Te1-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.0(6)<br><b>deg) for 4</b><br><sup>m</sup><br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ Cr1-Te1-Cr2 \\ Cr1-Te1-Cr7 \\ Te2-Te1-Cr1 \\ Te3-Te1-Cr1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles (<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-C17<br>Te2-Te1-C17<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.0(6)<br><b>deg) for 4</b><br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Cr1-Tel-C17 \\ Cr1-Te1-Cr2 \\ Cr1-Te1-Cr1 \\ Te2-Te1-Cr1 \\ Te3-Te1-Cr1 \\ Cr1-Te2-Cr2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles (<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-C17<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te1-Te2-Te3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.0(6)<br><b>deg) for 4</b><br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Crl-Tel-C17 \\ Te2-Tel-C17 \\ Te2-Tel-Cr1 \\ Te3-Tel-Cr1 \\ Crl-Te2-Cr2 \\ Tel-Te2-Cr2 \\ Tel-Te2-Cr1 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles (<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-C17<br>Te2-Te1-C17<br>Te2-Te1-C12<br>Te3-Te1-Cr2<br>Te1-Te2-Te3<br>Te1-Te2-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.0(6)<br><b>deg) for 4</b><br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Crl-Tel-C17 \\ Te2-Tel-C17 \\ Te2-Tel-C71 \\ Te3-Tel-C71 \\ Te3-Tel-C72 \\ Tel-Te2-C71 \\ \hline \\ Te3-Te2-C71 \\ \hline \\ Te3-Te2-C71 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ⟨C-C-C) <sub>Ph</sub> (Å) and Angles (a) metry about Te Ato Te1-Te3 Te3-C11 Te2-Te1-Te3 Cr2-Te1-C17 Te2-Te1-C17 Te2-Te1-Cr2 Te3-Te1-Cr2 Te1-Te2-Te3 Te1-Te2-Cr2 Te3-Te2-Cr2 Te3-Te2-Cr2 Te3-Te2-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ Tel-Te2 \\ Te2-Te3 \\ Te1-C17 \\ \hline \\ Cr1-Te1-Cr2 \\ Cr1-Te1-Cr17 \\ \hline \\ Te2-Te1-Cr1 \\ Te3-Te1-Cr1 \\ Cr1-Te2-Cr2 \\ Te1-Te2-Cr1 \\ Te3-Te2-Cr1 \\ \hline \\ Cr1-Te3-Cr2 \\ Cr1-Te3-Cr2 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles (a<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te1-Te2-Te3<br>Te1-Te2-Te3<br>Te1-Te2-Cr2<br>Te3-Te2-Cr2<br>Te1-Te3-Te2<br>Te1-Te3-Te2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>54.60(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Cr1-Te1-C17 \\ Te2-Te1-C17 \\ Te2-Te1-Cr1 \\ Te3-Te1-Cr1 \\ Te3-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Cr1-Te3-Cr2 \\ Cr1-Te3-Cr2 \\ Cr1-Te3-Cr2 \\ Cr1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ (i) $ | 108.0(6)<br><b>Bond Distances</b><br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C-C-C) <sub>Ph</sub> (Å) and Angles (a) metry about Te Ato Te1-Te3 Te3-C11 Te2-Te1-Te3 Cr2-Te1-Cr2 Te3-Te1-Cr2 Te3-Te1-Cr2 Te1-Te2-Te3 Te1-Te2-Te3 Te1-Te2-Cr2 Te3-Te2-Cr2 Te1-Te3-Te2 Cr2-Te3-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Cr1-Te1-C17 \\ Te2-Te1-C17 \\ Te2-Te1-Cr1 \\ Te3-Te1-Cr1 \\ Te3-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Cr1-Te3-Cr2 \\ Cr1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te1-Te3-Cr1 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr2 \\ Cr1-Te3-Cr2$                                                                                                                                                                                          | 108.0(6)<br><b>Bond Distances</b><br>Coordination Geo.<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(C-C-C)_{Ph}$<br>(Å) and Angles ( $(C-C-C)_{Ph}$<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Cr3<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te1-Te2-Cr2<br>Te3-Te2-Cr2<br>Te1-Te3-Te2<br>Cr2-Te3-C11<br>Te1-Te3-Cr2<br>Te1-Te3-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>9.7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Cr1-Te1-C17 \\ Cr1-Te1-C17 \\ Te2-Te1-Cr1 \\ Te3-Te1-Cr1 \\ Te3-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te1-Te3-Cr1 \\ Te2-Te3-Cr1 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles ((<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Cr3<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te1-Te2-Te3<br>Te1-Te2-Cr2<br>Te1-Te2-Cr2<br>Te1-Te3-Te2<br>Cr2-Te3-C11<br>Te1-Te3-Cr2<br>Te2-Te3-Cr2<br>Te2-Te3-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Cr1-Te1-C17 \\ Te2-Te1-C17 \\ Te3-Te1-C17 \\ Te3-Te1-C17 \\ Te3-Te2-C71 \\ Te3-Te2-C71 \\ Te3-Te2-C71 \\ Te1-Te3-C72 \\ Cr1-Te3-C11 \\ Te1-Te3-Cr1 \\ Te2-Te3-Cr1 \\ \hline \\ (i) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)<br>Coordination Geo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles ( $($<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Cr3<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te1-Te2-Te3<br>Te1-Te2-Cr2<br>Te1-Te2-Cr2<br>Te1-Te3-Te2<br>Cr2-Te3-C11<br>Te1-Te3-Cr2<br>Te2-Te3-Cr2<br>metry about Cr Ato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)<br>sm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Cr1-Te1-C17 \\ \hline \\ Cr1-Te1-C17 \\ \hline \\ Cr1-Te2-Cr1 \\ Te3-Te1-Cr1 \\ \hline \\ Te3-Te2-Cr1 \\ \hline \\ Te3-Te2-Cr1 \\ \hline \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ \hline \\ Te2-Te3-Cr1 \\ \hline \\ (ii) \\ Cr1-Te1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108.0(6)<br><b>Bond Distances</b><br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)<br>Coordination Geo<br>2.653(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles ( $\ell$<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te3-Te1-Cr2<br>Te1-Te2-Te3<br>Te1-Te2-Cr2<br>Te1-Te2-Cr2<br>Te1-Te3-Te2<br>Cr2-Te3-C11<br>Te1-Te3-Cr2<br>Te2-Te3-Cr2<br>Te2-Te3-Cr2<br>metry about Cr Ato<br>Cr2-Te1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)<br>m<br>2.661(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Cr1-Te1-Cr2 \\ Cr1-Te1-Cr17 \\ \hline \\ Cr1-Te1-Cr17 \\ \hline \\ Te2-Te1-Cr1 \\ Cr1-Te2-Cr1 \\ \hline \\ Te3-Te2-Cr1 \\ Cr1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ \hline \\ Te1-Te3-Cr1 \\ \hline \\ Te2-Te3-Cr1 \\ \hline \\ Cr1-Te1 \\ Cr1-Te1 \\ \hline \\ Cr1-Te1 \\ \hline \\ Cr1-Te1 \\ \hline \\ Cr1-Te2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.0(1)<br>108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)<br>Coordination Geo<br>2.653(1)<br>2.610(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(C-C-C)_{Ph}$<br>(Å) and Angles ( $(C-C-C)_{Ph}$<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te3-Te1-Cr2<br>Te3-Te1-Cr2<br>Te3-Te2-Cr2<br>Te1-Te2-Cr2<br>Te1-Te3-Te2<br>Cr2-Te3-C11<br>Te1-Te3-Cr2<br>Te2-Te3-Cr2<br>metry about Cr Ato<br>Cr2-Te1<br>Cr2-Te1<br>Cr2-Te2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.0(6)<br>deg) for 4<br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)<br>m<br>2.661(1)<br>2.608(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Cr1-Te1-Cr2 \\ Cr1-Te1-Cr1 \\ Te2-Te1-Cr1 \\ Te3-Te1-Cr1 \\ Cr1-Te2-Cr2 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te1-Te3-Cr1 \\ Te2-Te3-Cr1 \\ \hline \\ Te2-Te3-Cr1 \\ \hline \\ Cr1-Te1 \\ Cr1-Te2 \\ Cr1-Te2 \\ Cr1-Te3 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.0(1)<br>108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)<br>0 Coordination Geo<br>2.653(1)<br>2.610(1)<br>2.653(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles ((<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-C17<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te3-Te1-Cr2<br>Te3-Te2-Cr2<br>Te3-Te2-Cr2<br>Te3-Te2-Cr2<br>Te1-Te3-Te2<br>Cr2-Te3-C11<br>Te1-Te3-Cr2<br>Te2-Te3-Cr2<br>metry about Cr Ato<br>Cr2-Te1<br>Cr2-Te1<br>Cr2-Te2<br>Cr2-Te3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.0(6)<br><b>deg) for 4</b><br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)<br>om<br>2.661(1)<br>2.608(1)<br>2.642(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ (Tel-C17 \\ Crl-Tel-C17 \\ Te2-Tel-C71 \\ Te3-Te1-C71 \\ Crl-Te2-C72 \\ Tel-Te2-C71 \\ Te3-Te2-C71 \\ Te1-Te3-C72 \\ Crl-Te3-C71 \\ Te2-Te3-C71 \\ \hline \\ (ii) \\ Crl-Te1 \\ Crl-Te2 \\ Crl-Te3 \\ Crl-Te3 \\ Crl-Te3 \\ Crl-Te3 \\ Crl-C72 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.0(1)<br>108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)<br>0 Coordination Geo<br>2.653(1)<br>2.653(1)<br>2.935(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles ((<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-C17<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te1-Te2-Te3<br>Te1-Te2-Cr2<br>Te3-Te2-Cr2<br>Te1-Te3-Cr2<br>Te1-Te3-Cr2<br>Te2-Te3-Cr2<br>metry about Cr Ato<br>Cr2-Te1<br>Cr2-Te2<br>Cr2-Te3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.0(6)<br><b>deg) for 4</b><br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)<br>54.60(1)<br>2.661(1)<br>2.642(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Crl-Tel-C17 \\ Te2-Tel-C17 \\ Te2-Tel-Cr1 \\ Te3-Te1-Cr1 \\ Cr1-Te2-Cr2 \\ Tel-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te2-Te3-Cr1 \\ \hline \\ (ii) \\ Cr1-Te1 \\ Cr1-Te2 \\ Cr1-Te3 \\ Cr1-Te3 \\ Cr1-Cr2 \\ (Cr1-Cp1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)<br>9 Coordination Geo<br>2.653(1)<br>2.610(1)<br>2.653(1)<br>2.935(2)<br>2.226(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles (<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-C17<br>Te2-Te1-Cr2<br>Te1-Te2-Te3<br>Te1-Te2-Cr2<br>Te1-Te2-Cr2<br>Te1-Te3-Te2-Cr2<br>Te1-Te3-Cr2<br>Te1-Te3-Cr2<br>Te2-Te3-Cr2<br>metry about Cr Ato<br>Cr2-Te1<br>Cr2-Te2<br>Cr2-Te3<br>Cr2-Te3<br>Cr2-Te2<br>Cr2-Te3<br>Cr2-Cp2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.0(6)<br><b>deg) for 4</b><br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)<br>54.60(1)<br>2.661(1)<br>2.642(1)<br>2.22(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Crl-Tel-C17 \\ Te2-Tel-C17 \\ Te2-Tel-Cr1 \\ Te3-Te1-Cr1 \\ Cr1-Te2-Cr2 \\ Tel-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Te3-Te2-Cr1 \\ Te1-Te3-Cr2 \\ Cr1-Te3-Cr1 \\ Te2-Te3-Cr1 \\ \hline \\ (ii) \\ Cr1-Te1 \\ Cr1-Te2 \\ Cr1-Te3 \\ Cr1-Te3 \\ Cr1-Cr2 \\ (Cr1-Cp1) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)<br>9 Coordination Geo<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.935(2)<br>2.226(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles (<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-C17<br>Te2-Te1-C17<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te3-Te2-Cr2<br>Te3-Te2-Cr2<br>Te1-Te3-Te2<br>Cr2-Te3-C11<br>Te1-Te3-Cr2<br>Te2-Te3-Cr2<br>metry about Cr Ato<br>Cr2-Te1<br>Cr2-Te2<br>Cr2-Te3<br>Cr2-Te3<br>Cr2-Cp2<br>Te1-Cr2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.0(6)<br><b>deg) for 4</b><br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)<br>54.61(1)<br>2.661(1)<br>2.642(1)<br>2.22(1)<br>64.55(3)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2)<br>54.60(2) |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Crl-Tel-C17 \\ Te2-Tel-C17 \\ Te2-Tel-Crl \\ Te3-Te1-Crl \\ Crl-Te2-Crl \\ Te3-Te2-Crl \\ Te1-Te3-Cr2 \\ Crl-Te3-Cr2 \\ Crl-Te3-Crl \\ \hline \\ (ii) \\ Crl-Te1 \\ Crl-Te2 \\ Crl-Te3 \\ Crl-Te3 \\ Crl-Te3 \\ Crl-Cr2 \\ (Crl-Cpl) \\ \hline \\ Tel-Crl-Te2 \\ Crl-Te3 \\ Crl-Cr2 \\ (Crl-Cpl) \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)<br>0 Coordination Geo<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.935(2)<br>2.226(9)<br>85.76(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles (<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-C17<br>Te2-Te1-C17<br>Te2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te3-Te1-Cr2<br>Te3-Te2-Cr2<br>Te1-Te2-Cr2<br>Te1-Te3-Te2<br>Cr2-Te3-Cr2<br>Te2-Te3-Cr2<br>metry about Cr Ato<br>Cr2-Te1<br>Cr2-Te2<br>Cr2-Te3<br>Cr2-Te3<br>Cr2-Cp2<br>Te1-Cr2-Te2<br>Te1-Cr2-Te2<br>Cr2-Te2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.0(6)<br><b>deg) for 4</b><br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)<br>54.60(1)<br>2.661(1)<br>2.661(1)<br>2.642(1)<br>2.22(1)<br>85.64(4)<br>2.5(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{array}{c} (C-C-C)_{Cp} \\ \hline \\ \hline \\ (C-C-C)_{Cp} \\ \hline \\ \hline \\ (i) \\ Tel-Te2 \\ Te2-Te3 \\ Tel-C17 \\ \hline \\ Crl-Tel-C17 \\ Te2-Tel-C17 \\ Te2-Tel-Crl \\ Te3-Tel-Crl \\ Te3-Te1-Crl \\ Crl-Te3-Cr2 \\ Crl-Te3-Cr2 \\ Crl-Te3-Cr1 \\ \hline \\ Tel-Te3-Cr1 \\ \hline \\ Tel-Te3-Cr1 \\ \hline \\ (ii) \\ Crl-Te1 \\ Crl-Te2 \\ Crl-Te3 \\ Crl-Te2 \\ Crl-Te3 \\ Crl-Cr2 \\ (Crl-Cp1) \\ \hline \\ Tel-Cr1-Te2 \\ Crl-Te3 \\ Tel-Cr2 \\ (Crl-Te3 \\ Tel-Cr2 \\ Tel-Cr2 \\ (Crl-Te3 \\ Tel-Cr3 \\$                                                                                                           | 108.0(6)<br>Bond Distances<br>Coordination Geo<br>3.5814(9)<br>3.4950(8)<br>2.15(2)<br>67.06(4)<br>108.6(3)<br>46.62(3)<br>37.75(3)<br>68.47(4)<br>47.63(3)<br>48.92(3)<br>67.34(4)<br>109.2(3)<br>37.76(3)<br>47.86(3)<br>9 Coordination Geo<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2.653(1)<br>2 | $\langle C-C-C \rangle_{Ph}$<br>(Å) and Angles (<br>metry about Te Ato<br>Te1-Te3<br>Te3-C11<br>Te2-Te1-Te3<br>Cr2-Te1-Cr2<br>Te3-Te1-Cr2<br>Te1-Te2-Te3<br>Te1-Te2-Cr2<br>Te3-Te2-Cr2<br>Te1-Te3-Te2<br>Cr2-Te3-Cr2<br>Te2-Te3-Cr2<br>metry about Cr Ato<br>Cr2-Te1<br>Cr2-Te2<br>Cr2-Te3<br>Cr2-Te3<br>Cr2-Te3<br>Cr2-Cp2<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Cr2-Te3<br>Cr2-Cp2<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2-Te3<br>Te1-Cr2 | 120.0(6)<br><b>deg) for 4</b><br>m<br>4.1953(8)<br>2.13(1)<br>52.70(1)<br>109.7(3)<br>46.55(3)<br>37.55(3)<br>72.71(2)<br>47.80(3)<br>48.68(3)<br>54.60(2)<br>107.6(3)<br>37.87(3)<br>47.84(3)<br>54.60(1)<br>2.661(1)<br>2.642(1)<br>2.22(1)<br>85.64(4)<br>83.48(4)<br>104.55(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                        | , ,            |                             |         |
|------------------------|----------------|-----------------------------|---------|
| (iii) C                | yclopentadieny | and Phenyl Groups           |         |
| $(C-C)_{Cpl}$          | 1.39(1)        | $\langle C-C \rangle_{Ph1}$ | 1.37(1) |
| $(C-C)_{Cp2}$          | 1.36(2)        | $\langle C-C \rangle_{Ph2}$ | 1.38(2) |
| (C-C-Ċ) <sub>Cp1</sub> | 108.0(9)       | $(C-C-C)_{Ph1}$             | 120(1)  |
| (C-C-C) <sub>Cp2</sub> | 108(1)         | (C-C-C)Ph2                  | 120(1)  |
|                        |                |                             |         |

(50 mg, 0.124 mmol) in toluene (10 cm<sup>3</sup>) was added Ph<sub>2</sub>Te<sub>2</sub> (50.9 mg, 0.124 mmol) at ambient temperature. A brownish green homogeneous solution was instantaneously formed. Stirring was continued for 2 h. The product solution was filtered through a Celite disk (*ca.* 1 cm thick), concentrated to *ca.* 1 mL, and loaded onto a silica gel column (1.5 cm  $\times$  7 cm) prepared in hexane. Elution gave three fractions. (i) A yellow solution in hexane (*ca.* 

 
 Table 5.
 Comparison of Selected Bond Distances (Å) and Angles (deg) for 2 with those for Its Se Analogue

|          | E = Te    | $E = Se^6$ |
|----------|-----------|------------|
| ECr      | 2.7634(7) | 2.588(1)   |
| E-C9     | 2.117(4)  | 1.911(4)   |
| Cr-E-C9  | 105.4(1)  | 109.6(1)   |
| E-Cr-C1  | 74.2(1)   | 130.9(2)   |
| E-Cr-C2  | 73.7(1)   | 73.8(1)    |
| E-Cr-C3  | 131.2(1)  | 74.1(2)    |
| C1-Cr-C2 | 115.8(2)  | 80.7(2)    |
| C1-Cr-C3 | 81.0(2)   | 82.3(2)    |
| C2–Cr–C3 | 80.8(2)   | 118.0(2)   |

Table 6. Comparison of Selected Bond Distances (Å) and Bond Angles (deg) for the Cr<sub>2</sub>E<sub>2</sub> Core of 3 with Those for its S and Mo Analogues

|          | M = Cr, E = Te | $M = Cr, E = S^5$ | $M = Mo, E = Te^{18}$ |
|----------|----------------|-------------------|-----------------------|
| M1M2     | 4.112(1)       | 3.808(2)          | 4.23                  |
| E1E2     | 3.1371(4)      | 2.857(5)          | 3.24                  |
| M1-E1    | 2.7424(8)      | 2.449(3)          | 2.855(5), 2.874(6)    |
| M1-E2    | 2.7070(7)      | 2.457(3)          | 2.785(5), 2.785(6)    |
| M2-E1    | 2.7192(7)      | 2.471(3)          | 2.834(6), 2.834(6)    |
| M2-E2    | 2.7175(7)      | 2.431(3)          | 2.813(5), 2.798(6)    |
| E1-M1-E2 | 70.29(2)       | 71.2(1)           | 70.9(1), 69.3(2)      |
| E1M2E2   | 70.48(2)       | 71.3(1)           | 70.8(1), 69.7(2)      |
| M1-E1-M2 | 97.67(2)       | 101.4(1)          | 96.3(2), 95.3(2)      |
| M1-E2-M2 | 98.58(2)       | 102.3(1)          | 98.4(2), 98.2(2)      |
| E1-M1-M2 | 40.95(1)       | 39.5(1)           |                       |
| E2-M1-M2 | 40.81(1)       | 38.6(1)           |                       |
| E1-M2-M1 | 41.38(1)       | 39.1(1)           |                       |
| E2-M2-M1 | 40.62(1)       | 39.1(1)           |                       |
|          |                |                   |                       |

50 cm<sup>3</sup>) gave unreacted  $Ph_2Te_2$  (12 mg, 0.029 mmol, 23.6%). (ii) A green solution in 1:1 hexane-toluene (ca. 25 cm<sup>3</sup>) yielded green crystals of CpCr(CO)<sub>3</sub>(TePh) (2; 68 mg, 0.17 mmol, 67.2%). Anal. Calcd for CpCr(CO)<sub>3</sub>(TePh): C, 41.43; H, 2.49; Cr, 12.81%. Found: C, 41.44; H, 2.50; Cr, 12.06. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  (Cp) varies from 3.98 (30 °C) to 4.18 (75 °C),  $\delta(C_6H_5)$  7.98, 7.95, and a multiplet with peaks at 7.02, 7.00, 6.97, 6.90, 6.87, 6.85. <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$ (Cp) 89.57;  $\delta$ (C<sub>6</sub>H<sub>5</sub>) 140.45, 128.36, and 127.87. IR (Nujol): v(CO) 2050 vs, 1950 s, and 1935 s cm<sup>-1</sup>; v(Cp) 855 m cm<sup>-1</sup>;  $\nu$ (others) 740 m, 640 w, and 615 w cm<sup>-1</sup>. IR (toluene):  $\nu$ -(CO) 1995 vs and 1930 vs cm<sup>-1</sup>. FAB<sup>+</sup> mass spectrum: m/z 408 ([CpCr(CO)<sub>3</sub>(TePh)]) and 324 ([CpCr(TePh)]). The electron impact spectrum shows m/z 410 ([(TePh)<sub>2</sub>]), 282 ([TePh<sub>2</sub>]), 207 ([TePh]), 201 ([CpCr(CO)<sub>3</sub>]), 173 ([CpCr(CO)<sub>2</sub>]), 145 ([CpCr-(CO)]), and 117 ([CpCr]). (iii) A greenish brown solution in 3:7 n-hexane-toluene (ca. 10 cm<sup>3</sup>) gave a 7:4 mixture (18 mg) of compound 2 and [CpCr(CO)<sub>2</sub>(TePh)]<sub>2</sub> (3), described below.

At 60 °C. The brown product solution from a similar reaction after 4.5 h at 60 °C was worked up in a similar manner and chromatographed on a silica gel column  $(1.5 \text{ cm} \times 4 \text{ cm})$ . Elution gave three fractions. (i) A yellow solution in hexane  $(ca. 40 \text{ cm}^3)$ yielded unreacted  $Ph_2Te_2$  (10 mg, 0.024 mmol, 19.6%). (ii) A green solution in 1:1 hexane-toluene  $(ca. 5 \text{ cm}^3)$  gave green crystals of compound 2 (10 mg, 0.025 mmol, 10.1%). (iii) A brown solution in 1:1 hexane-toluene (ca. 30 cm<sup>3</sup>) yielded brown crystals of compound 3 (75 mg, 0.099 mmol, 79.8%). Anal. Calcd for  $[CpCr(CO)_2(TePh)]_{2^{*1}/2}C_6H_6$ : C, 43.83; H, 2.92; Cr, 13.02. Found: C, 43.85; H, 2.78; Cr, 13.52. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$ (Cp) varies from 4.41 (30 °C) to 4.47 (75 °C);  $\delta(C_6H_5)$  7.53, 7.51, and a multiplet with peaks at 7.06, 7.04, 7.01, 6.94, 6.92, and 6.89. <sup>13</sup>C NMR (CDCl<sub>3</sub>):  $\delta$ (Cp) 90.70;  $\delta$ (C<sub>6</sub>H<sub>5</sub>) 137.40 and 128.36;  $\delta$ (CO) 258.11 and 255.22. IR (Nujol): v(CO) 1915 s, 1905 vs, 1860 s, and 1840 s cm<sup>-1</sup>;  $\nu$ (Cp) 820 m cm<sup>-1</sup>;  $\nu$ (others) 730 m, 690 m, and 630 m cm<sup>-1</sup>. IR (toluene):  $\nu$ (CO) 1935 s, 1920 vs, 1873 s, and 1860 s cm<sup>-1</sup>. FAB<sup>+</sup> mass spectrum (see Figure 1A): m/z 756 ([CpCr- $(CO)_2(TePh)]_2$ , 700 ([CpCr(CO)(TePh)]\_2), 644 ([CpCr(TePh)]\_2), 567 ([Cr<sub>2</sub>Cp<sub>2</sub>(Te<sub>2</sub>Ph)]), and 322 ([CpCr(TePh)]). The EI spectrum shows a very weak peak at m/z 756 and intense peaks at m/z 410 ([(TePh)<sub>2</sub>]; see Figure 1C), 282 ([(TePh<sub>2</sub>)]), and 207 ([TePh]).

|                                         | 2                                                                                                | 3                                                             | 4                                                                                                                          |
|-----------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| molecular formula<br>M <sub>r</sub>     | Cr(C <sub>5</sub> H <sub>5</sub> )(CO) <sub>3</sub> (TeC <sub>6</sub> H <sub>5</sub> )<br>405.83 | $Cr_2(C_5H_5)_2(CO)_4(TeC_6H_5)_2 \cdot 1/_2C_6H_6$<br>794.70 | Cr <sub>2</sub> (C <sub>5</sub> H <sub>5</sub> ) <sub>2</sub> (TeC <sub>6</sub> H <sub>5</sub> ) <sub>2</sub> Te<br>771.20 |
| cryst color and habit                   | dark green parallelepipeds                                                                       | magenta plates                                                | dark green needles                                                                                                         |
| cryst size (mm)                         | <0.3 in each dimens                                                                              | $0.3 \times 0.2 \times 0.2$                                   | $0.3 \times 0.3 \times 0.3$                                                                                                |
| unit cell params                        | a = 10.8250(8) Å,                                                                                | a = 10.0493(8) Å,                                             | a = 10.1595(7) Å,                                                                                                          |
|                                         | b = 8.6891(6) Å,                                                                                 | b = 11.0612(6) Å,                                             | b = 21.505(1) Å,                                                                                                           |
|                                         | c = 15.5263(7) Å,                                                                                | c = 13.263(1) Å,                                              | c = 10.615(1) Å,                                                                                                           |
|                                         | $\alpha = 90.009(4)^{\circ}, \beta = 98.880(5)^{\circ},$                                         | $\alpha = 102.021(6)^{\circ}, \beta = 93.791(7)^{\circ},$     | $\alpha = 90^{\circ}, \beta = 95.607(8)^{\circ},$                                                                          |
|                                         | $\gamma = 89.990(6)^{\circ}, V = 1442.9(2) \text{ Å}^3,$                                         | $\gamma = 105.652(5)^{\circ}, V = 1376.7(2) \text{ Å}^3,$     | $\gamma = 90^{\circ}, Z = 4$                                                                                               |
|                                         | Z = 4                                                                                            | Z = 2                                                         |                                                                                                                            |
| $D_{\text{calc}}$ (Mg m <sup>-3</sup> ) | 1.868                                                                                            | 1.917                                                         | 2.219                                                                                                                      |
| cryst syst                              | monoclinic                                                                                       | triclinic                                                     | monoclinic                                                                                                                 |
| space group                             | $P2_1/c$                                                                                         | PĪ                                                            | $P2_1/n$                                                                                                                   |
| radiation (Å)                           | Mo K $\alpha$ ( $\lambda$ = 0.710 73)                                                            | Mo K $\alpha$ ( $\lambda$ = 0.710 73)                         | Mo K $\alpha$ ( $\lambda$ = 0.710 73)                                                                                      |
| no. of rflns for lattice params         | 25                                                                                               | 21                                                            | 25                                                                                                                         |
| $\theta$ range for lattice params (deg) | 14–16                                                                                            | 13–16                                                         | 12–15                                                                                                                      |
| abs coeff (cm <sup>-1</sup> )           | 27.61                                                                                            | 28.87                                                         | 46.5                                                                                                                       |
| temp (°C)                               | 27                                                                                               | 27                                                            | 27                                                                                                                         |
| diffractometer type                     | CAD4                                                                                             | CAD4                                                          | CAD4                                                                                                                       |
| collection method                       | $\omega - 2\theta$                                                                               | $\omega - 2\theta$                                            | $\omega - 2\theta$                                                                                                         |
| abs cor $(T_{\min}, T_{\max})$          | 86.008, 99.822                                                                                   | 88.154, 99.956                                                | 91.94, 99.91                                                                                                               |
| no. of rflns measd                      | 2866                                                                                             | 4515                                                          | 4413                                                                                                                       |
| no. of indep rflns                      | 2527                                                                                             | 4338                                                          | 4049                                                                                                                       |
| $\theta_{\max}$ (deg)                   | 25                                                                                               | 25                                                            | 25                                                                                                                         |
| no. of obsd rflns $(>3\sigma(I))$       | 1857                                                                                             | 3346                                                          | 2539                                                                                                                       |
| no. of std rflns (and interval)         | 3(400)                                                                                           | 3(400)                                                        | 3(400)                                                                                                                     |
| variation of stds (% $h^{-1}$ )         | $-4.91 \times 10^{-2}$                                                                           | $-1.49 \times 10^{-1}$                                        | -1.03                                                                                                                      |
| collection range                        | h = 0-12,                                                                                        | h = -11 to $+11$ ,                                            | h = -12 to $+12$ ,                                                                                                         |
|                                         | k = -10  to  0,                                                                                  | k = -13 to 12,                                                | k = 0-25,                                                                                                                  |
|                                         | l = -18 to $+18$                                                                                 | l = 0 - 15                                                    | l = 0 - 12                                                                                                                 |
| R                                       | 0.023                                                                                            | 0.022                                                         | 0.030                                                                                                                      |
| R <sub>w</sub>                          | 0.025                                                                                            | 0.024                                                         | 0.035                                                                                                                      |
| weighting scheme                        | $w = [\sigma^2(F) + 0.0004F^2 + 1]^{-1}$                                                         | $w = [\sigma^2(F) + 0.0004F^2 + 1]^{-1}$                      | $w = [\sigma(F)^2]^{-1}$                                                                                                   |
| no. of params refined                   | 212                                                                                              | 426                                                           | 244                                                                                                                        |
| no. of rflns used in refinement         | 1857                                                                                             | 3346                                                          | 2539                                                                                                                       |
| S                                       | 0.349                                                                                            | 0.329                                                         | 1.026                                                                                                                      |
| $(\Delta/\sigma)_{\rm max}$             | 0.29                                                                                             | 0.38                                                          | 0.00                                                                                                                       |
| $(\Delta \rho)_{\max} (e A^{-3})$       | 0.672                                                                                            | 0.432                                                         | 0.627                                                                                                                      |

Table 7. Data Collection and Processing Parameters

At 80 °C. The dark green product solution from a similar reaction for 4 h at 80  $^{\circ}\mathrm{C}$  upon similar workup and chromatography gave (i) a brown eluate in 1:1 hexane-toluene (ca. 25 cm<sup>3</sup>), which yielded brown crystals of compound 3 (28 mg, 0.037 mmol, 29.8%), and (ii) a turquoise green eluate in 2:5 hexane-toluene, which gave dark green crystals (39 mg, 0.051 mmol, 40.8%) of the compound [CpCr(TePh)]<sub>2</sub>Te (4). Anal. Calcd for [CpCr(TePh)]<sub>2</sub>Te: C, 34.26; H, 2.61; Cr, 13.48; Te, 49.64. Found: C, 33.94, 33.76; H, 2.62, 2.68; Cr, 13.11, 13.2; Te, 49.1. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>) at ambient temperature:  $\delta$ (Cp) 15.82 ( $\nu_{1/2}$  = 35 Hz) and 19.80 ( $v_{1/2} = 20$  Hz) with relative intensity ca. 1:1  $\delta(C_6H_5)$ multiplet with peaks at 9.14, 8.97, 8.34, 8.13, 7.68, 7.60, 7.40, 7.33, 6.87, 6.85, and 6.82 (total ca. 10 H, integration accuracy affected by solvent peaks). VT  $^{1}$ H NMR (C<sub>6</sub>D<sub>5</sub>CD<sub>3</sub>) of a sample prepared by dissolution at ca. 90 °C and scanned initially at -90 °C followed by stepwise increases in temperature to 80 °C: -90 °C,  $\delta$  (Cp) 9.50 ( $v_{1/2}$  = 40 Hz) and 13.27 ( $v_{1/2}$  = 20 Hz) (relative intensity ca. 1:1); 80 °C,  $\delta$ (Cp) 17.41 ( $\nu_{1/2}$  = 30 Hz) and 21.04 ( $\nu_{1/2}$  = 30 Hz) (relative intensity ca. 1:1). IR (Nujol): v 800 m, 715 s, and 690 w cm<sup>-1</sup>. <sup>13</sup>C NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$ (Cp) 97.3 (br);  $\delta$ (C<sub>6</sub>H<sub>5</sub>) 137.79, 135.76, 135.21, 134.20, 129.99, and 126.17 (partially obscured by solvent peaks). The only significant fragments in both the EI and FAB<sup>+</sup> mass spectra of 4 are m/z 410 ([(TePh)<sub>2</sub>]), 282 ([TePh<sub>2</sub>]), 207 ([PhTe]), 154 ([Ph<sub>2</sub>]).

Reaction of [CpCr(Co)<sub>2</sub>]<sub>2</sub> with Ph<sub>2</sub>Te<sub>2</sub>: An NMR Study. A solution in  $C_6D_6$ , 20 mM each in  $[CpCr(CO)_2]_2$  and  $Ph_2Te_2$ , was maintained at ca. 70 °C in a 5 mm serum-capped NMR tube, vented into a nitrogen line, and its proton NMR spectrum monitored at intervals.

Thermolysis Reactions. An approximately 10 mM green solution of compound 2 and a 2 mM brown solution of compound 3 in  $C_6D_6$  in 5-mm NMR tubes were maintained at 80 °C, and the progress of their thermolytic degradation was monitored via their proton NMR spectra. The decay of 2 was also monitored at 60 °C.

Crystal Structure Determination. Dark green parallelepipeds of compound 2 were obtained from toluene-hexane after 1 day at -20 °C. Complex 3 was obtained as dark magentabrown plates from toluene-ether after 2 days at ambient temperature. Deep green crystals of 4 were obtained from toluene-hexane after several weeks at -20 °C.

Diffraction-quality crystals were coated with epoxy glue to prevent crystal decomposition. Details of the crystal parameters, data collection, and structure refinement are given in Table 7. Raw intensities collected at room temperature were processed for Lorentz-polarization effects and corrected for absorption using  $\psi$ -scan data.<sup>21</sup> The Patterson method yielded the positions of the Te atoms for 2 and 3, and the rest of the atoms were derived from successive difference Fourier syntheses. Compound 4 was solved by MULTAN. The non-hydrogen atoms were subjected to anisotropic refinement, while the H atoms for 2 and 3 were refined isotropically. The H atoms for 4 were generated geometrically and were allowed to ride on their parent carbon atoms with B fixed at 1.3 times those of the parent C atoms. Computations were performed using the MolEN<sup>22</sup> package on a DEC MicroVAX-II computer. Analytic expressions of atomic

<sup>(21)</sup> North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr. 1968. 24A. 351.

<sup>(22)</sup> MolEn: An Interactive Structure Solution Procedure; Delft Instruments, Delft, The Netherlands, 1990. (23) Cromer, D. T.; Waber, J. T. International Tables for X-ray

Crystallography; Vol. IV, Kynoch Press: Birmingham, England, 1974; Table 2.2B.

<sup>(24)</sup> Cromer, D. T. International Tables for X-ray Crystallography;
(24) Cromer, D. T. International Tables for X-ray Crystallography;
Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.3.1.
(25) Pasynskii, A. A.; Eremenko, I. L.; Rakitin, Yu. V.; Novotortsev,
V. M.; Kallinnikov, V. T.; Aleksandrov, G. G.; Struchkov, Yu. T. J.

Organomet. Chem. 1979, 165, 57.

scattering factors<sup>23</sup> were employed, and anomalous dispersioncorrections<sup>24</sup> were incorporated. Anisotropic displacement parameters, hydrogen atom coordinates, and structure factor tables have been deposited with the Cambridge Crystallographic Data Centre.

Acknowledgment. R&D Grant No. 04-07-04-211 and support from the University of Malaya is gratefully acknowledged. We thank Dr. J. MacLeod of the Research School of Chemistry, Australian National University, Canberra, Australia, for the mass spectra.

**Supplementary Material Available:** Tables of anisotropic displacement parameters and additional bond distances and angles for 2-4 and of positional parameters for the hydrogen atoms of 2 and 3 (8 pages). Ordering information is given on any current masthead page.

OM930606E

<sup>(26)</sup> Pasynskii, A. A.; Eremenko, I. L.; Rakitin, Yu. V.; Orazsakhatov, B.; Novotortsev, V. M.; Ellert, O. G.; Kallinnikov, V. T.; Aleksandrov, G. G.; Struchkov, Yu. T. J. Organomet. Chem. 1981, 210, 377.